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SOME PROPERTIES OF THE MAXIMAL GRAPH RELATED

TO CO-IDEAL OF A COMMUTATIVE SEMIRING

YAHYA TALEBI1,∗, ATEFEH DARZI2

Abstract. For a commutative semiring R with non-zero identity, the
maximal graph of R, denoted by MG(R), is the graph whose vertices are
all elements of UM(R) with two distinct vertices joined by an edge when
there is a maximal co-ideal that contains both of them. In this paper, we
study some properties of maximal graph such as planarity, radius, splitting
and domination number.
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1. Introduction

Throughout this paper, every semiringR is assumed to be commutative with
non-zero identity. For a semiring R, we denote by Co−Max(R), UM(R) and
IM(R), the set of maximal co-ideals, the union of all the maximal co-ideals
and the intersection of all the maximal co-ideals of R, respectively. Also, if R
is a ring, then R has no proper co-ideals, thus in this paper we consider the
semiring which is not a ring.

The idea to associate a graph to a commutative ring, was first introduced
by Beck [3], where he was mainly interested in coloring. In [2], Anderson
and Livingston take the non-zero zero-divisors for the vertices of the graph
and two distinct vertices x and y are adjacent if and only if xy = 0. They
called this graph, zero-divisor graph and denoted by Γ(R). In [9], Sharma
and Bhatwadekar defined another graph on a ring R with vertices as elements
of R and there is an edge between two distinct vertices x and y in R if and
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only if Rx + Ry = R. Further, in [8], Maimani et al. studied the graph that
intoduced by Sharma and Bhatwadekar and called it comaximal graph. Some
other investigations into properties of comaximal graph over a commutative
ring may be found in [1, 7]. Gaur and Sharma in [5], introduced the concept of
the maximal graph for a commutative ring R, denoted by G(R), with vertices
as elements of R, where two distinct vertices x and y are adjacent if and only
if x, y ∈ m for some maximal ideal m of R. They showed a ring R is finite if
and only if clique number of the graph G(R) is finite. Also, they showed that
χ(R) = ω(R) for a semilocal ring R.

For an arbitrary commutative semiring R, the maximal graph of R, denoted
by MG(R), was studied in [10]. The vertex-set of MG(R) is UM(R) and
two distinct vertices x and y are adjacent if and only if x, y ∈ m for some
m ∈ Co −Max(R). In [10], the authors considered the subgraphs MG1(R)
and MG2(R) of MG(R) with vertex-set IM(R) and UM(R) \ IM(R) and we
investigated some properties of these graphs such as diameter, girth, clique
number, chromatic number and connectivity. In this paper, we continue our
study of maximal graph of commutative semirings and investigate some graph-
theoretic properties of MG(R) and MG2(R) such as planarity, radius, splitting
and domination number.

First, we recall some definitions and notations of graphs which will be used
in this paper. For a graph G, by V (G) and E(G), we denote the set of all
vertices and all edges, respectively. We say that G is connected if there is a
path between any two distinct vertices of G. The components of a graph G are
its maximal connected subgraphs. For vertices x and y of G, we define d(x, y)
to be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) =∞ if
there is no such path). The diameter of G is diam(G)= sup{d(x, y): x and y
are distinct vertices of G }. A graph in which each pair of distinct vertices is
joined by an edge is called a complete graph. We denote the complete graph on
n vertices by Kn. A clique in a graph G is a set of pairwise adjacent vertices.
The clique number of G, denoted by ω(G), is the number of vertices in a
largest clique of G. Also, an independent set in a graph G is a set of pairwise
non-adjacent vertices. We say that two subgraphs G1 and G2 of G are disjoint
if G1 and G2 have no common vertices and no vertex of G1 (respectively, G2)
is adjacent (in G) to any vertex not in G1 (respectively, G2). We write G\{x}
or G\S for the subgraph of G obtained by deleting a vertex x or set of vertices
S. An induced subgraph is a subgraph obtained by deleting a set of vertices.
When S ⊆ V (G), the induced subgraph G[S] consists of the vertex-set S and
all edges whose endpoints are contained in S.

Now, we recall some various notions about semiring. According to [4, 6, 11],
we have the following definitions.

A semiring R is an algebraic system (R,+, ·) such that (R,+) is a commu-
tative monoid with identity element 0 and (R, ·) is a semigroup. In addition,
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operations + and · are connected by distributivity and 0 annihilates R (i.e.
x0 = 0x = 0 for each x ∈ R). A semiring R is said to be commutative if (R, ·)
is a commutative semigroup and R is said to have an identity if there exists
1 ∈ R such that 1x = x1 = x.

A non-empty subset I of R is called a co-ideal of R if and only if it is closed
under multiplication and satisfies the condition that a + r ∈ I for all a ∈ I
and r ∈ R. According to this definition, 0 ∈ I if and only if I = R. It is trivial
that R has no proper co-ideal when R is ring. We say that I is a maximal
co-ideal of R, if I 6= R and there is no co-ideal J such that I ⊂ J ⊂ R. If R
is a semiring which is not a ring then it must have a maximal proper co-ideal.
Also, every maximal co-ideal contains 1.

An element x of a semiring R is called a zero-sum of R if there exists an
element y ∈ R such that x+ y = 0. We will denote the set of all zero-sums of
R by ZS(R). It is easy to see that ZS(R) is an ideal of R.

For a non-empty subset A of a semiring R, the set F (A) of all elements of
R of the form a1a2...an + r, where ai ∈ A for all 1 ≤ i ≤ n and r ∈ R, is a
co-ideal of R containing A. So we can consider the co-ideal generated by the
element a ∈ R as follows: F (a) = {an + r : r ∈ R and n ∈ N}.

For a commutative semiring R, in [10], proved that x ∈
√
ZS(R) if and

only if F (x) = R and from this we conclude that R \
√
ZS(R) = UM(R). It

is shown that x ∈ IM(R) if and only if x is adjacent to any vertex of MG(R).
According to this result, it is interesting that we investigate the characteristics
of MG2(R).

2. Planarity and radius of maximal graph

In this section, we give a necessary and sufficient condition for the planarity
of MG(R) and MG2(R).

We recall that a graph G is said to be planar, if it can be drawn in the
plane so that its edges intersect only at their ends. A subdivision of a graph is
a graph obtained from it by replacing edges with pairwise internally-disjoint
paths. The following well-known result is due to Kuratowski (see [12]):

Theorem 1. [12] A graph is planar if and only if it does not contain a sub-
division of K5 or K3,3.

Proposition 2. Let R be a semiring. If R has a maximal co-ideal m such
that |m| ≥ 5, then MG(R) is not planar.

Proof. Let m be a maximal co-ideal of R and ai ∈ m for i = 1, ..., 5. Since
a1, ..., a5 form a complete subgraph of MG(R) which is isomorphic to K5, so
by Theorem 1, MG(R) is not planar. �

Lemma 3. Let R be a c-semilocal semiring with |Co − Max(R)| = n. If
n ≥ 3, then ω(MG(R)) ≥ n+ 1.
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Proof. Suppose that Co−Max(R) = {m1, ...,mn}. Thus by [11, Lemma 2.14],
|m| ≥ n+ 1 for each maximal co-ideal m of R because n ≥ 3. Given that each
m is clique, so ω(MG(R)) ≥ n+ 1. �

Theorem 4. Let R be a c-semilocal semiring with |Co −Max(R)| = n. If
MG(R) is planar, then n ≤ 3 and |m| ≤ 4 for each maximal co-ideal m of R.

Proof. Let |Co−Max(R)| = n and MG(R) be a planar graph. Thus MG(R)
does not contain a subdivision of K5 or K3,3 by Theorem 1. If n ≥ 4, by
Lemma 3, MG(R) contains K5 as a subgraph and so by Theorem 1, MG(R)
can not be planar. Hence we must have |Co−Max(R)| ≤ 3. Now, if there is
a maximal co-ideal m of R such that |m| ≥ 5, then by Proposition 2, MG(R)
is not planar. Thus |m| ≤ 4 for each maximal co-ideal m of R. �

Lemma 5. Let R be a c-semilocal semiring with |Co − Max(R)| = n. If
n ≥ 4, then ω(MG2(R)) ≥ n+ 1.

Proof. Let {m1, ...,mn} be the set of maximal co-ideals of R. Since n ≥ 4, by
[11, Lemma 2.16], we have |m \ IM(R)| ≥ n + 1 for any m ∈ Co −Max(R).
Now, since each maximal co-idealm forms a clique, so ω(MG2(R)) ≥ n+1. �

Theorem 6. Let R be a c-semilocal semiring with |Co −Max(R)| = n. If
MG2(R) is planar graph, then n ≤ 3 and |m \ IM(R)| ≤ 4 for every m ∈
Co−Max(R).

Proof. Suppose that MG2(R) is a planar graph. Thus by Theorem 1 and
Lemma 5, we must have |Co−Max(R)| ≤ 3. Also, |m \ IM(R)| ≤ 4 for each
maximal

co-ideal m of R , otherwise MG2(R) contains K5 as a subgraph by Propo-
sition 2. �

Next, we give an example of maximal graph over semiring R that is not
planar.

Example 1. Let X = {a, b, c, d} and R = (P (X),∪,∩) be a semiring, where
P (X) is power set of X and 1R = X. This semiring has four maximal co-ideals
as follows:

m1 = {{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X},
m2 = {{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X},
m3 = {{c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}, X},
m4 = {{d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}.

Observe that |m| = 8 and |m \ IM(R)| = 7 for any maximal co-ideal m of
R. On the other hand, any maximal co-ideal is a clique of MG(R), hence in
this example, MG(R) and MG2(R) contain K5 as a subgraph. This implies
MG(R) and MG2(R) are not planar.
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For a graph G, the eccentricity of a vertex x in G is e(x) = Max{d(y, x); y ∈
V (G)}. A center of G is a vertex a with smallest eccentricity. The eccentricity
e(a) is called the radius of G and is denoted by rad(G). Thus, if |V (G)| = 1,
rad(G) = 0 and, if G is complete graph with at least two vertices, then
each vertex is center and rad(G) = 1. In a disconnected graph, the radius
(and every eccentricity) is infinite, for distance between vertices in different
components is infinite.

The following results give information about radius and center of the graphs
MG(R) and MG2(R).

Proposition 7. Let R be a semiring with at least two maximal co-ideals. Then
for the graph MG(R) we have:

e(x) =

{
1 if x ∈ IM(R)
2 otherwise

Proof. First, assume that x ∈ IM(R). As for each y ∈MG(R), x is adjacent
to y, thus e(x) = 1. Now, let x /∈ IM(R). Since x ∈ MG(R), so x ∈ m
for some m ∈ Co − Max(R). For each y ∈ MG(R), if x and y are not
adjacent, then x − 1 − y is a path of length two in MG(R). Hence e(x) ≤ 2.
By hypothesis, since R has at least two maximal co-ideals, there exists m′ ∈
Co−Max(R) in which m′ 6= m. On the other hand, there exists z ∈ m′ such
that z /∈ m. This implies x and z are not adjacent and so e(x) = 2. �

Corollary 8. Let R be a semiring with at least two maximal co-ideals. Then
the elements of IM(R) are centers of MG(R) and rad(MG(R)) = 1.

Proof. Since |Co−Max(R)| ≥ 2, MG(R) has at least two distinct vertices and
thus rad(MG(R)) 6= 0. Also, in the Proposition 7, we showed that e(x) = 1
for any x ∈ IM(R). Hence the elements of IM(R) are centers of MG(R) and
rad(MG(R)) = 1. �

Proposition 9. Let R be a semiring with |Co−Max(R)| = 2. Then rad(MG2(R)) =
∞.

Proof. We know that MG2(R) is a disconnected graph when R has two max-
imal co-ideals by [11, Theorem 3.7]. Hence for each x ∈ MG2(R) we have
e(x) =∞ and so rad(MG2(R)) =∞. �

Theorem 10. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 3. Then
all elements of MG2(R) are center and rad(MG2(R)) = 2.

Proof. Suppose that Co −Max(R) = {m1, ...,mn} with n ≥ 3. By [11, The-
orem 3.12], MG2(R) is a connected graph and diam(MG2(R)) ≤ 2, thus for
each x ∈ MG2(R), e(x) ≤ 2. Since x ∈ MG2(R), so x ∈ mi and x /∈ mj

for some mi,mj ∈ Co −Max(R). Also, by [11, Remark 2.13], there exists
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y ∈ mj \
⋃n

k=1
k 6=j

mk. Hence x and y are not adjacent and we have e(x) = 2.

This implies all elements of MG2(R) are center and rad(MG2(R)) = 2. �

3. Splitting

A graph G is said to be a split graph, if its vertices can be partitioned into
a clique K and an independent set S.

In this section we characterize the semirings that their maximal graph is
split.

Remark 1. Note that, if R is a c-local semiring with maximal co-ideal m,
then MG(R) is a split graph with K = m \ {x} and S = {x} for each x ∈ m.
Now, suppose that R has at least two maximal co-ideals. Since any maximal
co-ideal m of R forms a clique, we must have |m ∩ S| ≤ 1. If m and m′

are distinct maximal co-ideals of R, we show that m ∩ S 6= m′ ∩ S. Assume
contrary that m ∩ S = m′ ∩ S. On the other hand, there exist a ∈ m \m′ and
b ∈ m′ \ m such that are not adjacent in MG(R), so both a and b can not
belong to K. Without loss of generality, we assume that b ∈ S. Therefore,
S ∩m′ = {b} and this implies S ∩m = S ∩m′ = {b}. Hence b ∈ m, which is
not possible. Also, 1 ∈ K, because, if 1 ∈ S, then m∩S = {1} for all maximal
co-ideals of R, a contradiction. We may further assume that K is a maximal
clique.

Now, we give the main result of this section.

Theorem 11. Let R be a semiring with |Co−Max(R)| ≥ 2. Then MG(R) is
a split graph if and only if R contains exactly two maximal co-ideals m1 and
m2 such that |mi \mj | = 1 for some 1 ≤ i 6= j ≤ 2 or R contains exactly three

maximal co-ideals such that |mi \
⋃3

j=1
i 6=j

mj | = 1 for each 1 ≤ i ≤ 3.

Proof. We consider different two cases:
Case(1): There exists a maximal co-ideal such as m contained in K.

Let m′ ∈ Co−Max(R) such that m 6= m′. Also, let a ∈ m\m′ and b ∈ m′\m.
It is obvious that a and b are not adjacent in MG(R), so we have a ∈ K and
b ∈ S. We show that m′ \m = {b}. If there exists b 6= c ∈ m′ \m, then a is
not adjacent to c and so c ∈ S. This implies b, c ∈ m′ ∩ S and so b = c since
|m′∩S| ≤ 1 by Remark 1. Now, suppose that R has a maximal co-ideal p that
p 6= m,m′. Since p \ (m ∪m′) 6= ∅ and (p ∩m′) \m 6= ∅ by [11, Remark 2.13],
hence p \m has at least two distinct elements, which is impossible. Therefore,
R has exactly two maximal co-ideals, because R is not c-local.
Case(2): No maximal co-ideal is contained in K.

In this case, we show thatR has exactly three maximal co-ideals. Letm1, ...,m4

be maximal co-ideals of R. There are distinct vertices a ∈ (m1∩m2)\(m3∪m4)
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and b ∈ (m3 ∩ m4) \ (m1 ∪ m2) which are not adjacent. If a ∈ S, then
S∩m1 = S∩m2 = {a}, which is a contradiction by Remark 1 and hence a ∈ K.
Similarly, b ∈ K. So a and b are adjacent, that is impossible. Therefore, R
has at most three maximal co-ideals.

Now, suppose that R has only two maximal co-ideals m and m′. As by
assumption no maximal co-ideal is contained in K, so m ∩ S and m′ ∩ S
are not empty. Thus there exist a, b ∈ MG(R) such that m ∩ S = {a} and
m′ ∩ S = {b}. Now, since we assume that K is maximal clique and a /∈ K,
then K ∪ {a} is not a clique. Hence there exists c ∈ K such that a is not
adjacent to c. Therefore, c ∈ (m′ \m) ∩K. Similarly, K ∪ {b} is not a clique.
Thus there exists d ∈ K such that b is not adjacent to d. So d ∈ (m \m′)∩K.
This implies c is not adjacent to d provided c, d ∈ K, that is a contradiction.
Thus R has exactly three maximal co-ideals.

Let m1,m2 and m3 be distinct maximal co-ideals of R and x1, x2, x3 be
distinct elements of mi such that S ∩mi = {xi} for 1 ≤ i ≤ 3. By Remark

1, since mi 6= mj for 1 ≤ i, j ≤ 3, i 6= j, then xi ∈ mi \
⋃3

j=1
i 6=j

mj . Now,

it is enough to show that mi \
⋃3

j=1
i 6=j

mj = {xi}. If xi 6= y ∈ mi \
⋃3

j=1
i 6=j

mj ,

then y ∈ K, since S ∩mi = {xi}. But, y is not adjacent to the elements of⋂3
j=1
i 6=j

mj \mi, which can not be true. Hence mi \
⋃3

j=1
i 6=j

mj = {xi}.

Conversely, suppose that Co−Max(R) = {m1,m2} and m2\m1 = {x}. We
can set K = m1 and S = {x}. Now, suppose that R contains three maximal

co-ideals m1,m2 and m3 such that mi \
⋃3

j=1
i 6=j

mj = {xi} for each i = 1, 2, 3.

In this case, we set K =
⋃3

i=1mi \ {x1, x2, x3} and S = {x1, x2, x3}. Thus
MG(R) is a split graph. �

For a semiring R with maximal co-ideals {mi}i∈I , the condition |mi \⋃
i 6=j mj | = 1 is not sufficient for a maximal graph can be split and we should

have |Co −Max(R)| = 2 or |Co −Max(R)| = 3. To see this, consider the
following example:

Example 2. (1) Let X = {a, b, c} and R = (P (X),∪,∩) be a semiring, where
P (X) is power set of X. Clearly, 1R = X and 0R = ∅. In this case, the
maximal co-ideals of semiring R are as follows:

m1 = {{a}, {a, b}, {a, c}, X},
m2 = {{b}, {a, b}, {b, c}, X},
m3 = {{c}, {a, c}, {b, c}, X}.

In this example, {{a, b}, {a, c}, {b, c}, X} is a clique and {{a},{b},{c}} is an
independent set. So MG(R) is a split graph.

(2) Let X = {a, b, c, d} and R = (P (X),∪,∩) be a semiring as defined in
Example 1. As was observed the semiring R has four maximal co-ideals and
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|mi\
⋃4

j=1
i 6=j

mj | = 1 for each 1 ≤ i ≤ 4. But MG(R) is not a split graph because

its vertices can not be partitioned into a clique and an independent set.

Remark 2. Note that if R is not a c-local semiring, then IM(R) ⊆ K. Be-
cause, if x ∈ S ∩ IM(R), then by Remak 1, S ∩ m = {x} for any m ∈
Co−Max(R) and this implies R has only one maximal co-ideal, a contradic-
tion. Therefore, we can conclude the graph MG2(R) satisfies the condition of
Theorem 11.

Theorem 12. Let R be a semiring. If there is a subset {x1, x2, x3} of the
vertex-set MG(R) such that xi and xj are not adjacent for 1 ≤ i, j ≤ 3, i 6= j
and MG(R)\{x1, x2, x3} is clique, then R has exactly three maximal co-ideals.

Proof. By our assumptionMG(R) is a split graph withK = MG(R)\{x1, x2, x3}
and S = {x1, x2, x3}. Since xi ∈ MG(R) for each i, then xi is contained in
maximal co-ideal such as mi. We claim that there exists exactly one maximal
co-ideal mi that xi ∈ mi. If mk is another maximal co-ideal such that xi ∈ mk

and mi 6= mk, then by Remark 1 we have S ∩ mi = S ∩ mk = {xi}. This
implies mi = mk. Also, since xi and xj are not adjacent, then mi 6= mj for
1 ≤ i, j ≤ 3, i 6= j. Thus R has at least three maximal co-ideals.

Now, we show that R can not contains more than three maximal co-ideals.
Assume that R contains maximal co-ideal m4 that m4 6= mi (for i = 1, 2, 3).
We know that |m4 ∩ S| ≤ 1. If m4 ∩ S = ∅, then m4 ⊆ K and by case (1)
of Theorem 11, R contains at most two maximal co-ideals, a contradiction.
Hence, we may assume that |m4 ∩ S| = 1. This implies m4 ∩ S = {xi} and
therefore m4 = mi for some i = 1, 2, 3. Thus R has exactly three maximal
co-ideals. �

4. Domination number

In a graph G, a set S ⊆ V (G) is a dominating set, if every vertex not in S
is adjacent to a vertex in S. The domination number γ(G) is the minimum
size of a dominating set in G. A dominating set S in G is a total dominating
set if G[S] has no isolated vertex and S is an independent dominating set if
G[S] is independent. The minimum cardinality among the total dominating
sets of G is called total domination number and denoted by γt(G). Also,
the independent domination number γi(G) of graph G equals, the minimum
cardinality among the independent dominating sets of G.

It is clearly, for any complete graph γ(G) = 1 and γt(G) = 2. Also, for any
simple graph G, we have γt(G) ≥ 2.

In this section, we express some of results about dominating set. Also,
we compute domination number, total domination number and independent
domination number for the graphs MG(R) and MG2(R).
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Proposition 13. Let R be a semiring. Then γ(MG(R)) = 1 and γt(MG(R)) =
2.

Proof. Let x ∈ IM(R). Since x is adjacent to each vertex of MG(R), thus {x}
is a dominating set and we have γ(MG(R)) = 1. Now, for any y ∈ MG(R)
that y 6= x, it is obvious that {x, y} is a total dominating set. Therefore,
γt(MG(R)) = 2. �

Theorem 14. Let R be a c-semilocal semiring which is not c-local, then
γ(MG2(R)) = 2. Moreover, we have γi(MG2(R)) = 2.

Proof. Assume that Co−Max(R) = {m1, ...,mn}. Let x ∈
⋂n−1

i=1 mi \mn and
y ∈ mn \ IM(R). It is obvious that x, y ∈ MG2(R). Also, all elements of mi

in which 1 ≤ i ≤ n− 1, are adjacent to x and all elements of mn are adjacent
to y. Thus {x, y} is a dominating set of MG2(R). Now, if γ(MG2(R)) = 1,

then there exists z ∈ MG2(R) such that it is adjacent to every vertex of
MG2(R). Since R is not c-local, hence z ∈ IM(R) by [11, Proposition 3.1],
which is impossible. Therefore γ(MG2(R)) = 2. In this case, since {x, y} is
an independent set, so γi(MG2(R)) = 2. �

Theorem 15. Let R be a semiring with two maximal m1 and m2. If |mi \
mj | ≥ 2, for each 1 ≤ i, j ≤ 2 and i 6= j, then γt(MG2(R)) = 4.

Proof. If Co −Max(R) = {m1,m2}, then by [11, Theorem 3.7], MG2(R) is
union of two disjoint cliques. On the other hand, a clique such as K with
|K| ≥ 2, has total dominating set of cardinality two. Thus γt(MG2(R)) = 4,
because by our assumption, |mi \mj | ≥ 2, for each 1 ≤ i 6= j ≤ 2. �

Theorem 16. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 3. Then
γt(MG2(R)) = 2.

Proof. Assume that m1, ...,mn are maximal co-ideals of R. Let x ∈
⋂n−1

i=1 mi \
mn and y ∈

⋂n
i=2mi \ m1. Clearly, {x, y} is a dominating set of MG2(R).

By our hypothesis, since n ≥ 3, there exists a maximal co-ideal mk such
that mk 6= m1,mn and x, y ∈ mk. So x and y are adjacent and this implies
γt(MG2(R)) = 2. �
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