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HEAT AND MASS TRANSFER IN MHD MAXWELL FLUID

OVER AN INFINITE VERTICAL PLATE

NAZISH IFTIKHAR1, S. M. HUSNINE2 AND M. B. RIAZ3, 4

Abstract. The main focus of this article is to investigate the exact so-
lution for MHD flow of Maxwell fluid over an infinite vertical plate with
ramped temperature and constant concentration. Plate is moving along
a straight line with arbitrary velocity which depends on time. Laplace
transform and convolution theorem are used to acquire solutions for tem-
perature, concentration and velocity. Moreover, results already present in
literature are acquired as limiting case from these general results. Key
words : Maxwell fluid, Laplace transform, Magnetic effect, Concentration,
Ramped temperature, Free convection.
AMS SUBJECT CLASSIFICATION 2010 : 05C78.

1. introduction

The Maxwell fluid model is one of the most important model among re-
searchers as compared to other fluid models because it is simplest rate-type
fluid model [1]-[5]. Maxwell fluids play important role in polymeric industry.
However, they some restrictions. In a simple shear flow this model does not
explain the link between shear stress and shear rate [6]-[8]. Maxwell fluids have
been considered in many research articles due to its simplicity and has great
importance in momentum transfer [9]-[15]. Fetecau et al. [16] investigated
exact solution for Maxwell fluid over a moving plate. Numerical solution of
Maxwell fluid over a shrinking sheet was explored by Motsa et al. [17]. Khan
et al. [18] proposed exact solution of MHD Maxwell fluid in porous medium.
Exact solutions of Maxwell fluid on an infinite plate and oscillating plane were
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considered by Abro et al. [19]-[21]. Maxwell nanofluid with ramped tempera-
ture was observed by Aman et al. [22]. Karra et al. [23] investigated solution
of generalized Maxwell fluid with pressure dependent material. Riaz et al. [24]
discovered exact solution of generalized Maxwell fluid. Generalized Maxwell
fluid over a moving plate having slip effect was considered by Liu and Guo
[25]. Imran et al. [26] investigated analytical solution of Maxwell fluid in
the presence of Newtonian heating and slip effect. Comparative analysis for
Maxwell fluid with Newtonian heating was investigated by Raza et al. [27].
The phenomena of heat and mass transfer in MHD boundary layer flow have
gained attention in chemical engineering, and geophysical environments etc.
Different models of fluid with heat and mass transfer have been studies by tak-
ing various conditions on temperature and concentration. Singh and Kumar
[28] explored the heat and mass transfer in viscous fluid with slip condition.
Further chemical reaction and thermal radiation have been considered. Tahir
et al. [29] observed heat transfer in Maxwell fluid with wall slip on oscillating
plate. Exact solution of transient free convective mass transfer flow under
ramped wall temperature and plate velocity has investigated by Ahmed and
Dutta [30].
Ghara et al. [31] considered Laplace transformation in order to investigate
exact solution of MHD free convection flow under the influence of ramped
wall temperature on a moving plate. Seth et al. [32] obsereved heat and mass
transfer in viscous fluid on a moving plate. Soret and Hall effects are also
considered. Heat and mass transfer in incompressible fluid along with oscilla-
tory suction velocity was observed by Reddy [33]. Second grade fluid having
ramped wall temperature under magnetic field was considered by Ahmad et.
al. [34]. Narahari and Debnath [35] explored free convection flow with heat
generation/absorption on a vertical plate. Furthermore, some significant re-
sults see [36]-[38].
In present paper, we consider Maxwell fluid under the influence of ramped
temperature and constant concentration over an infinite vertical plate. We
considered the generalized boundary condition on velocity. Exact solutions
are attained via Laplace transform method. Results for velocity, temperature
and concentration are discussed. Previous results in literature can be obtained
by the general results in this paper.

2. Mathematical Model

Let incompressible magnetohydrodynamic flow of Maxwell fluid along an
infinite plate. Motion of the plate is rectilinear. A magnetic field acting on
the plate having strength B0. By considering very small Reynolds number
external electric and induced magnetic field is negligible. Initially system is at
rest. After some time plate starts moving with velocity U0f(t). Mathematical
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modeling of the problem is given below [39]:(
1 + λ

∂

∂t

)
∂u (y, t)

∂t
= υ

∂2u (y, t)

∂y2
+ gβT (T (y, t)− T∞) + gβC (C (y, t)− C∞)

− σB2
0

ρ

(
1 + λ

∂

∂t

)
u (y, t) , (2.1)

ρCp
∂T (y, t)

∂t
= k

∂2T (y, t)

∂y2
−Q (T (y, t)− T∞) , (2.2)

∂C (y, t)

∂t
= Dm

∂2C (y, t)

∂y2
−R (C (y, t)− C∞) . (2.3)

The appropriate initial and boundary conditions are

u (y, 0) = 0, T (y, 0) = T∞, C (y, 0) = C∞, y ≥ 0, (2.4)

u (0, t) = U0f (t), T (0, t) =

{
T∞ + (Tw − T∞) t

t0
, 0 < t ≤ t0;

T (0, t) = Tw, t > t0
, C (0, t) = Cw,

(2.5)

u (y, t) <∞, T (y, t)→∞, C (y, t)→∞ as y →∞. (2.6)

Following dimensionless variables are used to form the problem free from geo-
metric regime

y∗ =
y√
υt0

, t∗ =
t

t0
, u∗ =

u

U0
, T ∗ =

T − T∞
Tw − T∞

, C∗ =
C − C∞
Cw − C∞

,

Gr =
gβT t0 (T − T∞)

U0
, Gm =

gβCt0 (C − C∞)

U0
, M =

√
υt0B0

√
σ

µ
,

Pr =
υCp
k
, Q∗ =

Qt0
ρCp

, Sc =
υ

Dm
, R∗ = Rt0, f

∗(t∗) = f(t0t
∗), (2.7)

and dimensionless set of governing equations are:(
1 + λ

∂

∂t

)
∂u (y, t)

∂t
=
∂2u (y, t)

∂y2
+GrT (y, t) +GmC (y, t)−M2

(
1 + λ

∂

∂t

)
u(y, t),

(2.8)

∂T (y, t)

∂t
=

1

Pr

∂2T (y, t)

∂y2
−QT (y, t) , (2.9)

∂C (y, t)

∂t
=

1

Sc

∂2C (y, t)

∂y2
−RC (y, t) . (2.10)
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and corresponding set of initial and boundary conditions are:

u (y, 0) = 0, T (y, 0) = 0, C (y, 0) = 0, (2.11)

u (0, t) = f(t), T (0, t) =

{
t, 0 < t ≤ 1; = tH (t)− (t− 1)H (t− 1)

1, t > 1
, C(0, t) = 1,

(2.12)

u (y, t)→ 0, T (y, t)→ 0, C (y, t)→ 0 as y →∞. (2.13)

3. Solution

We use integral transformation in order to get solution of the equations
(2.8)− (2.10) by applying initial and boundary conditions (2.11)− (2.13). In
order to get solution of velocity we have to find solutions of temperature and
concentration first.

3.1. Temperature Field. By taking Laplace transform of Eq. (2.9) with
suitable given initial condition on temperature, we get

Pr (q +Q)T (y, q) =
∂2T (y, q)

∂y2
. (3.1)

solution of above differential equation is given below:

T (y, q) =

(
1− e−q

q2

)
e−y
√
Pr
√
q+Q. (3.2)

Now for the complete solution of the Eq. (3.2) with the help of inverse integral
transformation is given by

T (y, t) = ψ (y, t, 0, Q, Pr)− u (t− 1)ψ (y, t− 1, 0, Q, Pr). (3.3)

where

L−1
(
e−atF (S)

)
= u (t− a) f (t− a) , (3.4)

3.2. Concentration Field. By applying Laplace transformation to Eq. (2.10)
with the help of initial condition on concentration, we get

Sc (q +R)C (y, q) =
∂2C (y, q)

∂y2
, (3.5)

and solution is given as

C (y, q) =
1

q
e−y
√
Sc
√
q+R. (3.6)

Laplace inverse of Eq. (3.6) is given by

C (y, t) = ψ (y, t, 0, R, Sc) . (3.7)
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where

ψ (y, t, a, b, c) = L−1 e−y
√
c
√
s+b

s− a

)
=
eat

2

(
e−y
√
c
√
a+berfc

(
y
√
c

2
√
t
−
√

(a+ b) t

))
+
eat

2

(
e−y
√
c
√
a+berfc

(
y
√
c

2
√
t

+
√

(a+ b) t

))
. (3.8)

3.3. Fluid velocity. Solving Eq. (2.8) with given condition on velocity at
time zero, we get

∂2u

∂y2
−
(
λq2 +

(
1 + λM2

)
q +M2

)
u = −GrT −GmC, (3.9)

for the solution of differential Eq. (3.9) first we used T (y, q) and C (y, q) from
equation (3.2) and (3.6) in above Eq. (3.9), we get

u (y, q) = F (q) e−y
√
λq2+(1+λM2)q+M2

+
Gr (1− e−q)

−λq4 + (Pr − (λM2 + 1)) q3 + (QPr −M2) q2
×(

e−y
√
λq2+(1+λM2)q+M2 − e−y

√
Pr
√
q+Q

)
+

Gm
−λq3 + (Sc− (λM2 + 1)) q2 + (RSc−M2) q

×(
e−y
√
λq2+(1+λM2)q+M2 − e−y

√
Sc
√
q+Q

)
. (3.10)

Following is the solution of Eq. (3.10)

u (y, q) = F (q) e−y
√
λ
√

(q+α1)2−α2
3 +

(
2Gr
λA2

− 2Gr
λA1

)(
1− e−q

q

)
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

(
2Gr
λA1

(
1− e−q

q −A4

)
− 4Gr
λA3

(
1− e−q

q2

)
− 2Gr
λA2

(
1− e−q

q −A5

))
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

(
4Gm
λB1q

− Gm
λB2 (q −B4)

− Gm
λB3 (q −B5)

)
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
, (3.11)
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where

α1 =
λM2 + 1

2λ
, α3 =

√
(λM2 + 1)2 − 4λM2

4λ2
, A1 = H (a1 − 2H)2 ,

A2 = H (a1 + 2H)2 , A3 = (a1)2 − 4H2, A4 =
a1

2
−H, A5 =

a1

2
+H,

H =

√
(a1)2 + 4a2

4
, a1 =

Pr −
(
M2 + 1

)
λ

, a2 =
PrQ−M2

λ
, B1 = (b1)2 − 4Z2,

B2 = 2Z2 − Zb1, B3 = 2Z2 + Zb1, B4 =
b1
2
− Z, B5 =

b1
2

+ Z. (3.12)

Applying Laplace inverse to Eq. (3.11), it gives

u (y, t) = um (y, t)− uT (y, t)− uC (y, t) , (3.13)

um (y, t) = L−1 (P1 (y, q)) ∗ L−1 (P2 (y, q)), (3.14)

where

L−1 (P1 (y, q)) = L−1
(
F (q) e−y

√
λ
√

(q+α1)2−α2
3

)
=

∫ t

0
e−α1τ (α3I1 (α3τ) + δ (τ))

(
f ′ (t− τ) + α1f (t− τ)

)
dτ

− α2
3

∫ t

0
f (t− τ) e−α1τI0 (α3τ) dτ, (3.15)

L−1 (P2 (y, q)) = L−1

e−y√λ√(q+α1)2−α2
3√

(q + α1)2 − α2
3

 =

{
0, 0 < t < y

√
λ;

I0(α3

√
t2 − y2λ), t > y

√
λ

(3.16)
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uT (y, t) =

(
Gr
λ
− 2Gr

λA
+

2Gr

λA2

)
(L−1 (E1 (y, q)) ∗ L−1 (P2 (y, q))

− ψ (y, t, 0, Q, Pr) + u (t− 1)ψ (y, t− 1, 0, Q, Pr))

−
(

4Gr
λA3

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, Q, Pr)

)
+

(
Gr
λA1

)
(L−1 (C2 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C2 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A4, Q, Pr) + u (t− 1)ψ (y, t− 1, A4, Q, Pr))

+

(
2Gr
λA2

)
(L−1 (C4 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C4 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A5, Q, Pr) + u (t− 1)ψ (y, t− 1, A5, Q, Pr)),
(3.17)

where

L−1 (E1 (y, q)) = L−1

((
1− e−q

q

)√
(q + α1)2 − α2

3

)
= e−α1τ (α3I1 (α3τ) + δ (τ))

+ α1

∫ t

0
H (t− τ) e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
H (t− τ) e−α1τI0 (α3τ) dτ

− (t− 1) e−α1t−1 (α3I1 (α3 (t− 1)) + δ (t− 1)) dτ

− α1

∫ t

0
H (t− 1− τ) e−α1τ (α3I1 (α3τ) + δ(τ)) dτ

− α2
3

∫ t

0
H (t− 1− τ) e−α1τI0 (α3τ) dτ, (3.18)

L−1 (D1 (y, q)) = L−1

√
(q + α1)2 − α2

3

q

)
= e−α1τ (α3I1 (α3τ) + δ (τ))

+ α1

∫ t

0
H (t− τ) e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
H (t− τ) e−α1τI0 (α3τ) dτ, (3.19)
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L−1 (C2 (y, q)) = L−1


√

(q + α1)2 − α2
3

q −A4

 = e−α1τ (α3I1 (α3τ) + δ (τ))

+ (A4 + α1)

∫ t

0
eA4(t−τ)e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
eA4(t−τ)e−α1τI0 (α3τ) dτ, (3.20)

L−1 (C4 (y, q)) = L−1

√
(q + α1)2 − α2

3

q −A5

)
= e−α1τ (α3I1 (α3τ) + δ (τ))

+ (A5 + α1)

∫ t

0
eA5(t−τ)e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
eA5(t−τ)e−α1τI0 (α3τ) dτ, (3.21)

uC (y, t) =

(
4Gm
λB1

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, R, Sc)

)
+

(
Gm
λB2

)(
L−1 (C1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B4, R, Sc)

)
+

(
Gm
λB3

)(
L−1 (C3 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B5, R, Sc)

)
,

(3.22)

where

L−1 (C1 (y, q)) = L−1


√

(q + α1)2 − α2
3

q −B4

 = e−α1τ (α3I1 (α3τ) + δ (τ))

+ (B4 + α1)

∫ t

0
eB4(t−τ)e−α1τ (α3I1 (α3τ) + δ(τ)) dτ

− α2
3

∫ t

0
eB4(t−τ)e−α1τI0 (α3τ) dτ, (3.23)
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L−1 (C3 (y, q)) = L−1


√

(q + α1)2 − α2
3

q −B5

 = e−α1τ (α3I1 (α3τ) + δ (τ))

+ (B5 + α1)

∫ t

0
eB5(t−τ)e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
eB5(t−τ)e−α1τI0 (α3τ) dτ. (3.24)

4. Special Cases

General results are obtained time dependent velocity. Some cases are given
below

4.1. Case 1(f(t) = H(t)). Let F (q) = 1
q in equation (3.11) then it becomes,

u (y, q) =
e−y
√
λ
√

(q+α1)2−α2
3

q
+

(
2Gr
λA2

− 2Gr
λA1

)(
1− e−q

q

)
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 4Gr
λA3

(
1− e−q

q2

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

2Gr
λA1

(
1− e−q

q −A4

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 2Gr
λA2

(
1− e−q

q −A5

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

4Gm
λqB1

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B4)B2

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B5)B3

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
, (4.1)

Applying laplace inverse to Eq. (4.1), we have

um (y, t) =
(
L−1 (M3 (y, q))− α1L

−1 (M1 (y, q))− α2
3L
−1 (M3 (y, q))

)
∗ L−1 (P2 (y, q)),

(4.2)
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uT (y, t) =

(
Gr
λ
− 2Gr

λA
+

2Gr

λA2

)
(L−1 (E1 (y, q)) ∗ L−1 (P2 (y, q))

− ψ (y, t, 0, Q, Pr) + u (t− 1)ψ (y, t− 1, 0, Q, Pr))

−
(

4Gr
λA3

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, Q, Pr)

)
+

(
Gr
λA1

)
(L−1 (C2 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C2 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A4, Q, Pr) + u (t− 1)ψ (y, t− 1, A4, Q, Pr))

+

(
2Gr
λA2

)
(L−1 (C4 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C4 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A5, Q, Pr) + u (t− 1)ψ (y, t− 1, A5, Q, Pr)),
(4.3)

uC (y, t) =

(
4Gm
λB1

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, R, Sc)

)
+

(
Gm
λB2

)(
L−1 (C1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B4, R, Sc)

)
+

(
Gm
λB3

)(
L−1 (C3 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B5, R, Sc)

)
.

(4.4)

As λ → 0 and u0 = 0 similar results are obtain by Narahari and Debnath
[35](Eq. (11a) with a0 = 0) and Tokis [40](Equation (12)). This shows that
our general results sport the results present in literature.
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4.2. Case 2(f(t) = H(t)ebt). Let F (q) = 1
q−b in equation (3.11) then it be-

comes,

u (y, q) =
e−y
√
λ
√

(q+α1)2−α2
3

q − b
+

(
2Gr
λA2

− 2Gr
λA1

)(
1− e−q

q

)
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 4Gr
λA3

(
1− e−q

q2

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

2Gr
λA1

(
1− e−q

q −A4

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 2Gr
λA2

(
1− e−q

q −A5

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

4Gm
λqB1

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B4)B2

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B5)B3

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
, (4.5)

Applying laplace inverse to Eq. (4.5), it gives

um (y, t) = ((1 + b− α1)

∫ t

0
eb (t− τ) e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
H (t− τ) e−α1τI0 (α3τ) dτ) ∗ L−1 (P2 (y, q)), (4.6)

uT (y, t) =

(
Gr
λ
− 2Gr

λA
+

2Gr

λA2

)
(L−1 (E1 (y, q)) ∗ L−1 (P2 (y, q))

− ψ (y, t, 0, Q, Pr) + u (t− 1)ψ (y, t− 1, 0, Q, Pr))

−
(

4Gr
λA3

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, Q, Pr)

)
+

(
Gr
λA1

)
(L−1 (C2 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C2 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A4, Q, Pr) + u (t− 1)ψ (y, t− 1, A4, Q, Pr))

+

(
2Gr
λA2

)
(L−1 (C4 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C4 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A5, Q, Pr) + u (t− 1)ψ (y, t− 1, A5, Q, Pr)),
(4.7)
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uC (y, t) =

(
4Gm
λB1

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, R, Sc)

)
+

(
Gm
λB2

)(
L−1 (C1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B4, R, Sc)

)
+

(
Gm
λB3

)(
L−1 (C3 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B5, R, Sc)

)
.

(4.8)

By taking λ → 0 and U = 0 identicals results are exist in Pattnaik et al.
[41](Equation (13) with a = b, λ = M2, 1

kp
= 0 and γ = 0) when magnetic

field is fixed relative to the fluid. Also temperature and concentration effects
are absent.

4.3. Case 3(f(t) = sinωt). Consider F (q) = ω
q2+ω2 in equation (3.11) and we

get,

u (y, q) =

(
ω

q2 + ω2

)
e−y
√
λ
√

(q+α1)2−α2
3

+

(
2Gr
λA2

− 2Gr
λA1

)(
1− e−q

q

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 4Gr
λA3

(
1− e−q

q2

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

2Gr
λA1

(
1− e−q

q −A4

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 2Gr
λA2

(
1− e−q

q −A5

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

4Gm
λqB1

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B4)B2

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B5)B3

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
, (4.9)

Applying laplace inverse to Eq. (4.9), it becomes

um (y, t) = ω

∫ t

0
cos (t− τ) e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α1

∫ t

0
sin (t− τ) e−α1τ (α3I0 (α3τ)) dτ

− α2
3

∫ t

0
sin (t− τ) e−α1τ (α3I1 (α3τ) + δ (τ)) dτ, (4.10)
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uT (y, t) =

(
Gr
λ
− 2Gr

λA
+

2Gr

λA2

)
(L−1 (E1 (y, q)) ∗ L−1 (P2 (y, q))

− ψ (y, t, 0, Q, Pr) + u (t− 1)ψ (y, t− 1, 0, Q, Pr))

−
(

4Gr
λA3

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, Q, Pr)

)
+

(
Gr
λA1

)
(L−1 (C2 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C2 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A4, Q, Pr) + u (t− 1)ψ (y, t− 1, A4, Q, Pr))

+

(
2Gr
λA2

)
(L−1 (C4 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C4 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A5, Q, Pr) + u (t− 1)ψ (y, t− 1, A5, Q, Pr)),
(4.11)

uC (y, t) =

(
4Gm
λB1

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, R, Sc)

)
+

(
Gm
λB2

)(
L−1 (C1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B4, R, Sc)

)
+

(
Gm
λB3

)(
L−1 (C3 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B5, R, Sc)

)
.

(4.12)
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4.4. Case 4(f(t) = tδ). Consider F (q) = tδ in equation (3.11) and we have,

u(y, q) = tδe−y
√
λ
√

(q+α1)2−α2
3 +

(
2Gr
λA2

− 2Gr
λA1

)(
1− e−q

q

)
×(

e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 4Gr
λA3

(
1− e−q

q2

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

2Gr
λA1

(
1− e−q

q −A4

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
− 2Gr
λA2

(
1− e−q

q −A5

)(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Pr
√
q+Q

)
+

4Gm
λqB1

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B4)B2

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
− Gm
λ (q −B5)B3

(
e−y
√
λ
√

(q+α1)2−α2
3 − e−y

√
Sc
√
q+R

)
, (4.13)

Applying laplace inverse to Eq. (4.13), it gives

um (y, t) = (δ

∫ t

0
(t− τ)δ−1 e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α1

∫ t

0
(t− 1)δ e−α1τ (α3I1 (α3τ) + δ (τ)) dτ

− α2
3

∫ t

0
(t− 1)δ e−α1τI0 (α3τ) dτ) ∗ L−1 (P2 (y, q)), (4.14)
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uT (y, t) =

(
Gr
λ
− 2Gr

λA
+

2Gr

λA2

)
(L−1 (E1 (y, q)) ∗ L−1 (P2 (y, q))

− ψ (y, t, 0, Q, Pr) + u (t− 1)ψ (y, t− 1, 0, Q, Pr))

−
(

4Gr
λA3

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, Q, Pr)

)
+

(
Gr
λA1

)
(L−1 (C2 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C2 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A4, Q, Pr) + u (t− 1)ψ (y, t− 1, A4, Q, Pr))

+

(
2Gr
λA2

)
(L−1 (C4 (y, q)) ∗ L−1 (P2 (y, q))− u (t− 1) ∗ L−1 (C4 (y, q))

∗ L−1 (P2 (y, t− 1))− ψ (y, t, A5, Q, Pr) + u (t− 1)ψ (y, t− 1, A5, Q, Pr)),
(4.15)

uC (y, t) =

(
4Gm
λB1

)(
L−1 (D1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, 0, R, Sc)

)
+

(
Gm
λB2

)(
L−1 (C1 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B4, R, Sc)

)
+

(
Gm
λB3

)(
L−1 (C3 (y, q)) ∗ L−1 (P2 (y, q))− ψ (y, t, B5, R, Sc)

)
.

(4.16)

5. CONCLUSION

Phenomena of heat and mass transfer is studied for MHD Maxwell fluid
with ramped temperature and constant concentration over an infinite vertical
plate. The generalized time dependent conditions on velocity are considered.
Some special case are considered to highlight the applications of problem in
the field of engineering sciences. Laplace transform is applied in order to
get exact solutions for generalized velocity, their particular cases for velocity,
temperature and concentration. Results from the literature can be acquired
by our general results.

References

[1] Sheikholeslami, M., T. Hayat, and A. Alsaedi. “MHD free convection of water nanofluid
considering thermal radiation: a numerical study.” International Journal of Heat and
Mass Transfer 96 (2016): 513-524.

[2] Sheikholeslami, M., and M. M. Rashidi. “Effect of space dependent magnetic field on free
convection of water nanofluid.” Journal of the Taiwan Institute of Chemical Engineers
56 (2015): 6-15.



78 Nazish Iftikhar, S. M. Husnine and M. B. Riaz

[3] Sheikholeslami, M., K. Vajravelu, M. M. Rashidi. “Forced convection heat transfer in a
semi annulus under the influence of a variable magnetic fieldInt.” J. Heat Mass Transfer
92 (2016): 339-348.

[4] Sheikholeslami, M., M. Gorji-Bandpy, D. D. Ganji, P. Rana, and S. Soleimani. “Mag-
netohydrodynamic free convection of water nanofluid considering Thermophoresis and
Brownian motion effects.” Computers and Fluids 94 (2014): 147-160.

[5] Sheikholeslami, M., and R. Ellahi. “Three dimensional mesoscopic simulation of magnetic
field effect on natural convection of nanofluid.” International Journal of Heat and Mass
Transfer 89 (2015): 799-808.

[6] Takashima, M. “The effect of a magnetic field on thermal instability in a layer of Maxwell
fluid.” Physics Letters A 33 (1970): 371-372.

[7] Maxwell, J. C. “II. On the dynamical theory of gases.” Proceedings of the Royal Society
of London 15 (1867): 167-171.

[8] Friedrich, C. H. R. “Relaxation and retardation functions of the Maxwell model with
fractional derivatives.” Rheologica Acta 30 (1991): 151-158.

[9] Olsson, F., and J. Ystrom. “Some properties of the upper convected Maxwell model for
viscoelastic fluid flow.” Journal of non-newtonian fluid mechanics 48 (1993): 125-145.

[10] Choi, J. J., Z. Rusak, and J. A. Tichy. “Maxwell fluid suction flow in a channel.” Journal
of non-newtonian fluid mechanics 85 (1999): 165-187.

[11] Fetecau, C., and C. Fetecau. “A new exact solution for the flow of a Maxwell fluid past
an infinite plate.” International Journal of Non-Linear Mechanics 38 (2003): 423-427.

[12] Fetecau, C., and C. Fetecau. “The Rayleigh Stokes Problem for a fluid of Maxwellian
type.” International Journal of Non-Linear Mechanics 38 (2003): 603-607.

[13] Jordan, P. M., A. Puri, and G. Boros. “On a new exact solution to Stokes first problem
for Maxwell fluids.” International Journal of Non Linear Mechanics 39 (2004): 1371-1377.

[14] Zierep, J., and C. Fetecau. “Energetic balance for the Rayleigh Stokes problem of a
Maxwell fluid.” International Journal of Engineering Science 45 (2007): 617-627.

[15] Fetecau, C., M. Jamil, C. Fetecau, and I. Siddique. “A note on the second problem
of Stokes for Maxwell fluids.” International Journal of Non-Linear Mechanics 44 (2009):
1085-1090.

[16] Fetecau, C., and C. Fetecau. “A new exact solution for the flow of a Maxwell fluid past
an infinite plate.” International Journal of Non-Linear Mechanics 38 (2003): 423-427.

[17] Motsa, S. S., Y. Khan, and S. Shateyi. “A new numerical solution of Maxwell fluid
over a shrinking sheet in the region of a stagnation point.” Mathematical Problems in
Engineering (2012).

[18] Khan, I., F. Ali, and S. Shafie. “Exact Solutions for Unsteady Magnetohydrodynamic
oscillatory flow of a maxwell fluid in a porous medium.” Zeitschrift fur Naturforschung
A 68 (2013): 635-645.

[19] Abro, K. A., A. A. Shaikh, I. A. Junejo, and M. S. CHANDIO. “Analytical solutions
under no slip effects for accelerated flows of Maxwell fluids.” Sindh University Research
Journal-SURJ (Science Series) 47 (2015).

[20] Abro, K. A., and A. A. Shaikh. “Exact analytical solutions for Maxwell fluid over an
oscillating plane.” Sci. Int.(Lahore) ISSN 27 (2015): 923-929.

[21] Abro, K. A., A. A. Shaikh, and S. Dehraj. “Exact solutions on the oscillating plate of
Maxwell fluids.” Mehran University Research Journal of Engineering and Technology 35
(2016): 155.

[22] Aman, S., M. Z. Salleh, Z. Ismail, and I. Khan. “Exact solution for heat transfer free con-
vection flow of Maxwell nanofluids with graphene nanoparticles.” In Journal of Physics:
Conference Series 890 (2017): 012004.



Heat and mass transfer in MHD Maxwell Fluid over an infinite vertical plate 79

[23] Karra, S., V. Prusa, and K. R. Rajagopal. “On Maxwell fluids with relaxation time and
viscosity depending on the pressure.” International Journal of Non-Linear Mechanics 46
(2011): 819-827.

[24] Riaz, M. B., M. A. Imran, and K. Shabbir. “New Exact Solutions for the Flow of
Generalized Maxwell Fluid.” Journal of Computational and Theoretical Nanoscience 13
(2016): 5254-5257.

[25] Liu, Y., and B. Guo. “Effects of second-order slip on the flow of a fractional Maxwell
MHD fluid.” Journal of the Association of Arab Universities for Basic and Applied Sci-
ences 24 (2017): 232-241.

[26] Imran, M. A., M. B. Riaz, N. A. Shah, and A. A. Zafar. “Boundary layer flow of MHD
generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with
slip and Newtonian heating at the boundary.” Results in physics 8 (2018): 1061-1067.

[27] Raza, N., and M. A. Ullah. “A comparative study of heat transfer analysis of fractional
Maxwell fluid by using Caputo and Caputo-Fabrizio derivatives.” Canadian Journal of
Physics ja (2019).

[28] Singh, K. D., and R. Kumar. “Fluctuating heat and mass transfer on unsteady MHD
free convection flow of radiating and reacting fluid past a vertical porous plate in slip-flow
regime.” Journal of Applied Fluid Mechanics 4 (2011): 101-106.

[29] Tahir, M., M. A. Imran, N. Raza, M. Abdullah, and M. Aleem. “Wall slip and non-
integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating
vertical plate with new definition of fractional Caputo-Fabrizio derivatives.” Results in
Physics 7 (2017): 1887-1898.

[30] Ahmed, N., and M. Dutta. “Transient mass transfer flow past an impulsively started
infinite vertical plate with ramped plate velocity and ramped temperature.” International
Journal of Physical Sciences 8 (2013): 254-263.

[31] Ghara, N., S. Das, S. L. Maji, and R. N. Jana. “Effect of radiation on MHD free
convection flow past an impulsively moving vertical plate with ramped wall temperature.”
Am J Sci Ind Res 3 (2012): 376-386.

[32] Seth, G. S., B. Kumbhakar, and S. Sarkar. “Soret and Hall effects on unsteady MHD free
convection flow of radiating and chemically reactive fluid past a moving vertical plate with
ramped temperature in rotating system.” International Journal of Engineering, Science
and Technology 7 (2015): 94-108.

[33] Reddy, B. Prabhakar. “Effects of thermal diffusion and viscous dissipation on unsteady
MHD free convection flow past a vertical porous plate under oscillatory suction velocity
with heat sink.” International Journal of Applied Mechanics and Engineering 19 (2014):
303-320.

[34] Ahmad, S., D. Vieru, I. Khan, and S. Shafie. “Unsteady magnetohydrodynamic free con-
vection flow of a second grade fluid in a porous medium with ramped wall temperature.”
PLoS One 9 (2014): e88766.

[35] Narahari, M., and L. Debnath. “Unsteady magnetohydrodynamic free convection flow
past an accelerated vertical plate with constant heat flux and heat generation or ab-
sorption.” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Ange-
wandte Mathematik und Mechanik 93 (2013): 38-49.

[36] Khalid, A., I. Khan, A. Khan, and S. Shafie. “Unsteady MHD free convection flow
of Casson fluid past over an oscillating vertical plate embedded in a porous medium.”
Engineering Science and Technology, an International Journal 18 (2015): 309-317.

[37] Sarkar, B. C., S. Das, and R. N. Jana. “Hall effects on unsteady MHD free convec-
tive flow past an accelerated moving vertical plate with viscous and Joule dissipations.”
International journal of computer applications 70 (2013).



80 Nazish Iftikhar, S. M. Husnine and M. B. Riaz

[38] Seth, G. S., M. S. Ansari, and R. Nandkeolyar. “MHD natural convection flow with
radiative heat transfer past an impulsively moving plate with ramped wall temperature.”
Heat and Mass Transfer 47 (2011): 551-561.

[39] Shah, N. A., A. A. Z., and S. Akhtar. “General solution for MHD-free convection flow
over a vertical plate with ramped wall temperature and chemical reaction.” Arabian
Journal of Mathematics 7 (2018): 49-60.

[40] Iftikhar. N, S. M. Husnine and M. B. Riaz. ”Heat and mass transfer in MHD Maxwell
Fluid over an infinite vertical plate.” Journal of Prime Research Submitted.

[41] Tokis, J. N. “A class of exact solutions of the unsteady magnetohydrodynamic free-
convection flows.” Astrophysics and space science 112 (1985): 413-422.


