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FRACTIONAL OPTIMAL CONTROL FOR A CORRUPTION

MODEL

EBENEZER BONYAH

Abstract. In this work, a fractional optimal control of corruption model
is investigated. The variable controls are included in the model to optimize
the best strategy in reducing the corruption in the society. The fraction
derivative employed in the study is in Atangana–Beleanu–Caputo (ABC)
sense based on generalized Mittag–Leffler. The uniqueness and existence
of solution of the corruption model is established. The necessary and
sufficient condition for establishing fractional optimal control in ABC sense
is determined. A numerical algorithm for obtaining fractional optimal
control solution is presented. The numerical solution results show that the
best strategy in controlling corruption in the society is to optimize all the
thee controls simultaneously.
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1. Introduction

Let Corruption has been one major social disease that has ruined many
nations. Unfortunately, the corruption disease cuts across the entire globe.
The most affected part of the world is the sub-Saharan Africa [1, 2]. Some
African and Asian countries are still under developed because of corruption.
Many public and private sectors of these economies do not have strong reg-
ulatory bodies to deal with corruption related issues [1, 3]. Jain [4] observes
that, three pre–conditions necessitates the existence of corruption as economic
related issues, discretionary power due to procedures and inadequate punish-
ment. Mishra [5] observed that, corruption can go up in any community
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through an evolutionary game. Corruption related issues have been studied
by many researchers.

Corruption is an unavoidable part of human social interaction, prevalent in
every society at any time since the very beginning of human history till today.
Corruption is a difficult social disease which has no race or colour and it has
been with humans since creation [6]. The social and economic wars across the
world and unstable societies are highly attributed to corruption related issues.
The worst continent is Africa where weak democratic institutions are found
[7]. Politicians are able to use the offices they hold to get access to resources
for their personal gains.

Mathematical model on corruption was first formulated and analyzed in
1975 and since then this subject has attracted many mathematical modelers
due to its effect on society [3, 8–10]. There has been several epidemiological
corruption models presenting several strategies to understand the dynamics of
corruption in the society [6, 7, 11–16]. Eguda et al., [17], constructed a math-
ematical model on corruption to explore the dynamics of the long-term neg-
ative impact on public procurement. They further observed that government
should raise the minimum wage to discourage corruption practices. Lemecha,
[18] constructed a corruption mathematical model taking into consideration
the awareness provided by anti-corruption institutions and counselling services
rendered to people in jail because of corruption. In their study, they observed
that corruption is higher is Ethiopia than New Zealand.

However, very few works have been explored in the light of mathematical
modelling in providing detailed account of corruption dynamics in society.
Mathematical modelling has been noticed to be as one of the most powerful
tools for obtaining qualitative information in the absence of real data for the
purpose of decision making. There has been several integer mathematical
models on social issues such as corruption. The concept of fractional calculus
gained attention in the middle of the 21st century[19–22] because of its ability
to predict accurately, complex real issues.

The common fractional derivative in early stages was hinged on power law
that was not able to capture complex related issues (Caputo, 1971) [23–26].
It is upon this, that Caputo-Fabrizio (CF) introduced a new operator based
exponential law and this was also not able to capture more complex systems
because the kernel local and also non-singular [21, 27]. In recent times, a
new operator based on generalized Mittage–Leffler function was developed by
Atangana-Baleanu in Caputo sense which is non-local and non-singular (Atan-
gana) [24, 28, 29] has become very popular because of its ability to capture
more complex phenomena in real world. This operator has the property of
crossover that enhances accurate predictions in complex systems.
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The aim of this paper is to use fractional optional time control in ABC to
obtain the best strategy in minimizing corruption in our society in the light
of corruption model.

2. Mathematical Preliminaries

This section presents the following fractional order derivative definitions
that are relevant in this work

Definition 1. The Liouville-Caputo FO derivative is defined as in [2, 30]:

c
aD

α
t g(t) =

1

Γ(1− α)

∫ t

0
(t− p)−αg(p)dp,0 < α ≤ 1 (1)

Definition 2. The Atangana-Baleanu fractional derivative in the Liouville-
Caputo sense is defined as in [19, 30].

ABC
a Dα

t g(t) =
B(α)

(1− α)

∫ t

0
(Eα(−a(t− q)α

(1− α)
))g(p)dp (2)

where B(α) = 1− α+ α
Γ(α) is the normalization function.

Definition 3. The corresponding fractional integral concerning the Atangana-
Baleanu-Caputo derivative is defined as [19, 30]

ABC
a Iαt g(t) =

(1− α)

B(α)
g(t) +

α

B(α)Γ(α)

∫ t

0
(t− p)α−1g(p)dp (3)

They established that when ℵ is zero, they recovered the initial function,
and if ℵ is 1, they get the ordinary integral. Further, they computed the
Laplace transform of both derivatives and arrived at the following:

$
{
ABC
a Dα

t g(t)
}

=
B (a)G (p) pα − pα−1g (0)

(1− α)
(
pα + α

(1−α)

) (4)

Theorem 1. For a function g ∈ C[a, b] , the following result holds [20, 30]:

‖ABCa Dα
t g(t) ‖< B(α)

(1− α)
‖ g(t) ‖, where ‖ g(t) ‖= max

a≤t≤b
|g(t)| (5)

Further, the Atangana-Baleanu-Caputo derivatives fulfill the Lipschitz con-
dition [20, 30]:

‖ABCa Dα
t g1(t)−ABCa Dα

t g2(t) ‖< ϕ ‖ g1(t)− g2(t) ‖ (6)
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3. Mathematical Model Formulation

This section reformulates model proposed by Bijal [31], in which the model
sub-divides the total human population at time t, donated by N(t), into the
following sub-populations susceptible individuals who are not corrupt S(t),
those that are endemic in corruption and can corrupt others I(t), those cor-
rupt individuals punished P (t), those corrupt individuals that get away with
punishment F (t) and those individuals who repented from corruption R(t).
The human mortality rate is µ and force of infection of corruption is given
by β1S(c1E + c2I + c3P + c4F ). The modification parameters for exposed, in-
fected, punished and unpunished individuals are c1, c2, c3, c4 respectively. The
rate of infection of corruption is β. The rate individuals move from exposed
to endemic corruption is given by φ. q denotes proportion of individuals who
get punished for being corrupt at a rate η while (1 − q) is the proportion of
individuals who get unpunished for being corrupted at a rate γ. Fraction of
unpunished individuals n move to endemic class at a rate σ while fraction
(1 − n) move to repent class at a rate ψ2 The recruitment rate into human
population is denoted by Λ. The corruption wanning rate is donated by m.
Punished corrupt individuals of a fraction k move to susceptible at a α while
a fraction (1−k) get repented after being punished at a rate ψ1. The following
nonlinear fractional differential equations in ABC sense are arrived at, based
on the interrelationship between the compartments.

ABC
0D

α
t S = Λ + αKP +mR− β1S(c1I + c2P + c3F )− µS

ABC
0D

α
t E = β1S(c1I + c2P + c3F )− (φ+ µ)E

ABC
0D

α
t I = φE + nσF − qηI − (1− q)γI − µI

ABC
0D

α
t P = qηI − αkP − (1− k)ψ1P − µP

ABC
0D

α
t F = (1− q)γI − (1− n)ψ2F − nσF − µF

ABC
0D

α
t R = (1− k)ψ1P + (1− n)ψ2F − (m+ µ)R

(7)

4. Stability analysis

Lemma 2. The closed set

Ψ =

{
(S,E, I, P, F,R) ∈ R6

+ : S + E + I + P + F +R =
Λ

µ

}
(8)

is positively invariant with regard to the system given by Eq. (7).
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Proof. For system (7), let N(t) = S + E + I + P + F +R represent the total
population, hence the FD of the total population is expressed as

ABC
0D

α
t N = Λ− µN(t). (9)

Making uses of the Laplace transform, from Eq. (7) we derive

N(t) =

(
B(α)

B(α) + (1− α)µ
N(0) +

(1− α)Λ

B(α) + (1− α)µ

)
Eα,1(−βtα)

+
αΛ

B(α) + (1− α)µ
Eα,α+1(−βtα), (10)

where β = αµ
B(α)+(1−α)µ and Eα,β is the two parameter Mittag-Leffler function

defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
. (11)

Taking into account the asymptotic characteristic of the Mittag-Leffler func-
tion (Beleanu et al.[5]), we observe that N(t) = Λ/µ as t → ∞. Thus, the
solution of the model system (7) for initial conditions in Ψ stays in Ψ for ev-
ery t > 0.Therefore, Ψ is a positively invariant region with regard to system
(7). �

The system given by Eq. (9) has two equilibrium points E0 and E1. E0 =
(Λ
µ , 0, 0, 0, 0, 0) is the corruption-free equilibrium and the Jacobian matrix JE0

of (9) evaluated at the corruption-free equilibrium E0 is given by
JE0 =

−µ 0 −β1c1Λ
µ

kα− β1c2Λ
µ

−β1c3Λ
µ

m

0 −µ− φ β1c1Λ
µ

β1c2Λ
µ

β1c3Λ
µ

0

0 φ −(1− q)γ − qη − µ 0 nσ 0
0 0 qη −kα− µ− (1− k)ψ1 0 0

0 0 (1− q)γ 0 −mu− nσ − (1− n)ψ2 0

0 0 0 (1− k)ψ1 (1− n)ψ2 −m− µ


(12)

The transmission matrix F and transition matrix V are obtained as

F =

 0 β1c1Λ
µ

β1c2Λ
µ

0 0 0
0 0 0

 ,

V =

 µ+ φ 0 0
−φ (1− q)γ + qη + µ 0
0 −qη kα+ µ+ (1− k)ψ1

 (13)

According to the next generation matrix method, the next generation matrix
is defined by FV −1 with the basic reproduction number R0 of system 7 given
by the spectral radius of FV −1 as
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R0 =
Λβ1φ (c1 (kα+ µ+ ψ1 − kψ1) + qηc2)

µ(µ+ φ)(γ − qγ + qη + µ) (kα+ µ+ ψ1 − kψ1)
(14)

5. Existence and Uniqueness of the solution

In this section, the existence and uniqueness of the solution of the fractional-
order corruption model 7 is throughly examined . In order to do this we
initially reorganize the fractional corruption system (7) in the form.{

ABC
0 Dα

t y (t) = g (y (t)) , 0 ≤ t < T <∞,
y (0) = y0.

(15)

where y is the state vector presented as (S,E, I, P, F,R), a is a real-valued
continues vector fraction expressed as

a =



a1

a2

a3

a4

a5

a6



=



Λ + αKP +mR− β1S (c1I + c2P + c3F )− µS

β1S (c1I + c2P + c3F )− (φ+ u)E

φE + nσF − qnI − (1− q) γI − uI

qnI − αKP − (1−K)ψ1P − µP

(1− q) γI − (1− n)ψ2F − nσF − uF

(1−K)ψ1P + (1− n)ψ2F − (m+ u)R



(16)

and y0 denotes the initial state vector. Since a is a quadratic vector function,
it satisfied the Lipschitz condition, i.e there exists a constant W such that

‖ a (y (t))− a (x (t)) ‖≤W ‖ y (t)− x (t) ‖ (17)

It can be noted that the existence and uniqueness of the solution of the classical
fractional differential equation (7) in the Caputo sense has been developed and
analysed in [30]. In the following theorem, we shall investigate this matter
theoretically for the ABC fractional operator with ML nonsingular kernel in
details.

Theorem 3. (Existence and uniqueness) the fractional corruption system (7)
has a unique solution if the following condition exists

(1− α)

B (α)
W +

α

B (α)T (α)
WTα < 1 (18)
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Making use of the ABC fractional integral operator (3), we have

y(t) = y0 +
1− α
B(α)

a (x(t)) +
α

B(α)Γ(α)

t∫
0

(t− ε)α−1a (y(ε))dε (19)

We let J = (0, T ) and the operator is defined A : C(J,R)6 → C
(
J,R6

)
as

A [y (t)] = y0 +
1− α
B (α)

a (y (t)) +
α

B (α)T (α)

∫ t

0
(t− ε)α−1a (y (ε)) dε (20)

The Eq (19) is rearranged as follows .

y (t) = A [y (t)] (21)

Let ‖ . ‖J represent the supremum norm on J , Thus, ‖ y (t) ‖J= supt∈J ‖
y (t) ‖ y (t) ∈ C

(
J,R6

)
Then C

(
J,R6

)
with ‖ . ‖J is a Banach spaced.

Furthermore, it is simply shown that

‖
∫ t

0
K (t, ε) y (ε) dε ‖J≤ T ‖ K (t, ε) ‖J‖ y (ε) ‖J (22)

where y (t) ∈ C
(
J,R6

)
, K (t, ε) ∈ C

(
J2, R

)
and

‖ K (t, ε) ‖J= sup
t∈J
‖ K (t, ε) ‖ K (t, ε) ∈ C

(
J2, R

)
(23)

Employing the definition of operator G in the equation (20) together with
equations (17) and (22) we obtain

‖ A [y (t)]−A [x (t)] ‖J≤ 1−α
B(α) ‖ a (y (t))− a (x (t)) ‖J

+ α
B(α)T (α)T

α ‖ a (y (ε))− a (x (ε)) ‖J

≤
(

1−α
B(α)W + α

B(α)T (α)WTα
)
‖ y (t)− x (t) ‖J

(24)

Hence, we have

‖ A (y (t))−A (x (t)) ‖J≤ L ‖ y (t)− x (t) ‖J (25)

where L = 1−α
B(α)W + α

B(α)T (α)WTα. If condition stated in equation (18) is

field, the operator A will have a condition on C
(
J,R6

)
. It can be therefore be

concluded that because of Banach fixed theorem, the system (15) possesses a
unique solution.
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6. Fractional optimal control

In this section we include three controls, u1 seeks to prevent individuals
who have been exposed, corrupt, punished and made away with corruption
in the society. The control u2 seeks to present measures which serve as a
social medication that encourages individuals punished before to repent from
corruption for good.While control u3 also provides some social medication
to encourage individuals who have ever involved in corruption without being
punished willingly repent for good. The main objective is to reduce the number
of individual who are corrupt while reducing the costs associated with the
strategies. In this study we employ will ABC fractional optimal control for
the analysis since the operator is efficient and effective based on generalised
Mittage- Leffler function.

ABC
0D

α
t S = Λ + αKP +mR− (1− u1)β1S(c1I + c2P + c3F )− µS

ABC
0D

α
t E = (1− u1)β1S(c1I + c2P + c3F )− (φ+ µ)E

ABC
0D

α
t I = φE + nσF − qηI − (1− q)γI − µI

ABC
0D

α
t P = qηI − αkP − (1− k)u2ψ1P − µP

ABC
0D

α
t F = (1− q)γI − (1− n)u3ψ2F − nσF − µF

ABC
0D

α
t R = (1− k)u2ψ1P + (1− n)u3ψ2F − (m+ µ)R

(26)

7. Control problem formulation

The state system Equation (7) is considered together with the admissible
control functions. Ω = {(u1 (.) , u2 (.) , u3 (.))}ui is Lebsegue measurable on
[0,1], 0 ≤ (u1 (.) , u2 (.) , u3 (.)) ≤ 1 t ∈ [0, Tff ] , i = {1, 2, 3} . where Tf is the
terminal time and u1 (.) ,u2 (.) and u3 (.) represent the controls functions. The
objective function is therefore defined as follows:

J (u1, u2, u3) =

∫ Tf

0
σ

(
I + P + F +

D1

2
u2

1 (t) +
D2

2
u2

2 (t) +
D3

2
u2

3 (t)

)
dt

(27)
where D1, D2 and D3 stand for the relative cost connected with the controls
u1, u2 and u3 . We determine the optional controls u1, u2 and u3 that seeks to
minimize the cost function

J (u1, u2, u3) =

∫ Tf

0
σ (S,E, I, P, F,R, u1, u2, u3, t) dt (28)

Subject to the constraint
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ABC
0 Dα

t S = λ1,
ABC
0 Dα

t E = λ2,
ABC
0 Dα

t I = λ3,
ABC
0 Dα

t P = λ4,

ABC
0 Dα

t F = λ5,
ABC
0 Dα

t R = λ6 (29)

where λi = λ (S,E, I, P, F,R, u1, u2, u3) i = 1, ......, 6, and also the following
initial conditions are taking into consideration S (0) = S0, E (0) = E0, I (0) =
I0, F (0) = F0, R (0) = R0. In order to present a definition of the fractional
optional control problem the following cost function [31] are reformulated.

J =

∫ Tf

0

[
Hb (S,E, I, P, F,R, uj , t)−

∑6

i=1
λiε (S,E, I, P, F,R, ui, t)

]
dt

(30)
where j = 1, 2, 3 and also i = 1, 2, 3

The Hamiltonian for the FOCP is stated as follows:

Hb (S,E, I, P, F,R, uj , t) = σ (S,E, I, P, F,R, uj , t)+
∑6

i=1
λiε (S,E, I, P, F,R, uj , t)

(31)
where j = 1, 2, 3 and also i = 1, 2, 3. Following equations (30) and (31), the
necessary and sufficient conditions required for establishing the FOCP are as
follows:

ABC
t Dα

tf
λ1 =

∂Hb

∂S
,ABCt Dα

tf
λ2 =

∂Hb

∂E
,ABCt Dα

tf
λ3 =

∂Hb

∂I
,

ABC
t Dα

tf
λ4 =

∂Hb

∂P
,ABCt Dα

tf
λ5 =

∂Hb

∂F
,ABCt Dα

tf
λ6 =

∂Hb

∂R
(32)

0 =
∂H

∂uk
(33)

ABC
0 Dα

t S =
∂Hb

∂λ1
,ABC0 Dα

t E =
∂Hb

∂λ2
,ABC0 Dα

t I =
∂Hb

∂λ3
,

,

ABC
0 Dα

t P =
∂Hb

∂λ4
,ABC0 Dα

t F =
∂Hb

∂λ5
,ABC0 Dα

t R =
∂Hb

∂λ6
(34)

Furthermore,

λ1 (Tf ) = 0, λ1 = j = 1, 2, 3....., 6 (35)

constitutes the Lagrange multipliers equations. Equation (7) and (33) present
the necessary conditions for establishing FOCP in terms of Hamiltonian. The
following theorem is given:

Theorem 4. Let S∗, E∗, I∗, P ∗, F ∗, R∗ be the solutions of the state system
and ui, i = 1, 2, 3 be the given optional controls. Then, therefore there exists
adjoint-state variables λ1 = j = 1, 2, 3....., 6 satisfy the following:
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ABC
t Dα

tf
λ∗1 = uλ∗1 + (1− u1)β1 (c1I + c2P + c3F ) (λ∗1 − λ∗2)

ABC
t Dα

tf
λ∗2 = (φ+ µ)λ∗2 − φλ∗3

ABC
t Dα

tf
λ∗3 = (1− u1)β1Sc1 (λ∗1 − λ∗2) + qηλ∗3 + (1− q) γλ∗3

+uλ∗3 − qηλ∗4 − (1− q) γλ∗5

ABC
t Dα

tf
λ∗4 = uλ∗4 + (1− k)u2ψ1λ

∗
4 + αkλ∗4 − αkλ∗1

− (1− k)u2ψ1λ
∗
5 + β1S (1− u1) (λ∗1 − λ∗2)

ABC
t Dα

tf
λ∗5 = uλ∗5 + ησλ∗5 + (1− η)u3ψ3λ

∗
5 − (1− η)ψ3ψ3λ

∗
5

+ (1− u1)β1Sc3 (λ∗1 − λ∗2)

ABC
t Dα

tf
λ∗6 = (m+ u)λ∗6 −mλ∗1

(36)

Transversality conditions:

λ∗j (Tf ) = 0, j = 1, 2, ....., 6 (37)

i. We state the optimality condition for FOCP:

Hb (S∗, E∗, I∗, P ∗, F ∗, R∗, u∗1, u
∗
2, u
∗
3, λj)

= min
0≤u∗1,u∗2,u∗3≤1

H (S∗, E∗, I∗, P ∗, F ∗, R∗, u∗1, u
∗
2, u
∗
3, λj) (38)

u∗1 = min

{
1,max

{
β1S (C1I + C2P + C3F ) (λ2 − λ1)

D1

}}
(39)

u∗2 = min

{
1,max

{
(1−K)ψ1P (λ6 − λ4)

D2

}}
(40)

u∗3 = min

{
1,max

{
(1− n)ψ2F (λ6 − λ5)

D3

}}
(41)

Proof. The costate is obtained from equation (36) and (7) where

H∗b = I∗ + P ∗ + F ∗ + D1
2 u

2
1 (t) + D2

2 u
2
2 (t) + D3

2 u
2
3 (t)

+λ∗1b
ABC
b Dα

t S
∗ + λ∗2b

ABC
b Dα

t E
∗ + λ∗3b

ABC
b Dα

t I
∗

+λ∗4b
ABC
b Dα

t P
∗ + λ∗5b

ABC
b Dα

t F
∗ + λ∗6b

ABC
b Dα

t R
∗

(42)
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represents the Hamiltonian. Also, the condition observed in equation (35)
and optional control characterization in equation (39) - (41) can be obtained
from equation (33). Making a substitution for ui = 1, 2, 3 in equation (26) the
following state system can be arrived at:

ABC
b Dα

t S
∗ = Λ + αkP ∗ +mR∗ − (1− u∗1) (c1I

∗ + c2P
∗ + c3F

∗)β1S
∗ − uS∗,

ABC
b Dα

t E
∗ = (1− u∗1)β1S

∗ (c1I
∗ + c2P

∗ + c3F
∗)− (φ+ µ)E∗,

ABC
b Dα

t I
∗ = φE∗ + ησF ∗ − qηI∗ − (1− q) γI∗ − uI∗,

ABC
b Dα

t P
∗ = qηI∗ − αkP ∗ − (1− k)u∗2ψ1P

∗ − uP ∗,
ABC
b Dα

t F
∗ = (1− q) γI∗ − (1− η)u∗

3
ψ2F

∗ − ησF ∗ − uF ∗,
ABC
b Dα

t R
∗ = (1− k)u∗2ψ1P

∗ + (1− η)u∗
3
ψ2F

∗ − (m+ u)R∗.
(43)
�

8. Numerical approach for the FOCP model

In this regard, a general initial value problem is taken into consideration:

ABC
a Dαx (t) = v (t, x (t)) , x (0) = x0 (44)

Applying fundamental theorem of fractional calculus on equation (44), then
we have

x (t)−x (0) =
1− α
B (α)

v (t, x (t))+
α

T (α)B (α)

∫ t

0
v
(
θ, x (θ) (t− θ)α−1

)
dθ (45)

where B (α) = 1− α+ α
T (α) is a normalization function, and tn+1 we obtain

xn+1 − x0 =
T (α) (1− α)

T (α) (1− α) + α
v (tn, x (tn))

+
α

T (α) + α (1− τ (α))

∑n

m=0

∫ tm+1

tm
v. (tm+1 − θ)α−1 dθ (46)

At this instance v (θ, x (θ)) will be approximated in the interval of [tk, tk+1] by
employing a two-step language interpolation technique. The two-step language
interpolation for the model is expressed as [30, 32]

Q =
v (tm, xm)

h
(θ − tm−1)− λ (tm−1, xm−1)

h
(θ − tm) (47)
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Replacing equation (47) by (8) and undertaking some steps as in [30, 33] we
get:

xn+1 − x0 = T (α)(1−α)
T (α)(1−α)+αv (tn, x (tn))

+ 1
(α+1)(1−α)T (α)+α

∑n
m=0 h

αv (tm, x (tm)) (n+ 1−m)α

(n−m+ 2 + α)− (n−m)α (n−m+ 2 + 2α)

−hαv (tm−1) , x (tm−1) (n+ 1−m)α+1

(n−m+ 2 + α)− (n−m)α (n−m+ 1 + α)

(48)

In order to consider the stability of the numerical method, a simple reorgani-
zation of equation (48) is made. This new modification substitutes the step
size h with φ (h) in a manner that

φ (h) = h+ 0
(
h2
)
, 0 ≤ φ (h) ≤ 1 (49)

Readers can consult authors [34]. This new scheme established is referred to
as the nonstandard and two-step language interpolation technique (NS2LIM)
which is expressed as follows:

n+1 − x0 = T (α)(1−α)
T (α)(1−α)+αv (tn, y (tn))

+ 1
(α+1)(1−α)T (α)+α

∑n
m=0 φ (h)α v (tm, y (tm−1))

(n+ 1−m)α (n−m+ 2 + α)− (n−m)α (n−m+ 2 + 2α)

−φ (h)α v (tm−1, y (tm−1))

(n+ 1−m)α+1 (n−m+ 2 + α)− (n−m)α (n−m+ 1 + α)

(50)

The new scheme derived is then used to obtain solution to the equation (43)
and implicit finite difference approach is also used to get the co-state system
equations (36) solution with the transversality condition in equation (37)

9. Numerical simulations

In this section, we present the new scheme in Eq. (50) to numerically
simulate the fractional- order optimal system in Eq. (43) and Eq. (36) with
the transversality condition in Eq. (37) using the parameters given in system
model (7) and ϕ(h) = A(1−e−h) where A constitutes a certain positive number
less than or equal to 0.001. The initial condition for the simulation is given as
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Figure 1. Simulations showing the effect of prevention and
punished repented corruption on transmission

S(0) = 2000, E(0) = 100, I(0) = 20, P (0) = 40, F (0) = 30, R(0) = 10. Figures
(1)–(4) show the numerical simulation results of the newly developed scheme
NS2LIM as in [30].

9.1. Prevention (u1) and Treatment (u2) only. The prevention control
u1 which seeks to prevent individuals from being corrupted and also social
medication control u2 which deals with individuals repented after being pun-
ished from corruption are employed to optimize the objective function J which
control u3 is made zero. Thus, control u3 has no effect in this strategy. It is
clearly shown in Figures 2(a) and 2(b) that there is a significant difference
in the number of individuals endemic corruption I and those punished with
corruption controlled cases and without controls respectively. In Figure 2(c)
the control strategy is not effective since the control strategy has no effect on
individuals who get corrupted and manage to get away with it in the society.
Figure 2(d) shows the control profile employed for this strategy in ABC sense
and control u1 is 5% activated and gradually reduced till the end of the inter-
vention. The control u2 is initially, fully activated and immediately reduced
till the end of the intervention while control u3 is set to zero.
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Figure 2. Simulations showing the effect of prevention and
willingly repented corruption on transmission

9.2. Prevention (u1) and Treatment (u3) only. The prevention control
u1 which seeks to prevent individuals from being corrupted and control u3

is a social medication designed to encourage individuals willingly repented
from corruption to remain uncorrupted are activated to optimize the objective
function J while control u2 is put to zero. There is a vast difference between
application for control strategy and uncontrolled cases in Figures 2(a)–2(c) in
ABC sense. The Atangana– Beneanu operator has a crossover property which
is able to unearth hidden outcomes. This control strategy is very effective and
efficient since in all the three infected compartments, the strategy has been
effective in controlling corruption in the society. The control profile is depicted
in Figure 2(d) in which control u1 is activated at 48th day and rose up to 24%
which was kept constant while control u2 was set zero. The control u3 in this
strategy is fully kept at 100% for 98 days and gradually reduced till the end
of the intervention.

9.3. Treatment (u2) and Treatment (u3) only. The social treatment con-
trol u2 which is designed to encourage individuals who have been punished for
being corrupt and repented, treatment control u3 which is social medication
designed to punish individuals who willingly repent from being corrupt is used
to optimize the objective while control u1 is set to zero. In Figures 2(a)–2(c)
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Figure 3. Simulations showing the effect of treatment pun-
ished corruption and treatment of willingly repented corruption
on transmission

there are substantial difference in controlled cases and without controlled cases
which show that the control strategy is effective in minimizing corruption in
the society. This implies that ABC operator is very effective in predicting ac-
curately. The control profile is depicted in Figure 2(d) in which control u2 is
activated at 28th day and rise up to 24% constantly till 100th day and finally
reduces to zero during the rest of the intervention. The control u1 is set to
zero during this intervention. The control u3 in this strategy is fully kept at
100% for 98 days and gradually reduced till the end of the intervention.

9.4. Prevention, Treatment and Treatment (u1, u2, u3). In this strat-
egy, all the three controls are activated to optimize the objective function.
Figures 2(a)–2(c) show tremendous positive effect as there is much significant
difference between the use of control strategy, and without the application of
the control strategy. The crossover effect in ABC operator has enhanced the
accurate prediction of the model outcomes. The control strategy is therefore
very effective in controlling the spread of corruption in the society. Figures
2(d) is the control profile, control u1 is constantly kept at 2% and eventually
reduced to zero during the rest of the intervention. The control u2 initially
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Figure 4. Simulations showing the effect of prevention and
treatment with social medications on transmission

set at 26% for 18 days, then reduced till 38th day.This rose again to 30% on
40th day and eventually reduced to zero during the rest of the intervention.

10. Conclusions

In this study, a fractional optimal control formulated in ABC sense was
employed in investigating corruption model. The model was explored making
use of non-local and non-singular kernel. This study utilized three controls
u1, u2 and u3 that were designed to make corruption unattractive in the soci-
ety. It can be inferred that this fractional –order in ABC sense has the ability
to describe the complexity in real life problems due to the crossover charac-
teristics than in the case of integer order. The numerical schemes employed
for this work was NS2LIM which produced accurate predictions. Some figures
are presented to depict the effectiveness of the numerical scheme and of the
optimal.The utilization of the all the controls at the same time, is the most
effective strategy in controlling corruption in the society.
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