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CONSTRUCTION OF OPTIMAL DERIVATIVE FREE

ITERATIVE METHODS FOR NONLINEAR EQUATIONS

USING LAGRANGE INTERPOLATION

MOIN-UD-DIN JUNJUA1, SAIMA AKRAM2,∗, TARIQ AFZAL1, AYYAZ ALI1

Abstract. In this paper, we present a general family of optimal deriv-
ative free iterative methods of arbitrary high order for solving nonlinear
equations by using Lagrange interpolation. The special cases of this family
with optimal order of convergence two, four, eight and sixteen are obtained.
These methods do not need the Newton’s or Steffensen’s iterations in the
first step of their iterative schemes. The advantage of the new schemes
is that they are also extendable to the iterative methods with-memory.
Numerical experiments and polynomiographs are presented to confirm the
theoretical results and to compare the new iterative methods with other
well known methods of similar kind.
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1. Introduction

A large number of problems in different fields of engineering and science
require to find the solution of a nonlinear equation. In this paper, we consider
the problem of solving nonlinear equations numerically [1–3]. Multi-step iter-
ative methods for this problem have been extensively studied in the last few
decades as they are computationally efficient than the one-step methods such
as the methods of Newton, Halley and Laguerre.

Following is the iteration of Newton’s scheme to find a simple root α of a
nonlinear equation f(x) = 0, where f : D ⊆ R→ R is a scalar function on an
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open interval D [3]:

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0. (1)

Newton’s method requires one functional and one derivative evaluation for
one iteration. But this method is sensitive regarding the choice of initial
approximation. It may not converge to real root if the initial approximation
does not lie in the vicinity of the root and also if f ′(x) is zero in neighborhood
of real root. Steffensen’s iterative scheme is a well known modification of the
Newton’s method obtained by using the approximation

f ′(xn) ≈ f(xn)− f(un)

xn − un
= f [xn, un], (2)

in the Newton’s scheme and is given as follows [4]:

xn+1 = xn −
f(xn)

f [un, xn]
, n ≥ 0, (3)

where, un = xn + f(xn). Both of the above schemes are quadratic in some
neighborhood of the root α but Steffensen’s method has an advantage that it
does not need the evaluation of function’s derivative which may be problematic
and expensive to calculate for certain functions. There is a vast literature on
optimal multi-step methods, which are developed by using the famous one-step
Newton’s method or the Steffensen’s method at the first step.

To determine the efficiency of an iterative method, Ostrowski [2] defined the

efficiency index as q1/n, where q is the convergence order and n is the number
of function evaluations per iterative step. Kung and Traub conjectured in
[5] that the order of convergence of any multi-step method requiring n + 1
function evaluations cannot exceed the bound 2n. The methods that satisfy
this bound are called optimal methods. For a background study of multi-step
optimal methods for finding simple roots, one may consult the books of Traub
and Petkovic et al. [3, 6].

In 2011, Geum and Kim [7] presented an optimal four-step iterative scheme
given as follows:

yn = xn −
f(xn)

f ′(xn)
, n ≥ 0,

rn = yn −K1(un)
f(yn)

f ′(xn)
,

sn = rn −K2(un, vn, wn)
f(rn)

f ′(xn)
,

xn+1 = sn −K3(un, vn, wn, tn)
f(sn)

f ′(xn)
(4)
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where

K1(un) =
1 + ρun + (−9 + 5ρ/2)u2n

1 + (ρ− 2)un + (−4 + ρ/2)u2n
,

K2(un, vn, wn) =
1 + 2un + (2 + ξ)wn

1− vn + ξwn
,

K3(un, vn, wn, tn) =
1 + 2un + (2 + ξ)vnwn

1− vn − 2wn − tn + 2(1 + ξ)vnwn
− 1

2
unwn[6 + 12un

+u2n(24− 11ρ) + u3n(11ρ2 − 66ρ+ 136) + 4ξ]

+(2un(ξ2 − 2ξ − 9)− 4ξ − 6)w2
n.

In 2013, Cordero et al. [8] developed a family of optimal derivative free itera-
tive methods by using polynomial interpolation given as follows:

y0 = xk, k ≥ 0,

y1 = y0 + f(y0),

xk+1 = yk+1 = yj −
f(yj)

p′j(yj)
, j = 1, 2, ..., n, (5)

where pj is the polynomial that interpolates f in y0, y1, ..., yj . A special case
of their family as a three-step scheme is given as follows:

y0 = xk, k ≥ 0,

y1 = y0 + f(y0),

y2 = y0 −
f(y0)

2

f(y1)− f(y0)
,

y3 = y2 −
f(y2)

y1−y2
y1−y0 f [y0, y2] + y0−y2

y0−y1 f [y1, y2]
,

xn+1 = y4 = y3 −
f(y3)

p′3(y3)
, (6)

where,

p′3(y3) =
(y1 − y3)(y2 − y3)
(y1 − y0)(y2 − y0)

f [y0, y3] +

(y0 − y3)(y2 − y3)
(y0 − y1)(y2 − y1)

f [y1, y3] +

(y0 − y3)(y1 − y3)
(y0 − y2)(y1 − y2)

f [y2, y3].

In 2016, Nazeer et al. [9] proposed a generalized Newton-Raphson’s method
free from second derivative. Again in 2016, Kang et al. [10] presented an iter-
ative method corresponding to Simpson’s 1/3 rule with it’s polynomiographs.
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In 2017, Nazeer et al. [11] developed an iterative method of ninth-order for
nonlinear equations along with it’s polynomiographs.

In 2019, Saba et al. [12] presented a modified Abbasbandy’s method free
from second derivative for solving nonlinear equations. Also in 2019, Junjua
et al. [13] presented a general family of derivative free root finding method
based on inverse interpolation given as follows:

yn = xn −
f(xn)

f [zn, xn]
, zn = xn + f(xn)4, n ≥ 0,

wn = yn + h2f(xn)2,

tn = yn + b3f(xn)2 − g3f(xn)3,

xn+1 = yn + b4f(xn)2 − g4f(xn)3 + g5f(xn)4, (7)

where

h2 =
1

[f(yn)− f(xn)]f [yn, xn]
− 1

[f(yn)− f(xn)]f [zn, xn]
,

g3 =
1

[f(yn)− f(xn)][f(yn)− f(wn)]f [yn, xn]

− 1

[f(wn)− f(xn)][f(yn)− f(wn)]f [wn, xn]

+
1

[f(wn)− f(xn)][f(yn)− f(wn)]f [zn, xn]

− 1

[f(yn)− f(xn)][f(yn)− f(wn)]f [zn, xn]
,

b3 =
1

[f(yn)− f(xn)]f [yn, xn]
− 1

f [zn, xn][f(yn)− f(xn)]
(8)

−g3[f(yn)− f(xn)].

and

g5 =

ϕt−ϕw

[f(tn)−f(wn)]
− ϕy−ϕw

[f(yn)−f(wn)]

[f(tn)− f(yn)]
,

g4 =
ϕt − ϕw

[f(tn)− f(wn)]
− g5([f(tn)− f(xn)] + [f(wn)− f(xn)]),

b4 = ϕt − g4[f(tn)− f(xn)]− g5[f(tn)− f(xn)]2 (9)



34 Moin-ud-din Junjua, Saima Akram, Tariq Afzal, Ayyaz Ali

where

ϕt =
1

f [tn, xn][f(tn)− f(xn)]
− 1

f [zn, xn][f(tn)− f(xn)]
,

ϕw =
1

f [wn, xn][f(wn)− f(xn)]
− 1

f [zn, xn][f(wn)− f(xn)]
,

ϕy =
1

f [yn, xn][f(yn)− f(xn)]
− 1

f [zn, xn][f(yn)− f(xn)]
.

Motivated by the research going on in this direction and with a need to
develop more optimal higher order methods, in this paper, we propose a new
general family optimal derivative free iterative methods by using Lagrange
interpolation with simple body structure for finding simple zeros of a univari-
ate nonlinear function. In Section 2, the new family along with it’s special
cases of convergence order two, four, eighth and sixteen are presented. The
convergence analysis of these methods is studied in Section 3. The advantage
of the new schemes is that they are also extendable to the iterative methods
with-memory [6]. In Section 4, polynomiographs of different iterative methods
are presented. Section 5 includes the numerical results and comparisons of the
proposed iterartive methods with the existing methods of similar kind. The
concluding remaks are provided in Section 6.

2. Optimal higher order derivative free methods

In this section, we present a general family of optimal derivative free meth-
ods by applying Lagrange interpolation that satisfy the conjecture of Kung
and Traub [5].

We define the following simple and general n−step family of optimal itera-
tive methods.

w0 = xk, k ≥ 0,

w1 = w0 + βf(w0),

...

xk+1 = wn+1 = wn −
f(wn)

L′n(wn)
, n ≥ 1, (10)

where, β ∈ R and L′n(wn) is the derivative of nth degree Lagrange interpolating
polynomial that interpolates f in w0, w1, ..., wn. Some sepecial cases of the
above scheme are described as follows.
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For n = 1 in (10), we obtain the following one-step iterartive method:

w0 = xk, k ≥ 0,

w1 = w0 + βf(w0), β ∈ R

xk+1 = w2 = w1 −
f(w1)

L′1(w1)
, (11)

where

L′1(w1) =
f(w1)− f(w0)

w1 − w0
. (12)

It is to be remarked that, the above scheme is different from the Newton’s (1)
and Steffensen’s (3) schemes.

For n = 2, we obtain the following two-step iterative scheme:

w0 = xk, k ≥ 0,

w1 = w0 + βf(w0),

w2 = w1 −
f(w1)

L′1(w1)
,

xk+1 = w3 = w2 −
f(w2)

L′2(w2)
, (13)

where where L′1(w1) is given by (12) and

L′2(w2) = f [w0, w2] + f [w1, w2]− f [w0, w1]. (14)

For n = 3, a new three-step iterative method is obtained as follows:

w0 = xk, k ≥ 0,

w1 = w0 + βf(w0),

w2 = w1 −
f(w1)

L′1(w1)
,

w3 = w2 −
f(w2)

L′2(w2)
,

xk+1 = w4 = w3 −
f(w3)

L′3(w3)
, (15)

where L′1(w1) and L′2(w2) are given by (12) and (14) respectively and

L′3(w3) = f [w3, w1] + f [w3, w0] + f [w3, w2]− f [w0, w2]

−f [w1, w2]− f [w0, w1] +
(w0 − w3)f(w0)

((w0 − w1)(w0 − w2))

+
(w1 − w3)f(w1)

((w1 − w0)(w1 − w2))
+

(w2 − w3)f(w2)

((w2 − w1)(w2 − w0))
. (16)
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For n = 4 in scheme (10), the following four step iterative method is obtained
as under:

w0 = xk, k ≥ 0,

w1 = w0 + βf(w0), β ∈ R,

w2 = w1 −
f(w1)

f [w1, w0]
,

w3 = w2 −
f(w2)

L′2(w2)
,

w4 = w3 −
f(w3)

L′3(w3)
,

xk+1 = w5 = w4 −
f(w4)

L′4(w4)
. (17)

where L′1(w1), L
′
2(w2) and L′3(w3) are given by equations (12), (14) and (16)

respectively and L′4(w4) is given as follows:

L′4(w4) =
(w4 − w3)(w4 − w1)(w4 − w2)f(w0)

((w0 − w3)(w0 − w4)(w0 − w1)(w0 − w2))

+
(w4 − w3)(w4 − w0)(w4 − w2)f(w1)

((w1 − w2)(w1 − w4)(w1 − w0)(w1 − w3))

+
(w4 − w3)(w4 − w0)(w4 − w1)f(w2)

((w2 − w3)(w2 − w4)(w2 − w0)(w2 − w1))
(18)

+
(w4 − w0)(w4 − w1)(w4 − w2)f(w3)

((w3 − w4)(w3 − w0)(w3 − w1)(w3 − w2))

+
f(w4)

(w4 − w0)
+

f(w4)

(w4 − w1)
+

f(w4)

(w4 − w2)
+

f(w4)

(w4 − w3)
.

3. Analysis of convergence

Theorem 1. Let f : D ⊆ R→ R be a sufficiently differentiable function in an
open interval D and α be a simple root of f . If x0 is close enough to α, then
for all β ∈ R, the iterative schemes defined by (11) and (13) are second and
fourth order convergent respectively with the error equations given as follows
respectively:

en,w2 = c2(1 + βc1)e
2
n +O(e3n), (19)

and

en,w3 = c2(1 + βc1)
2(c22 − c3)e4n +O(e5n). (20)

where, cj = f (j)(α)
j!fj(α)

, k ≥ 2.
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Proof. Let en = xn − α be the error at nth step. By using Taylor’s series
expansion of f(x) about the roor α, we have:

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)

]
,

Again by using Taylor’s expansion, we get the error term of w1 = xn+βf(xn)
as follows:

en,w1 = (1 + βf ′(α))en + βf ′(α)(c2e
2
n + c3e

3
n + c4e

4
n) +O(e5n),

where

en,w1 = w1 − α.
Similarly with the help of Taylor’s series, the expression of f(w1) can be ob-
tained. Hence, the error term of w2 is as follows:

en,w2 = c2(1 + βc1)e
2
n + (3βc1c3 − 2c22βc1 − β2c21c22 + 2c3 + c3β

2c21 − 2c22)e
3
n

−7β2c21c3c2 − 2c31c2β
3c3 + 3β2c21c

3
2 + 4c4β

2c21 + c4β
3c31 − 10c1c2βc3

+3c4 + 6βc1c4 + 5c32βc1 − 7c2c3 + 4c32 + β3c31c
3
2)O(e4n) +O(e5n),(21)

where

en,w2 = w2 − α.
Now again with the help of Taylor’s series expansions, we obtain the following
error term of w3:

en,w3 = c2(1 + βc1)
2(c22 − c3)e4n +O(e5n). (22)

The above error relations (21) and (22) show that the iterative schemes (11)
and (13) have second and fourth order convergence respectively. This com-
pletes the proof. �

Theorem 2. Let f : D ⊆ R→ R be a sufficiently differentiable function in an
open interval D and α be a simple root of f . If x0 is close enough to α, then for
all β ∈ R, the iterative schemes defined by (15) and (17) have optimal order of
convergence eight and sixteen respectively with the following error equations:

en,w4 = c22(1 + βc1)
4(−c3 + c22)(c

3
2 − c2c3 + c4)e

8
n +O(e9n) (23)

and

en,w5 = c42(−c3+c22)
2(1+βc1)

8(c32−c2c3+c4)(−c5+c2c4−c22c3+c42)e
16
n +O(e17n )

(24)

respectively, where cj = f (j)(α)
j!f ′(α) , j ≥ 2 and en = wn − α.

Proof. Let en,w4 = w4 − α and en,w5 = w5 − α. With the help of Taylor’s
series expansions, the proof is similar to the proof for Theorem 1. Hence it is
skipped over. �
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Remark 1. From the above theorems, it is clear that the iterative schemes
(11), (13), (15) and (17) are second, fourth, eighth and sixteenth order con-
vergent requiring two, three, four and five function evaluations, respectively.
Thus, the presented iterative schemes are optimal in the sense of hypothesis of
Kung and Traub [5] with the efficiency indices 1.414, 1.587, 1.681, 1.741 respec-
tively. Hence, it is concluded that the general n−step iterative scheme (10)

has optimal order of convergence 2n and efficiency index 2
n

n+1 as stated by the
following theorem.

Theorem 3. Let f : D ⊆ R → R be a sufficiently differentiable function in
an open interval D and α be a simple root of f . If x0 is close enough to α,
then for all β ∈ R, the n−step iterative scheme defined by (10) has optimal
order of convergence 2n using the n+ 1 function evaluations.

4. Numerical Results

We, now, check the prformance of the newly developed sixteenth order iter-
ative method (TM16) (17) by comparing it with some well known sixteenth or-
der methods using a number of nonlinear equations. We have employed multi-
precision arithmetic with 4000 significant decimal digits in the programming
package of Maple 16 to obtain a high accuracy and avoid the loss of significant
digits. We compare the convergence behavior of our method (TM16) with the
the sixteenth order schemes of Cordero et al. [8] (CM16), Geum et al. (4)
(GK16) and Janjua et al. (7) (JM16) by using the nonlinear functions given
in Table 1. Table 1 also includes the exact roots α and initial approximations
x0 for different nonlinear functios which are calculated using Maple 16. The
error |xn − α| and the computational order of convergence (coc) for first three
iterations of various methods is displayed in the Tables 2-7, which supports the
theoretical order of convergence. The formula to compute the computational
order of convergence (coc) is given by [14]:

coc ≈ log |(xn+1 − α)/(xn − α)|
log |(xn − α)/(xn−1 − α)|

. (25)

Tables 2–7 show that the proposed iterative method (TM16) is comparable
and competitive to the methods (CM16), (GK16) and (JM16).

5. Polynomiography

In this section, we compare the iterative methods under consideration by
drawing their polynomiographs. Polynomiographs contain basins of attraction
that allow us to see how wide is the set of initial guesses that leads us to the
required roots. We consider a rectangle D = [−2, 2]× [−2, 2] ∈ C with a mesh
of 1000 × 1000 initial approximations. If the sequence produced by an itera-
tive method for a given initial guess z0, reaches to a root of the polynomial
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Table 1. Test Functions

Example Test Functions Exact root α x0
1 f1(x) = (2 + x3) cos(πx2 ) + log(x2 + 2x+ 2) −1 −0.93

2 f2(x) = x2ex + x cos 1
x3

+ 1 −1.5650602... −1.25
3 f3(x) = xex + log(1 + x+ x4) 0 −0.5
4 f4(x) = (x− 1)(x+ 1 + log(2 + x+ x2)) 1 1.05

5 f5(x) = −20x5 − x
2 + 1

2 0.42767729... 0.38

6 f6(x) = esin(8x) − 4x 0.34985721... 7

Table 2. Numerical Results of Example 1

f1(x) = (2 + x3) cos(πx2 ) + log(x2 + 2x+ 2), x0 = −0.93
GK16 CM16 JM16 TM16

|x1 − α| 1.44(−10) 6.42(−10) 1.83(−10) 1.63(−10)
|x2 − α| 8.08(−147) 9.99(−136) 2.58(−145) 1.50(−150)
|x3 − α| 7.29(−2327) 1.18(−2148) 6.18(−2303) 2.10(−2350)
coc 16.00 16.00 16.00 16.00

Table 3. Numerical Results of Example 2

f2(x) = x2ex + x cos 1
x3

+ 1, x0 = −1.25
GK16 CM16 JM16 TM16

|x1 − α| 5.84(−13) 4.10(−6) 1.46(−11) 1.34(−13)
|x2 − α| 2.58(−201) 2.16(−89) 4.07(−180) 2.10(−210)
|x3 − α| 5.49(−3215) 7.88(−1422) 5.01(−2877) 4.5(−3342)
coc 16.00 16.00 16.00 16.00

Table 4. Numerical Results of Example 3

f3(x) = xex + log(1 + x+ x4), x0 = −0.5
GK16 CM16 JM16 TM16

|x1 − α| Div. Div. 6.69(−10) 4.59(−11)
|x2 − α| Div. Div. 2.43(−152) 1.23(−165)
|x3 − α| Div. Div. 2.35(−2431) 2.35(−2535)
coc Div. Div. 16.00 16.00

p(z) = 0 with the tolerance 10−5 and in a maximum of 30 iterations, we paint
that initial guess in a color already chosen for the corresponding root. If the
iterative method for an initial guess does not converge to any of the roots
in 30 iterations, that initial guess is painted with blue color. We have con-
sidered five different polynomials to draw and comapre the polynomiographs
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Table 5. Numerical Results of Example 4

f4(x) = (x− 1)(x+ 1 + log(2 + x+ x2)), x0 = 1.05
GK16 CM16 JM16 TM16

|x1 − α| 1.02(−23) 3.40(−21) 2.69(−21) 1.45(−22)
|x2 − α| 2.44(−370) 1.83(−327) 7.83(−330) 2.53(−345)
|x3 − α| 0 0 0 0
coc 16.00 16.00 16.00 16.00

Table 6. Numerical Results of Example 5

f5(x) = −20x5 − x
2 + 1

2 , x0 = 0.38
GK16 CM16 JM16 TM16

|x1 − α| 1.65(−5) 1.28(−3) 2.78(−11) 1.58(−11)
|x2 − α| 2.04(−66) 2.68(−34) 5.53(−160) 2.13(−158)
|x3 − α| 5.69(−1041) 5.39(−525) 3.22(−2539) 2.32(−2540)
coc 16.00 16.00 16.00 16.00

Table 7. Numerical Results of Example 6

f6(x) = esin(8x) − 4x, x0 = 7
GK16 CM16 JM16 TM16

|x1 − α| Div. 1.98(−2) 1.50(−2) 1.45(−2)
|x2 − α| Div. 3.89(−12) 3.31(−17) 3.71(−18)
|x3 − α| Div. 1.20(−168) 9.46(−225) 1.26(−235)
coc Div. 16.12 16.20 16.30

of the proposed method (TM16) with (CM16) and (GK16). In all Figures,
the polynomiographs of (TM16) shows wider basins of attraction than poly-
nomiographs of (CM16) and (GK16).

Example 1. We consider the following polynomial of degree 3:

p1(z) = z3 + 1.

The roots of the above cubic equation are at 0.5000 ± 0.8660i and −1.000 +
0.0000i. In Figures 1 and 2, polynomiographs of TM16, CM16 and GK16 are
shown for p1.

Example 2. We consider the following polynomial of degree 4:

p2(z) = z4 + 1.

The roots of the above quartic equation are at 0.7071± 0.7071i and −0.7071±
0.7071i. In Figures 3 and 4, polynomiographs of TM16, CM16 and GK16 are
shown for p2.
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Figure 1. Polynomiographs of TM16 for p1

Figure 2. Polynomiograph of GK16 for p1

Figure 3. Polynomiographs of TM16 (Left) and CM16 (right)
for p2

Example 3. Another polynomial of degree 4 is chosen as follows:

p3(z) = z4 − z3 + z2 − z + 1.

The roots of the above quartic equation are at 0.8090± 0.5878i and −0.3090±
0.9511i.In Figures 5 and 6, polynomiographs of TM16, CM16 and GK16 are
plotted for p3.
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Figure 4. Polynomiograph of GK16 for p2

Figure 5. Polynomiographs of TM16 (Left) and CM16 (right)
for p3

Figure 6. Polynomiograph of GK16 for p3

Example 4. The polynomial of degree 5 is considered as follows:

p4(z) = z5 − 1.

The roots of the above equation of degree five are at 0.8090±0.9511i , −0.8090±
0.5878i and 1.0000 + 0.0000i. In Figures 7 and 8, polynomiographs of TM16,
CM16 and GK16 are shown for p4.
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Figure 7. Polynomiographs of TM16 (Left) and CM16 (right)
for p4

Figure 8. Polynomiograph of GK16 for p4

Example 5. We consider the following polynomial of degree 7:

p5(z) = z7 − 1.

The roots of the above equation of degree seven are at 0.6325 ± 0.7818i ,
−0.9010± 0.4339i, −0.2225± 0.9749i and 1.0000± 0.0000i. In Figures ??and
10, polynomiographs of TM16, CM16 and GK16 are shown for p5.

6. Conclusions

In this paper, we have presented a general family of optimal derivative free
iterative methods of arbitrary high order for solving nonlinear equations by
using Lagrange interpolation. The special cases of the family with optimal or-
der of convergence two, four, eight and sixteen are obtained. These methods
do not need the Newton’s or Steffensen’s iterations in the first step of their
iterative schemes. Convergence analysis is also studied for the new iterative
methods. The advantage of the new schemes is that they are also extend-
able to the iterative methods with-memory. Finally, numerical comparison
and polynomiographs of different iterative methods are presented which sup-
port the theoretical results and illustrate that the new optimal derivative free
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Figure 9. Polynomiographs of TM16 (Left) and CM16 (right)
for p5

Figure 10. Polynomiograph of GK16 for p5

methods are comparable and perform better than the existing methods of the
same domain.
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