CHARACTERIZATIONS OF CHEVALLEY GROUPS USING ORDER OF THE FINITE GROUPS

ABID MAHBOOB $^{1,*},$ TASWER HUSSAIN 2, MISBAH AKRAM 3, SAJID MAHBOOB 4, NASIR ALI 4, ALI RAZA 4

ABSTRACT. In this paper, we prove $\psi(A_1(4)) < \psi(G)$, \forall groups which are not simple with order sixty, $A_1(4)$ is Chevalley group (Linear group) of order 60. Also we prove that $\psi(A_2(2)) < \psi(G)$ using higher order non-simple groups of order 168.

Key words: Chevalley groups, Finite groups, Simple groups, Element orders.

MSC: 20D05, 20B40.

1. Introduction

Consider the funtion

$$\psi(G) = \sum_{h \in G} o(h),$$

and we know that o(h) be order of $h \in G$. Now we explain the basic ideas which is already discussed in the papers papers [1, 2] which shows the minimum of ψ on the same order groups. In [1] Amiri et al. explained the function $\psi(G)$, which is the sum of element orders of a finite group G, and showed if G be a non-cyclic group with order n then $\psi(G) < \psi(C_n)$, where C_n denote the cyclic group of order n.

Recall that the function ψ is multiplicative, that is if G_1 and G_2 are two finite groups satisfying $\gcd(G_1, G_2) = 1$, then $\psi(G_1 \times G_2) = \psi(G_1) \psi(G_2)$. We use the paper [1] which find the influence of ψ on the same order groups.

¹Department of Mathematics, Division of Science and Technology, University of Education Lahore, Pakistan.

²GHSS Shergarh, Okara Pakistan.

³Department of Mathematics, GCU, Lahore, Pakistan.

⁴Department of Mathematics, The University of Education Lahore, Pakistan.

 $^{^{\}ast}$ Corresponding author: abid.mahboob@ue.edu.pk.

Notations and terminologies used in the entire paper are standard. Results related to group theory discussed briefly in [3, 4]. In 2011, Amiri and Amiri [2] turned their attention to the mini($\psi(G)$). Moreover, the value of (ψ) on such a non-nilpotent group of order n is must less than the value of ψ on any nilpotent group of order n. In 2012, Amiri and Amiri [5] showed that $\psi(H) < \psi(A_n)$, for every proper subgroup H of S_n which is distinct from A_n . For more details about the subject matter of this paper, we refer [6-8].

In this paper, $A_1(4)$ represents Chevalley group of order 60 and $A_2(2)$ represents Chevalley group of order 168.

Theorem 1. Suppose |C| = m be a cyclic group. Then $\psi(G) < \psi(C)$, \forall non-cyclic groups G of order m.

These groups are investigated by orders and sums of elements order and the G is not determined by invariants |G| and $\psi(G)$.

Example 1. Let G_0 and G_1 be two non-isomorphic groups of order 27 such that $\psi(G_1) = \psi(G_2)$.

Since ψ is multiplicative and G_0 and G_1 satisfying $(|G_0|, |G_1|)=1$, so $\psi(G_0 \times G_1) = \psi(G_0)\psi(G_1)$. In [2], we see

Theorem 2. Let |G| = n be a nilpotent group. Then $\psi(G) \leq \psi(H)$ for every nilpotent group H of order n, iff each Syl(G) is of prime exponent.

Theorem 3. Suppose $n \in Z^+$ s.t \exists a non-nilpotent group of order n. Then K a non-nilpotent group of order n with $\psi(K) < \psi(H)$ for every nilpotent group H of order n.

It is clear that G is distinct on the same order groups and conjectured in [2] and $\psi(G)$ exist.

Conjecture 1. Let G be a non-simple group and T be a simple group, if G has order equal to |T|, then $\psi(T) < \psi(G)$.

Then there exist |T| = n, so least of ψ , on all equal order groups, contained in T. Now we determine Conjecture 1 for $A_1(4)$ and $A_2(2)$. Note that $A_1(4)$ and $A_2(2)$ are observed by order and sum of element orders.

In this paper all notations are standard. Since prime is denoted by p, then number of $Syl_p(G)$ are $n_p = n_p(G)$ and $Syl_p(G)$ be Sylow p-subgrups. For a positive integer n, $|C_n| = n$ be a cyclic group.

2. Mimimum of ψ on all groups of order 60

Since $A_1(4)$ has elements of order 2, 3 and 5 and their elements are 15, 20 and 24 respectively. Therefore $\psi(A_1(4)) = 211$.

Theorem 4. Let |G| = 60. Then $\psi(G) \ge 211$ and $\psi(G) = 211$ iff $G \cong A_1(4)$.

Proof. Since |G| = 60, then $n_5 = 1$ or 6 and $n_3 = 1$ or 10. If $n_3 = 1$ or $n_5 = 1$, then there is a cyclic subgroup in G has order fifteen. Thus G has minimum eight elements of order fifteen. So G has maximum forty five elements of order at least 2. Also G has minimum 4 elements of order five and minimum 2 elements of order three. Hence

$$\psi(G) \ge 8(15) + 4(5) + 2(3) + 45(2) + 1 = 236.$$

So we may assume that $n_3 = 10$ and $n_5 = 6$. Therefore G has 20 and 24 elements of order 3 and 5 respectively. If $T = \{y \in G \mid o(y) = 3 \text{ or } 5\}$, then |T|=44. If there exists an element $h \in G/T$ such that o(h) > 2, then $\psi(G) > 2$ 11. Let every element of $G \setminus T$ has order two.

 $\Rightarrow |C_G(y)| = 4, \forall o(h) = 2$. So intersection of two different Syl_2 of G are trivial and so $n_2 = 5$. Hence $G \cong S_5$. It follows that $G \cong A_1(4)$. As required.

Corollary 5. Let G be a non-simple group, if |G| = 60 then $\psi(G) > \psi(A_1(4))$.

3. Groups of order 168 and mimimum of ψ

Since $A_2(2)$ has 21, 42, 56 and 48 elements of order 2, 4, 3 and 7 respectively and since $A_2(2)$ has 21 Sylow 2-subgroups isomorphic to D_8 . $n_3 = 28$ and $n_7 = 8$. Therefore $\psi(A_2(2)) = 715$.

Lemma 6. Let |G| = 168 and $h \in G$, if $o(h) = 21 \le G$, then $\psi(G) > 715$.

Proof. Suppose that there are H_1, H_2 be 2 cyclic subgroups $H_1, H_2 \in G$ with orders 21, then G contain minimum elements $2\Phi(21)$ is equal to twenty four has 21 order, thus maximum elements of G are 144 which have not 21 order. Hence

$$\psi(G) \ge 1 + 143(2) + 24(21) = 791 > 715.$$

Suppose G has only cyclic subgroup |R|=21. Therefore $n_7(G)=1$ and $n_3(G)=1$. This shows

$$\frac{G}{C_G(P)} \hookrightarrow Aut(C_7)$$

where Q is $Syl_7(G)$. So $|C_G(Q)|=2^3\cdot 3\cdot 7$ or $2^2\cdot 3\cdot 7$. As G contain a central subgroup Q. By [1] Corollary B, $\psi(G)=\psi(\frac{G}{Q})\psi(Q)>715$. If $|C_G(Q)|=2^2\cdot 3\cdot 7$, Q is central in $C_G(Q)$ and so $\psi(C_G(Q))=43\cdot 24>715$, which is required.

Lemma 7. Let |G| = 168. If G contains no element order 21 and $n_7 = 8$, then either $\psi(G) > 715$ or $G \cong A_2(2)$.

Proof. By supposition, $E = N_G(Q) = MQ$, where $Q \in Syl_7(G)$, $M \in Syl_3(G)$. Since $n_3(E) = 7$, $n_3(G) \ge 7$ and so $n_3 = 7$ or 28.

If $E_1 \cap E_2$ of E is trivial, then $|E_1E_2| > 168$, which contradict the hypothesis. Therefore $|E_1 \cap E_2| = 3$ and since E has 8 conjugates, $n_3 = 28$, $\Rightarrow N_G(M) \cong S_3$ or C_6 .

If $N_G(M) \cong C_6$, then number of elements of order six in G are 56 and each element is of order six, then

$$\psi(G) \ge 1 + 48(7) + 56(3) + 56(6) > 715.$$

If $N_G(M) \cong S_3$, then $C_G(M) = M$ and so the centralizer subgroup is a p-subgroup. If $n_2 \leq 7$, then G has maximum 49 2-elements without identity. Since order of G is 168, so $\exists r \in G$ which contradicts as $\exists r \in G$ is not a p-element. So $n_2 = 21$. If $P \cap P' = 1$ where P and P' be any 2 different $Syl_2(G)$, then the order of G is greater than 168. Hence there is $y \in I_1 \cap I_2$, where $I_i \in Syl_2(G)$ for i is equal to 1 or 2. If I_i is abelian then $|C_G(y)| > 8$, which is a contradiction. So I_i is not abelian. Following this $I_1 \cong D_8$ or Q_8 . If O(y) = A, then O(y) = A and y contain 42 conjugate elements contained in G. Since G contained 48, 56 and 42 elements and order of these elements are 7, 3 and 4 respectively. Hence G has 21 elements of order 2. Also G is simple as it has no minimal normal subgroup. Hence $G \cong A_2(2)$. Which is the required result.

Lemma 8. Let |G| = 168. If G have no element of order 21 and $n_7 = 1$, then $\psi(G) > 715$.

Proof. Let Q be the only $Syl_7(G)$. Then $|C_G(Q)| = 2^3 \cdot 7$ or $2^2 \cdot 7$.

If $|C_G(Q)| = 2^3$. 7, then $C_G(Q) = Q \times I$, where $I \in Syl_2(G)$. So $n_2(G) = 1$, since $C_G(Q) \subseteq G$. Then $\psi(C_G(Q)) \ge 15 \cdot 43 = 645$. As 3 is the minimum order of element in $G \setminus C_G(Q)$ and $|G \setminus C_G(Q)| = 112$, we have $\psi(G) \ge 645 + 112 \cdot +645 > 715$.

Now $|C_G(Q)| = 2^2 \cdot 7$. Then $C_G(Q) = F \times Q$, where |F| = 4. Since $C_G(Q) \subseteq G$ and F is characteristic in $C_G(Q)$, F $\subseteq G$. Therefore F is the intersection of all Syl_2G .

Clearly $n_3 = 7$ or 28 and $n_2 = 7$ or 21. Let

$$B = \{ y \in G \mid y \text{ be } 2 \text{ element} \}$$

and

$$C = \{ y \in G \mid y \text{ be } 3 \text{ element} \}$$

Also these elements are non identity, so |B| is thirty one or eighty seven and |C| is fourteen or fifty six. Since $y \in G \setminus (B \cup C \cup Q)$, so either o(y) is six or o(y) greater than or equal to 12. If o(y) is equal to six, then G consist of $2n_3(G)$ elements of order six.

If F $\simeq C_4$, then $\psi(C_G(Q)) = 473$. Since $|G \setminus C_G(Q)| = 140$, $\psi(G) \ge 473 + 140(2) > 715$.

If F $\simeq C_2 \times C_2$, so G contain eighteen elements of order fourteen. Then we have:

1)- If
$$|B| = 31$$
 and $|C| = 14$, then
$$\psi(G) \ge 6(7) + 31(2) + 14(3) + |G \setminus (B \cup C \cup Q)|6 > 715.$$

2)- If
$$|B| = 87$$
 and $|C| = 14$, then $\psi(G) \ge 6(7) + 87(2) + 14(3) + |G \setminus (B \cup C \cup Q)|6 > 715$.

3)- If
$$|B| = 31$$
 and $|C| = 56$, then
$$\psi(G) \ge 6(7) + 31(2) + 56(3) + |G \setminus (B \cup C \cup Q)|6 > 715.$$

4)- If |B| = 87 and |C| = 56 then G has $21 \ Syl_2(G)$. Let $I \in Syl_2(G)$ and $I \cong C_2 \times C_2 \times C_2$. If $y \in F$, then $C_g(y) = IQ$, since $|B \cup C \cup Q| = 150$ and G contain eighteen elements of order fourteen. So $n_2(C_G(y)) = 7$. A contradiction because $C_G(y)$ contains $21 \ Syl_2(G)$. Hence $I \neq (C_2)^3$. Hence $Syl_2(G)$ has minimum one cyclic subgroup of order four. Since $F \cong C_2 \times C_2$, the intersection of any two different $Syl_2(G)$ not have any four order element. Therefore G has 21 four order cyclic subgroups. Thus

$$\psi(G) \ge 42(4) + 87(2) + 56(3) + 18(14) > 715.$$

As required.

Theorem 9. Let |G| = 168. Then $\psi(G) \geq 715$.

Corollary 10. Let |G| = 168 and $G \neq A_2(2)$. Then $\psi(G) > \psi(A_2(2))$.

Proof. If G satisfied the Lemmas, then it is true If G satisfied 3.2, so $\psi(G) > 715$.

References

- [1] Amiri, H., Jafarian Amiri, S. M., & Isaacs, I. M. (2009). Sums of element orders in finite groups. *Communications in Algebra*, 37(9), 2978-2980.
- [2] Amiri, H., & Jafarian Amiri, S. M. (2011). Sum of element orders on finite groups of the same order. *Journal of Algebra and its Applications*, 10 (02), 187-190. 187-190.
- [3] Mabuchi, T. (1990). Compactification of the Moduli Space of Einstein-Khler Orbifolds. In Recent Topics in Differential and Analytic Geometry (pp. 359-384). Academic Press.
- [4] Isaacs, I. M. (2008). Finite group theory (Vol. 92). American Mathematical Soc.
- [5] Amiri, H., & Jafarian Amiri, S. M. (2012). Sum of element orders of maximal subgroups of the symmetric group. *Communications in Algebra*, 40(2), 770-778.
- [6] Tufail, M., & Qazi, R. (2019). A closer look at multiplication table of finite rings. Open Journal of Mathematical Sciences., 3(1), 285–288.

- [7] Chelgham, M., & Kerada, M. (2018).On Torsion and finite extension of FC and τN_K groups in certain classes of finitely generated groups. Open Journal of Mathematical Sciences., 2(1), 351–360.
- [8] Abdullateef, L. (2020). On algebraic properties of fundamental group of intuitionistic fuzzy topological spaces (IFTSs). Open Journal of Mathematical Sciences., 4(1), 34–47.