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ON THE GENERALIZED CLASS OF ESTIMATORS FOR

ESTIMATION OF FINITE POPULATION MEAN IN THE

PRESENCE OF NON-RESPONSE PROBLEM

SABA RIAZ1,∗, AMNA NAZEER2, JAVERIA ABBASI2, SADIA QAMAR3

Abstract. This work considers a generalized class of biased estimators
for the estimation of the unknown population mean of the variable of in-
terest accompanying the issue of non-response in the study and in the
auxiliary variables. The asymptotic bias and the asymptotic variance of
the suggested class are acquired, up to the first degree of approximation
and, compared with the linear regression estimator. The efficiency of the
suggested estimators while comparing with the linear regression estimator
and some other existing estimators are studied regarding percent relative
efficiency (PRE). Furthermore, a simulation study also affirms the excel-
lence of the considered class of estimators.

Key words: Biased estimators, incomplete information, linear regression
estimator, simulation, efficacy.

1. Introduction

The problem of incomplete information is very common in surveys, specially
in socio economic surveys of households, in which individual data are collected.
The reasons of missing information may be migration, refusal to respond, not
availability at time of survey performed etc. The estimates attained from
such insufficient information perhaps ambiguous and tendentious. To evade
this bias, it is essential to consider those non-respondents again and contact
them either by personal interviews or any other approach to obtain complete
information.
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Initially [1] deliberated the issue of non-response and suggested a technique
for the incomplete information recovery. The key objective of their technique is
to sub-sample the non-respondents with the assumption of complete response
on second call. By adopting this technique, numerous authors suggested the
estimators for mean estimation in the presence of non-response utilizing sup-
plementary information. For instance, see [2, 3, 4, 5, 6] and the references
therein. Motivated by the previous work, we propose a generalized class of
biased estimators for mean estimation of the study variable using known mean
of auxiliary variable along with the non-response issue.

In Section 2, we discuss the theoretical background and notations used in
different estimation methods. We briefly discuss [1] technique and it’s exten-
sions. The underlying reasons motivating this extension are also presented. A
new class of proposed estimators for population mean is presented in Section
3. Section 4 discusses the efficacy comparison of the proposed estimators. Re-
sults of simulation studies are presented in Section 5. Finally, a short overview
and discussion is presented in the conclusion section.

2. Background and Notations

Let, P be a set of population comprises N different units along with the
study and the auxiliary variables, denoted by Y and X, where yi and xi,
i = 1, . . . , N . Also assume that X and Y are correlated and the unknown
mean Ȳ is estimated by using known mean X̄. Consider n (n < N) size
of a sample s is proceeded by simple random sampling without replacement
(SRSWOR) sampling to accumulate data of Y and X. Assuming only n1 can
provide information on Y and X and remaining units n2 = n−n1, considered
as non-respondents. Now considering [1] technique, n2 units are sub-sampled
and r = n2/k units among them are re-contacted, k > 1. Assuming all r units
provide complete information on the second call. It is necessary that r should
be an integer otherwise essential to round it. Hence whole population can be
separated into two strata, P1 be the first stratum of size N1 units in which
respondents give response for first call and second stratum P2 of size N2 units
consists on persons will answer on the second call. The strata sizes N1 and
N2 are usually unknown [7]. Authors in [1] suggested this technique for the
estimator ȳ∗ when non response exists in Y .

When non-response is present in X, the similar technique can be used by
adopting a two-phase sampling scheme. To estimate X̄, the first phase is
concerned for selection of a large sample s′ of size n′ (n′ < N) and the second
phase is devoted to estimate Ȳ . For this, a smaller sub-sample s of size n is
selected from n′ units where (n < n′).

To represent estimators, let define a dummy variable v = (y, x)

v̄∗ = d1v̄1 + d2v̄2r,
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where

v̄ =

∑n
i=1 vi
n

, v̄1 =

∑n1
i=1 vi
n1

, v̄2r =

∑r
i=1 vi
r

, d1 =
n1
n
, d2 =

n2
n
.

Also we can have

V̄ = D1V̄1 +D2V̄2,

where

V̄1 =

∑N1
i=1 vi
N1

, V̄2 =

∑N2
i=1 vi
N2

, D1 =
N1

N
, D2 =

N2

N
.

The variance of v̄∗ can be written

Var(v̄∗) = λ1S
2
v + λ2S

2
v(2) = S̃2

v = V̄ 2C̃2
v , , (1)

where

S2
v =

∑N
i (vi − V̄ )2

N − 1
, S2

v(2) =

∑N2
i (vi − V̄2)2

N2 − 1
,

λ1 =

(
1

n
− 1

N

)
, λ2 =

N2(k − 1)

nN
.

One can define the covariance as

Cov(ȳ∗, x̄∗) = λ1Syx + λ2Syx(2) = S̃yx = Ȳ X̄C̃yx, (2)

where

Syx =

∑N
i (yi − Ȳ )(xi − X̄)

N − 1
, Syx(2) =

∑N2
i (yi − Ȳ2)(xi − X̄2)

N2 − 1
.

Based on the above notations, [1] estimator can be determined as

ȳ∗HH = d1ȳ1 + d2ȳ2r. (3)

[2] suggested an estimator with known X̄, which can be written as,

ȳ∗KS = ȳ∗ + β̂∗yx(X̄ − x̄∗), (4)

where β̂∗yx =
s∗yx
s∗2x

is an estimator of βyx =
Syx
S2
x

of y on x,

s∗yx =

∑n1
i=1 yixi + k

∑r
i=1 yixi − nȳ∗x̄∗

n− 1
and s∗2x =

∑n1
i=1 x

2
i + k

∑r
i=1 x

2
i − nx̄∗2

n− 1
.

Recently, [5] proposed a class of estimators with known X̄ and non response
problem. Their proposed estimators have the form,

ȳ∗RDS =
[
w1ȳ

∗ + w2(X̄ − x̄∗)
]

exp

(
X̄ − x̄∗

X̄ + x̄∗

)
, (5)

where w1 and w2 are constants and can be chosen suitably.
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The minimum asymptotic variance of ȳ∗RDS can be written as

minAV(ȳ∗RDS) =
Ȳ 2
[
C̃6
x + 16C̃4

xC̃
2
y − 16C̃2

x(4C̃2
y + C̃2

yx) + 64C̃2
yx

]
64
[
C̃2
yx − C̃2

x(1 + C̃2
y )
] . (6)

Now, a regression estimator for estimation of Ȳ can be considered with
assumption of non-response occurrence in both variables

ȳ∗reg = ȳ∗ + w(X̄ − x̄∗), (7)

where w is a suitable constant to be selected.
It is clear that, the asymptotic variance of ȳ∗reg can be minimum if

w =
S̃yx

S̃2
x

= wo(say).

Therefore, The minimum asymptotic variance of ȳ∗reg can be written as

minAV(ȳ∗reg) = minAV(ȳ∗KS) = S̃2
y(1− ρ̃2yx), (8)

where ρ̃2yx =
S̃2
yx

S̃2
y S̃

2
x

.

[8] suggested the following exponential estimator considering the problem
of non-response

ȳ∗YK = ȳ∗
[
αexp

(
X̄ − x̄∗

X̄ + x̄∗

)
+ (1− α)exp

(
x̄∗ − X̄
x̄∗ + X̄

)]
, (9)

where α is a suitably chosen constant. The minimum asymptotic variance of
ȳ∗YK can be expressed as

minAV(ȳ∗YK) = S̃2
y(1− ρ̃2yx) = minAV(ȳ∗reg). (10)

Recently, [9] proposed a class of estimators in presence of non-response

ȳ∗PS = ȳ∗
(
X̄

x̄∗

)α
exp

(
η(X̄ − x̄∗)
X̄ + x̄∗

)
, (11)

where (α, η) are suitably chosen constants.
The asymptotic variance of ȳ∗PS can be written as

AV(ȳ∗PS) = Ȳ 2

[
C̃2
y + C̃2

x

{
(η + 2α)2

4
− (η + 2α)R

}]
, (12)

which is minimum when (η + 2α) = 2R, where R =
C̃yx

C̃2
x

. Thus,

minAV(ȳ∗PS) = Ȳ 2

(
C̃2
y −

C̃2
yx

C̃2
x

)
= S̃2

y(1− ρ̃2yx) = minAV(ȳ∗reg). (13)
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3. Proposed Class of Estimators

Taking motivation from literature, one can establish a more generalized
class of estimators to estimate the unknown population mean Ȳ of the study
variable using the transformation of the auxiliary variable X. The proposed
class can be given by

ȳ∗g = ȳ∗
[
w1 + w2(Z̄ − z̄∗)

]
exp

(
η(Z̄ − z̄∗)
Z̄ + z̄∗

)
, (14)

where

z̄∗ = ax̄∗ + b and Z̄ = aX̄ + b,

a( 6= 0) and b are either real numbers or functions of the known parameters of
the auxiliary variable X such as {Sx, Cx, β2(x), ρyx} etc, η being a constant
takes values (0, 1, -1) for designing different estimators and, (w1, w2) are
suitably chosen constants.

The class ȳ∗g can be expressed in terms of δ’s upto first order of approxima-
tion

ȳ∗g
∼= Ȳ

[
w1 + w1δ

∗
0 − (w1k2 + w2k1)δ

∗
1 + (w1k3 + w2k1k2)δ

∗2
1 − (w1k2 + w2k1)δ

∗
0δ
∗
1

]
,

(15)
where

k0 =
aX̄

aX̄ + b
, k1 = aX̄, k2 =

k0η

2
, k3 =

k20η

4
+
k20η

2

8
.

Let us define the following error terms

δ∗0 =
(ȳ∗ − Ȳ )

Ȳ
, δ∗1 =

(x̄∗ − X̄)

X̄
,

E(δ∗0) = E(δ∗1) = 0,

E(δ∗20 ) = C̃2
y , E(δ∗21 ) = C̃2

x and E(δ∗0δ
∗
1) = C̃yx.

The asymptotic bias (AB) and the asymptotic variance (AV) of ȳ∗g to the
first degree of approximation can be written as

AB(ȳ∗g) = Ȳ
[
w1

(
1 + k3C̃

2
x − k2C̃yx

)
+ w2

(
k1k2C̃

2
x − k1C̃yx

)
− 1
]

(16)

and

AV(ȳ∗g) = Ȳ
[
1 + w2

1A1 + w2
2A2 − 2w1A3 − 2w2A4 + 2w1w2A5

]
, (17)

where

A1 = 1 + C̃2
y + (k22 + 2k3)C̃

2
x − 4k2C̃yx,

A2 = k21C̃
2
x,

A3 = 1 + k3C̃
2
x − k2C̃yx,

A4 = k1k2C̃
2
x − k1C̃yx
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Table 3.1. Some members of the class of estimators ȳ∗g

2*Estimators a b η

ȳ∗g(1) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
1 0 0

ȳ∗g(2) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
X̄ − x̄∗

X̄ + x̄∗

)
1 0 1

ȳ∗g(3) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
x̄∗ − X̄
x̄∗ + X̄

)
1 0 -1

ȳ∗g(4) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
1 ρ 0

ȳ∗g(5) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
(X̄ − x̄∗)

(X̄ + x̄∗) + 2ρ

)
1 ρ 1

ȳ∗g(6) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
(x̄∗ − X̄)

(x̄∗ + X̄) + 2ρ

)
1 ρ -1

ȳ∗g(7) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
1 Sx 0

ȳ∗g(8) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
(X̄ − x̄∗)

(X̄ + x̄∗) + 2Sx

)
1 Sx 1

ȳ∗g(9) = ȳ∗
[
w1 + w2(X̄ − x̄∗)

]
exp

(
(x̄∗ − X̄)

(x̄∗ + X̄) + 2Sx

)
1 Sx -1

ȳ∗g(10) = ȳ∗
[
w1 + w2ρ(X̄ − x̄∗)

]
ρ Cx 0

ȳ∗g(11) = ȳ∗
[
w1 + w2ρ(X̄ − x̄∗)

]
exp

(
ρ(X̄ − x̄∗)

ρ(X̄ + x̄∗) + 2Cx

)
ρ Cx 1

ȳ∗g(12) = ȳ∗
[
w1 + w2ρ(X̄ − x̄∗)

]
exp

(
ρ(x̄∗ − X̄)

ρ(x̄∗ + X̄) + 2Cx

)
ρ Cx -1

and

A5 = 2k1k2C̃
2
x − 2k1C̃yx.

Now minimizing AV(ȳ∗g) to achieve the optimum values of w1 and w2

w1 =
A2A3 −A4A5

A1A2 −A2
5

= wo1(say)

and

w2 =
A1A4 −A3A5

A1A2 −A2
5

= wo2(say)

minAV(ȳ∗g) ∼= Ȳ 2

[
1−

(
A1A

2
4 +A2A

2
3 − 2A3A4A5

A1A2 −A2
5

)]
. (18)

Here, Table 3.1 is showing some possible estimators that are members of
the suggested class ȳ∗g
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4. Efficiency Comparison

Generally analytical and numerical collations are examined to affirm the
superiority of the suggested class of estimators over the classical estimators.
From Eq.(10) and Eq.(18), it seems a complicated chore to display the analytic
comparison between the linear regression estimator and the proposed class of
estimators. To get numerical results, two population data sets are studied,
earlier considered by [5, 10] and the references therein.

Population-I: Source [5]
A data structure with 96 observations are as follows

Y = the number of cultivators of villages,
X = the population of villages,

The numerical results are provided for 25% weight of missing values and con-
sider last 24 values as non-respondents as earlier considered by [5].
Population-II: Source [10]
The data comprises the primary and secondary schools of 923 districts of
Turkey in 2007. The detail of variables is given below

Y= the number of teachers at primary and secondary level,
X= the number of students at primary and secondary level,

The numerical results are yielded for 10% weight of missing values and
examine last 92 values as non-responsive as earlier considered by [10].

It is important to notice that numerous options can be shown for weights
of the missing values e.g (10%, 20%, 30%, 40%) etc. All these possibilities
are considered and it is examined that the relative efficiency of the suggested
estimators is not influenced by different weights of missing values. Though
numerical outcomes are distinct for variant weights, however the response of
results is similar in all cases.

The Percent Relative Efficiency (PRE) are used to make the comparison
of the suggested estimators w.r.t the regression estimator. The results for
different values of k are shown in Tables 4.2 and 4.3

PRE(ȳ∗•) =
minAV(ȳ∗reg)

minAV(ȳ∗•)
× 100

where ȳ∗• = (ȳ∗HH, ȳ
∗
RDS, ȳ

∗
YK, ȳ

∗
PS, ȳ

∗
g(1), . . . ȳ

∗
g(12)).

It can be seen in Tables 4.2 and 4.3 that the PREs of the suggested estima-
tors are more efficient than the PREs of the estimators ȳ∗HH, ȳ

∗
RDS, ȳ

∗
YK, ȳ

∗
PS

and ȳ∗reg. It is also observed that the estimator ȳ∗g(3) is more efficient than all

other considered estimators. It is important to note that the use of known
population parameters e.g (ρ, Sx, Cx) etc. helps to shape the different sug-
gested estimators but it does not contribute much in increasing the efficiency
of the suggested estimators.
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Table 4.1. Summery statistics for Population-I and
Population-II

Parameters Pop-I Pop-II

N 96 923

n 25 180

Ȳ 185.22 436.43

X̄ 1807.23 11440.5

Sx 1921.77 21331.13

Sy 195.03 749.94

Syx 338835.88 15266040

ρyx 0.904 0.95

N2 24 92

Sx(2) 1068.44 30647.36

Sy(2) 97.82 876.42

Syx 93560.01 26480062

ρyx(2) 0.895 0.99

5. Simulation study

In previous Section, it can be seen that the minimum asymptotic variance of
the proposed class contains the population parameters. In Section of efficiency
comparisons, we assumed that all these population parameters are known. But
generally in actual circumstances, these parameters are not known and can not
be predicted on the base of prior information or a preliminary survey. Thus,
it is required to estimate them. In such situations, additional sources of dis-
crepancy are imported in the estimates that could be disable the analytical
collations. Thus now we focus to the efficiency comparisons when unknown
population parameters are estimated from the chosen sample. The empirical
performance of the estimators is analyzed by using a Monte Carlo simulation.
The following simulation design is earlier considered by [11]: a numeral inves-
tigation is carried out by taking a population of size N=100,000 observations,
comprising 40% missing values. Let gamma distribution is used to generate
the values for X variable as X ∼ G(a, b) along parameters (a=2.2, b=3.5)
and Y variable correlated with X is determined as yi = Rxi + εxgi where
ε ∼ N(0, 1), R=(1.0, 2.0) and g=1.5. Let the sample size n = 500 is obtained
by without replacement sampling scheme. The sampling has been simulated

B = 1, 000 times. Only the following estimators
(
ȳ∗g(1), ȳ

∗
g(2), ȳ

∗
g(3), ȳ

∗
reg

)
are

taken into account to investigate the behavior for different values of ρyx and k
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Table 4.2. PREs of the estimators w.r.t ȳ∗reg for different val-
ues of k for Pop-I

Estimators Values of parameters k

a b α η 2 3 4 5

ȳ∗HH - - - - 18.48 18.64 18.77 18.88

ȳ∗reg=ȳ
∗
KS=ȳ∗PS - - - - 100 100 100 100

ȳ∗RDS - - - - 101.93 102.11 102.30 102.48

ȳ∗g(1) 1 0 - 0 119.02 129.48 139.87 150.21

ȳ∗g(2) 1 0 - 1 109.78 119.43 129.01 138.55

ȳ∗g(3) 1 0 - -1 206.39∗ 224.52∗ 242.54∗ 260.47∗

ȳ∗g(4) 1 ρ - 0 119.02 129.48 139.87 150.21

ȳ∗g(5) 1 ρ - 1 109.78 119.43 129.01 138.55

ȳ∗g(6) 1 ρ - -1 206.22 224.35 242.35 260.26

ȳ∗g(7) 1 Sx - 0 119.02 129.48 139.87 150.21

ȳ∗g(8) 1 Sx - 1 112.85 122.76 132.62 142.42

ȳ∗g(9) 1 Sx - -1 133.92 145.69 157.38 169.01

ȳ∗g(10) ρ Cx - 0 119.02 129.48 139.87 150.21

ȳ∗g(11) ρ Cx - 1 113.10 123.04 132.91 142.74

ȳ∗g(12) ρ Cx - -1 132.59 144.24 155.82 167.33

because these estimators are already proved good ones in terms of efficiency.
Moreover it is already discussed in previous section that the use of known
population parameters only build the different shapes of the estimators and
contribute less in efficiency manners.

The simulated mean square error and the simulated bias for each studied
estimator, are computed as

̂Bias(ȳ∗reg) =

∑B
i=1

(
ȳ
(i)
reg − Ȳ

)
B

,

̂Bias(ȳ∗g(.)) =

∑B
i=1

(
ȳ
(i)
g(.) − Ȳ

)
B

,
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Table 4.3. PREs of the estimators w.r.t ȳ∗reg for different val-
ues of k for Pop-II

Estimators Values of parameters k

a b α η 2 3 4 5
ȳ∗HH - - - - 8.45 7.97 7.54 7.16

ȳ∗reg=ȳ
∗
KS=ȳ∗YK=ȳ∗PS - - - 100 100 100 100

ȳ∗RDS - - - - 101.09 101.36 101.65 101.95

ȳ∗g(1) 1 0 - 0 123.36 133.20 141.91 149.91

ȳ∗g(2) 1 0 - 1 111.02 119.87 127.71 134.91

ȳ∗g(3) 1 0 - -1 224.99∗ 242.93∗ 258.82∗ 273.41∗

ȳ∗g(4) 1 ρ - 0 123.36 133.20 141.91 149.91

ȳ∗g(5) 1 ρ - 1 111.02 119.87 127.71 134.91

ȳ∗g(6) 1 ρ - -1 224.96 242.90 258.78 273.37

ȳ∗g(7) 1 Sx - 0 123.36 133.20 141.91 149.91

ȳ∗g(8) 1 Sx - 1 117.53 126.90 135.19 142.82

ȳ∗g(9) 1 Sx - -1 133.73 144.39 153.83 162.51

ȳ∗g(10) ρ Cx - 0 123.36 133.20 141.91 149.91

ȳ∗g(11) ρ Cx - 1 117.68 127.07 135.37 143.01

ȳ∗g(12) ρ Cx - -1 133.26 143.89 153.30 161.94

̂MSE(ȳ∗reg) =

∑B
i=1

(
ȳ
(i)
reg − Ȳ

)2
B

,

̂MSE(ȳ∗g(.)) =

∑B
i=1

(
ȳ
(i)
g(.) − Ȳ

)2
B

.

and

̂PRE(ȳ∗g(.)) =
̂MSE(ȳ∗reg)

̂MSE(ȳ∗g(.))
× 100.
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Table 5.1. Simulated results of estimated population parameters

Estimators k = 2 k = 3 k = 4 k = 5

ρ = 0.70 ρ = 0.43 ρ = 0.70 ρ = 0.43 ρ = 0.70 ρ = 0.43 ρ = 0.70 ρ = 0.43

Simulated PRE
ȳ∗reg 100 100 100 100 100 100 100 100
ȳ∗g(1) 147.34 215.80∗ 163.26 245.10∗ 167.70∗ 238.13∗ 164.52 246.29∗

ȳ∗g(2) 150.69∗ 211.92 165.13∗ 232.52 166.64 225.09 171.02∗ 234.25

ȳ∗g(3) 97.84 199.41 104.79 217.96 112.53 212.00 106.54 213.46

Simulated Bias
ȳ∗reg 1.24 0.61 1.24 0.61 1.24 0.61 1.24 0.61
ȳ∗g(1) 0.67 0.19 0.67 0.19 0.67 0.19 0.67 0.19

ȳ∗g(2) 0.63 0.18 0.63 0.18 0.63 0.18 0.63 0.18

ȳ∗g(3) 0.63 0.16 0.63 0.16 0.63 0.16 0.63 0.16

The results are shown in Table 5.1. To highlight the performance of the con-
sidered estimators, “*” sign is used to illustrate the more efficient estimators
than other estimators and “bold” sign is showing the best one among others.
Table 5.1 is showing that all the suggested estimators are more efficient than
the regression estimator.

6. Conclusion

The current paper is concentrating on a generalized class of estimators for
the estimation of Ȳ using the auxiliary information. The non-response prob-
lem is deliberated on both variables. We establish the asymptotic bias and
the asymptotic variance for the proposed class. Regression estimator is used
to compare the efficiency of the proposed class because it is observed that
regression estimator is always more efficient than [1]. Numerical results of
efficiency comparison are shown in Tables 4.2 and 4.3. It is noted that the
performance of the proposed estimators is better than the other considered es-
timators in terms of efficiency. Furthermore, we have analyzed the numerical
comparison on the real population by a Monte Carlo study with the inten-
tion to comprehend the validness of certain results when extra estimates are
needed.
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