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A GENERAL FAMILY OF DERIVATIVE FREE WITH AND

WITHOUT MEMORY ROOT FINDING METHODS

SAIMA AKRAM1, FIZA ZAFAR1, MOIN-UD-DIN JUNJA2, NUSRAT YASMIN1

Abstract. In this manuscript, we construct a general family of optimal
derivative free iterative methods by using rational interpolation. This fam-
ily is further extended to a family of with-memory methods with increased
order of convergence by employing two free parameters. At each iterative
step, we use a suitable variation of the free parameters. These param-
eters are computed by using the information from current and previous
iterations so that the convergence order of the existing family is increased
from 2n to 2n + 2n−1 + 2n−2 without using any additional function evalua-
tions. To check the performance of newly developed iterative schemes with
and without memory, an extensive comparison with the existing with- and
without memory methods is done by taking some real world problems and
standard nonlinear functions. Numerical experiments illustrate that the
proposed family of methods with-memory retain better computational effi-
ciency and fast convergence speed as compared to existing with- and with-
out memory methods. The performance of the methods is also analyzed
visually by using complex plane. Numerical and dynamical comparisons
confirm that the proposed families of with and without memory methods
have better efficiency, convergence regions and speed in contrast with the
existing methods of the same kind.
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1. Introduction

In this paper, the problem of finding numerical solution of nonlinear equa-
tions f(x) = 0 is addressed. Iterative procedures are widely used to solve this
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problem, (see, for instance, [1–6]). Traub [6], classified the iterative methods
as one-step and multi-step schemes. Multi-step iterative methods are of much
importance than one-step methods because they produce approximations of
great accuracy. Multi-step iterative methods can be further categorized as
without memory and with-memory iterative methods. Without memory root
finding methods use information from the recent iteration only whereas the
multi-step with-memory root finding methods use information from the recent
as well as from previous iterations. One-step Steffensen’s iterative method
is a known improvement of Newton’s method as it avoids to use the deriv-
ative unlike in the case of Newton’s method. Newton’s method is arguably
worth important root finding method due to its quadratic convergence but its
convergence depends badly on the choice of initial guess and behavior of the
function in the vicinity of root. If initial guess is far from root or the function
has improper behavior in the vicinity of root the Newton’s method diverges.
Therefore, the derivative free methods have vital importance. The concept of
optimal iterative method was given by Kung and Traub [7] that is a multi-
step iterative scheme, without memory, based on n+ 1 functional evaluations
could attain an optimal order of convergence 2n. Ostrowski [2] defined that if
O is the convergence order of an iterative method and n is the total number
of functional evaluations per iteration, then the index EI = O1/n is known
as efficiency index of an iterative method. Since multi-step iterative methods
overcome theoretical limits of one-step methods concerning the order of con-
vergence and the efficiency index, therefore several multi-step iterative schemes
have been developed for solving nonlinear equations (see, for example, [8–10]
and the overview [11]). Some optimal eighth order methods without memory
can be found in [12–17]; these methods, among others, have been designed by
using different techniques as composition of known schemes and elimination
of function evaluations using interpolation, rational approximations, etc. or
by freezing the derivatives and using weight function procedure[18].

Multi-step iterative methods with memory, that use information from the
current and previous iterations, can increase the convergence order and the
efficiency index of the multi-step iterative methods without memory with no
additional functional evaluations. The increase in order of convergence is based
on one or more accelerator parameters which appear in the error equations of
methods without memory. For this reason, several multi-step with-memory
iterative methods have been developed in recent years. For a background
study regarding the acceleration of convergence order with memorization, one
should see e.g. [11, 19, 20].
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Steffensen [21] was the first who provided a without memory derivative free
method by modifying the well known Newton’s method given by:

xn+1 = xn −
f2(xn)

f(xn + f(xn))− f(xn)
, n ≥ 0. (1)

Traub [6] provided the first with-memory iterative method by involving a free
parameter in the Steffensen’s iterative method (1) such that:

wn = xn + pnf(xn),

xn+1 = xn −
f(xn)

f [xn, wn]
, n ≥ 0, (2)

where, x0,p0 are given, pn+1 = −1
M ′1(xn)

, M1(xn) = f(xn)+(x−xn)f [xn, wn] and

pn is a self-accelerator. The with-memory iterative scheme (1) has convergence
order 2.41421.

Recently, many researchers have developed iterative methods with memory
based on existing optimal methods of different orders, mainly four (see for ex-
ample [20, 22]), eight ([23–26], among others), sixteen (as [8]), or even general
n-point schemes [27–29].

In this paper, we present a general procedure to obtain a general class
of optimal derivative free without memory iterative methods by using ratio-
nal interpolation along with its special cases which satisfy Kung and Tarub’s
Hypothesis . The proposed without memory schemes require n + 1 function

evaluations to achieve the convergence order 2n and efficiency index 2
n

n+1 . Fur-
thermore, the proposed class is extended to a general family of with-memory
root finding methods. The contents of the paper are summarized as: Section
2, consists of construction of the general class of optimal derivative free with-
out memory iterative methods and their error analysis. Section 3 presents the
extension of the proposed without memory general class discussed in section 2
to with memory class of iterative methods and their analysis of convergence.
Section 4 includes numerical comparisons of the proposed methods with ex-
isting methods of the same domain. Dynamical behavior is given in Section
5 for the better visualization of convergence regions and stability of proposed
root finding methods. Concluding remarks are given in Section 6.

2. A General Class of Optimal Derivative Free Without
Memory Iterative Methods

In this section, we present a general class of n−step without memory it-
erative methods using n+ 1 functional evaluations with order of convergence
2n which satisfy the conjecture of Kung and Traub [7]. Consider a rational
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polynomial of degree n as follows:

rn(t) =
p1(t)

qn−1(t)
, (3)

where

p1(t) = a0 + a1(t− x), (4)

qn−1(t) = 1 + d1(t− x) + · · ·+ dn(t− x)n−1, n ≥ 1 (5)

and

q0 ≡ 1.

Thus, the proposed family of n−step iterative methods is given by:

w0 = x+ βf(x),

w1 = x− f(x)

f [w0, x] + ηf(w0)
,

...

wn = wn−1 −
f(wn−1)

r′n−1(wn−1)
, n ≥ 2, (6)

where, β, η ∈ R\{−1} and the unknowns a0, a1, d1, · · · , dn−1 are determined
by following interpolating conditions:

rn−1(x) = f(x), rn−1(w0) = f(w0), rn−1(w1)

= f(w1), · · · , rn−1(wn−1) = f(wn−1). (7)

Thus, the root of non-linear equation is the root of the numerator of the
rational interpolant of degree n− 1 for the n−step method. For instance, for
n = 2, we obtain the three-step iterative method given by:

w0 = x+ βf(x),

w1 = x− f(x)

f [w0, x] + ηf(w0)
,

w2 = w1 −
f(w1)

r′1(w1)
, (8)

where,

r1(t) =
a0 + a1(t− x)

1 + b1(t− x)
, (9)

such that

r1(x) = f(x), r1(w0) = f(w0), r1(w1) = f(w1). (10)
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The unknowns a0, a1 and b1 are determined by using conditions (10) as
follows:

a0 = f(x),

a1 = f [w1, x] + b1f(w1), (11)

b1 =
f [w0, x]− f [w1, x]

f(w1)− f(w0)
.

Now using (9), we have the following two-step root finder:

w0 = x+ βf(x),

w1 = x− f(x)

f [w0, x] + ηf(w0)
,

w2 = w1 −
f(w1)q2

1

q1a1 − (a0 + a1(w1 − x))b1
, (12)

where, q1 = 1 + b1(w1 − x) and a0, a1, b1 are given as in (11). Similarly, for
n = 3, we obtain the following four-step iterative scheme:

w0 = x+ βf(x),

w1 = x− f(x)

f [w0, x] + ηf(w0)
,

w2 = w1 −
f(w1)

r′1(w1)
,

w3 = w2 −
f(w2)

r′2(w2)
, (13)

where the rational interpolant r2(t) is given by:

r2(t) =
a0 + a1(t− x)

1 + b1(t− x) + b2(t− x)2
, (14)

such that

r2(x) = f(x), r2(w0) = f(w0), r2(w1) = f(w1), r2(w2) = f(w2). (15)

By using the conditions (15), we have:

a0 = f(x),

a1 =
Af [w0, x] +Bf [w1, x] + Cf [w2, x]

P +Q+R
,

b1 =
Df [w1, x] + Ef [w2, x] + Ff [w0, x]

P +Q+R
,

b2 =
Lf [w2, x] +Mf [w1, x] +Nf [w0, x]

P +Q+R
, (16)
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where,

A = f(w1)f(w2)(w2 − w1), B = f(w0)f(w2)(w0 − w2),

C = f(w0)f(w1)(w1 − w0),

D = (f(w0)(w0 − x)− f(w2)(w2 − x)),

E = (f(w1)(w1 − x)− f(w0)(w0 − x)),

F = (f(w2)(w2 − x)− f(w1)(w1 − x)),

L = (f(w0)− f(w1)), M = (f(w2)− f(w0)),

N = (f(w1)− f(w2)), P = f(w1)f(w2)(w2 − w1),

Q = f(w0)f(w2)(w0 − w2), R = f(w0)f(w1)(w1 − w0).

Hence by using (14), we have the following three-step iterative scheme:

w0 = x+ βf(x),

w1 = x− f(x)

f [w0, x] + ηf(w0)
,

w2 = w1 −
f(w1)

r′1(w1)
,

w3 = w2 −
f(w2)q2

2

q2a1 − (a0 + a1(w2 − x))(b1 + 2b2(w2 − x))
, (17)

where, q2 = 1 + b1(w2−x)) + b2(w2−x)2 and a0, a1, b1, b2 are given as in (16).
For convergence analysis of the proposed iterative methods (12) and (17) we,
now, state the following theorem.

Theorem 1. Let us consider α ∈ D as the simple root of the function f :
D ⊆ R → R, where f is adequately differentiable in the vicinity of its zero
for interval D. If x is sufficiently close to α then for β, η ∈ R\{−1}, the
iterative methods defined by (12) and (17) are of fourth order and eighth order
convergence respectively with the error equations given by:

en+1 = (1 + βc1)2(c2 + η)(ηc2c1 − c3c1 + 2c2
2)e4

n +O(e5
n) (18)

and

en+1 = (1 + βc1)4(η + c2)2(ηc2c1 − c3c1 + 2c2
2)(ηc1c

2
2 + c4c

2
1 − 3c1c2c3

+3c3
2) e8

n +O(e9
n) (19)

respectively, where,

ck =
1

k!

f (k) (α)

f ′ (α)
, k = 2, 3, ... (20)

Proof. The proof is similar to those previously considered in [22, 27], Using
Taylor expansions of the function, it can be easily proved that the iterative
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methods defined by (12) and (17) are of fourth order and eighth order conver-
gence respectively. f . �

Remark 1. From the above convergence results it can be seen that the iter-
ative schemes (12) and (17) are fourth and eighth order convergent requiring
three and four functional evaluations respectively. Hence, the proposed class
of iterative schemes is optimal in the sense of hypothesis of Kung and Traub
[7]. Also by using the general rational interpolating polynomial (3) with the
scheme (7), we attain with the n−step, optimal 2n−1order convergent iterative

method involving n function evaluations with efficiency index 2
n

n+1 .

3. Extension of Without Memory Root Finders to With-Memory

In this section, we present a general family of with-memory iterative meth-
ods based on our newly suggested family of without memory methods (6). For
this, we approximate the involved parameters in such a way that the local order
of convergence is increased. For example, the coefficient of e8

n in (19) disap-

pears if we set β = −1
c1

and η = −c2, where c1 = f ′(α) and ck = f (k)(α)
k!f ′(α) , k ≥ 2.

Hence, by replacing the free parameters β and η in (6) with self-accelerators
βk and ηk, we obtain the following n−step class of with-memory root finders:

wk,0 = xk + βkf(xk),

wk,1 = xk −
f(xk)

f [wk,0, xk] + ηkf(wk,0)
,

...

wk,n = wk,n−1 −
f(wk,n−1)

r′n−1(wk,n−1)
, n > 2, (21)

where,

βk =
−1

N ′m(wk,0)
,m ≥ 1, ηk = −

N ′′m+1(wk,1)

2N ′m+1(wk,1)
,m ≥ 1 (22)

where, Nm(wk,0) and Nm+1(wk,1) are the Newton’s interpolating polynomials
of degree m and m+1 respectively passing through best available points, given
by:

Nm(Γ) = Nm(Γ;wk,0, wk−1,nwk−2,n, ..., wk−1,n−m+1),

Nm+1(Γ) = Nm(Γ;wk,1, wk,0, wk−1,nwk−2,n, ..., wk−1,n−m+1). (23)

The Newton’s interpolating polynomial of degree m is defined as follows:

Nm(Γ) = f(wk,0) + f [wk,0, wk−1,n](Γ− wk,0)(Γ− wk−1,n) + · · ·
+f [wk,0, wk−1,nwk−2,n, ..., wk−1,n−m+1](Γ− wk,0)(Γ− wk−1,n)

· · · (Γ− wk−1,n−m).
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It is discussed and proved in [27] that the following error relation holds for
n- point with-memory iterative methods, where α represents the real root of
the function.

εk,j = wk,j − α ∼ Ωk,j

j−1∏
i=0

εk,i, j = 1, ..., n+ 1 (24)

where Ωk,1 = 1 + βkf
′(α) , Ωk,2 = c2 + ηk

and Ωk,j(j ≥ 3) is dependent on derivative of f at α, βk, ηk and the type
of interpolation used at j − th step. For example when we use Newton’s
interpolating polynomial at j − th step we get Ωk,j = (−1)jcj + c2Ωk,j−1 By
using induction Equation (24) can take the following form:

εk,j ∼ (Ωk,j

j−1∏
i=0

Ω2j−i−1

k,i )ε2
j−1

k,0 . (25)

Equating ( 24) and ( 25 ), we obtained the following error relations:

εk,1 ' wk,1 − α ∼ ((1 + βkf
′(α))εk,0, (26)

εk,2 ' wk,2 − α ∼ (c2 + ηk)εk,0εk,1

εk,j = wk,j − α ∼ Ωk,j

j−1∏
i=0

εk,i , j = 3, ..., n+ 1

where Ωk,1 = (1 + βk)f
′(α) , Ωk,2 = c2 + ηk and Ωk,j( j ≥ 3) depend on

the type of interpolation used at j − th step.It is important to mention that
we have used Hermite interpolation to develop (21). To find the R -order of
convergence of newly developed family (21) the knowledge of two entities are
required. First entity is the error estimates of accelerating parameters ηk and
βk which are approximated by Newtonian polynomial given in (23) and thus
factors appeared in first and second row of (26) can be written in [27] as:

1 + βkf
′(α) ∼ Umε

sn−m+1+...+sn
k−1,0 , 1 ≤ m ≤ n+ 1 (27)

c2 + pk ∼ Vmε
sn−m+1+...+sn
k−1,0 , 1 ≤ m ≤ n+ 1, (28)

where

Um = (−1)m+1cm+1

m−1∏
j=1

Gk−1,n−j , 1 ≤ m ≤ n

Um+1 = ((−1)ncn+2 + c2Ωk−1,n+1

n∏
j=1

Gk−1,n−j ,

Vm = (−1)m
cm+2

2

m−1∏
j=0

Gk−1,n−j , 1 ≤ m ≤ n+ 1
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Gk−1,0 = 1, r0 = 1

and Gk−1,n−j is asymptotic error constant. From (27) and (28) it is evident
that the accelerating parameters βk and ηk have same order of accuracy. Sec-
ond entity is to utilize these error estimates to find the R−order of convergence
of newly developed family (21) based on Hermite interpolation. For this let
we have a sequence {yk,j} converges to zero α with R− order of convergence
”s”. The error relation for this sequence can be represented mathematically
as:

εk+1,0 = εk,n+1 ' Gk,n+1ε
s
k,0, (29)

where Gk,n+1 is asymptotic error constant which tends to Gn+1 as k → ∞.
We now, study the estimation of R − order of convergence of with-memory
family (21). So, in accordance with (29) we have the following relation for the
iterative sequence{yk,j}:

εk,j ' Gk,jε
sj
k,0, 1 ≤ j ≤ n. (30)

Where sj is the number of information on the function f(f, f
′
, f ′′, ..., f (λi−1))

taken at the point yk,j.. By using these of relations (29) and (30) in the third
relation of (26) we have:

εk,j ' Ωk,j

j−1∏
i=0

εk,i ' Ωk,jεk,0

j−1∏
i=1

εk,i ' Ωk,jεk,0

j−1∏
i=1

Gk,iε
sj
k,0,

' Ωk,j

j−1∏
i=0

Gk,i εk,0ε
s1
k,0ε

s2
k,0ε

s3
k,0...ε

sj−1

k,0 ,

' Hk,jε
1+s1+s2+...+sj−1

k,0 , 3 ≤ j ≤ n+ 1,

= Hk,jε
sj
k,0, (31)

where Hk,j ' Ωk,j

j−1∏
i=0

Gk,i and sj = 1 + s1 + s2 + ... + sj−1, 3 ≤ j ≤ n.

Considering j = n+ 1 in (31) and then equating it with (29) we obtain:

εsk,0 = ε1+s1+s2+...+sn
k,0 ,

So,

s = 1 + s1 + s2 + ...+ sn, (32)

For 3 ≤ j ≤ n we already have:

sj = 1 + s1 + s2 + ...+ sj−1. (33)

The relations (32) and (33) yields:

.s = 2sn = 2n−2s3 = 2n−2(1 + s1 + s2).sj = 2sj−1 = 2j−3s3

= 2j−3(1 + s1 + s2), 3 ≤ j ≤ n. (34)
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For the sake of simplicity the R − order of convergence is commutatively
defined by another symbol τj and hence we obtain the following relation:

τj = sn−j+1 + ...+ sn =

 s− sn−j+1 1 ≤ j < n
s− 1 j = n
s j = n+ 1.

(35)

According to relation (27) and (28) the factors (1 + βkf
′(α)) and (c2 + ηk)

have same order of accuracy ε
τj
k−1,0,where τj is defined by (35). Hence,

εk,1 = O(ε
τj
k−1,0εk,0) and εk,2 = O(ε

τj
k−1,0εk,1εk,0) = O(ε2k,1),

gives s2 = 2s1 and s3 = 1 + 3s1.Therefore, for j ≥ 2, relation (34) can take
the following form:

s = 2n−2(1 + 3s1) , sj = 2j−3(1 + 3s1), 3 ≤ j ≤ n. (36)

If we take βk only as self accelerating parameter in (21) and keeping ηk as
a constant, we have the following error relation,

s2 = s1 + 1. (37)

By using relations (72) and (33) in (34) we get

s = 2n−1(1 + s1) and sj = 2j−2(1 + s1), 2 ≤ j ≤ n, n ≥ 1. (38)

Combining (26) and (30) for j = 1, we have

εk,1 ' Gk,1Gs1k−1,n+1ε
ss1
k−1,0. (39)

From the second relation of (26) by using (27) and (29), we have

εk,1 ' Umε
τj
k−1,0Gk−1,n+1ε

s
k−1,0 ' Umε

τj
k−1,0Gk−1,n+1ε

τj+s
k−1,0. (40)

Equating the error relation (39) with (40) and then using (35), we have the
following:

ss1 = s+ τj =

 2s− sn−j+1, 1 ≤ j < n
2s− 1, j = n
2s, j = n+ 1.

(41)

By using the value of s and sj in (38)we are able to get the relation for s1as:

s1 =


2− 2−j , 1 ≤ j < n
1
2(1 + 2

−n
2

√
9.22n−8), j = n

2, j = n+ 1.

(42)

Now using relation (42) in (36), we obtain the R− order of convergence of
n− point with-memory family (21) as follows .

s =


2n − 2n−1 + 2n−2 − 3.2n−j−2 = 2n−j−2(7.2j − 3) , 1 ≤ j < n

7.2n−3 + 2
n
2
−3
√

49.2n − 48, j = n
2n + 2n−1 + 2n−2 = 1.75.2n, j = n+ 1, n ≥ 2

(43)



74 Saima Akram, Fiza Zafar, Moin-ud-Din Junja, Nusrat Yasmin

Now, we are able to establish the following conclusion of the above discus-
sion.

Theorem 2. Let x0 be an initial approximation sufficiently close to a simple
root α of a function f then the order of convergence of the family of n-point
methods with self accelerating parameters βk and ηk calculated by (22) for
1 ≤ j ≤ n+ 1 is given by (43).

Remark 2. It can easily be seen from (43) that order of family of without
memory methods (6) is increased from 2n to 2n + 2n−1 + 2n−2 i.e. from 8 to
14 for the three-point iterative scheme. It is worth mentioning and very attrac-
tive that the convergence order of newly developed family of without memory
methods (6) is accelerated by 75% without increasing the number of functional
evaluations.

4. Numerical Results

In this section we give the comparison of the proposed families of without
memory methods (NF-1) (17) and with-memory methods (NF-2) (21) with
the existing iterative methods of Zheng et al. (ZM) (45) and Kung and Traub
(KT) (44) for n = 3. Kung and Traub [7] presented the following iterative
method:

wk,0 = ψ0(f)(xk) = xk, wk,−1 = ψ−1(f)(xk) = xk + ηkf(xk), k ≥ 0,

yk,r = ψr(f)(x) = Qn(0), n = 1, . . . ,m, for m > 0,

zk+1 = yk,m = ψm(f)(xk), (44)

where, m ∈ N, x0 is given initial guess andQn(s) = Qn(f(wj,m)) = wj,m, where,
m = −1, 0, . . . , r − 1 is the nth degree inverse interpolation polynomial. To
compute the free parameter ηk, Newton’s interpolation polynomial of appro-
priate degree is used.
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Zheng et al. [10] (ZLH) presented the following n−step class of iterative
methods given by:

zk,0 = xk, zk,−1 = zk,0 + ηkf(zk,0), k ≥ 0,

zk,1 = zk,0 −
f(zk,0)

f [zk,0, zk,−1]
,

zk,2 = zk,1 −
f(zk,1)

f [zk,1, zk,0] + f [zk,1, zk,0, zk,−1](zk,1 − zk,0)
,

.

.

.

zk,n = zk,n−1

−
f(zk,n−1)

f [zk,n−1, zk,n−2] +
n−1∑
j=1

f [zk,n−1, . . . , zk,n−2−j ]
j∏
i=1

(zk,n−1 − zk,n−i−j)
,

(45)

where x0 is initial approximation and the Newton’s interpolation polynomial
is used to compute the parameter ηk.

Example 1. Consider the isothermal continuous stirred tank reactor (CSTR).
Components A and R are fed to the reactor at rates of Q and q-Q respectively.
The following reaction scheme develops in the reactor (see [30]):

A+R → B

B +R → C

C +R → D

D +R → E

The problem was analyzed by Douglas [31] in order to design simple feedback
control systems. In the analysis, he gave the following equation for the transfer
function of the reactor:

KC =
2.98(y + 2.25)

y4 + 11.50y3 + 47.49y2 + 83.06325y + 51.23266875
= −1,

where KC is the gain of the proportional controller. The control system is
stable for values of Kc that yields roots of the transfer function having negative
real part. If we choose KC = 0, we get the poles of the open-loop transfer
function as roots of the nonlinear equation:

f1(y) = y4 + 11.50y3 + 47.49y2 + 83.06325y + 51.23266875 = 0

given as:
x = −1.45,−2.85,−2.85,−4.35.

So, we see that there are two simple roots. We take α = −1.45.
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Figure 1. Beam Positioning Problem

Example 2. We consider a beam positioning problem (see [32]) where a 4
meters long beam is leaning against the edge of the cubical box with sides of
length 1 meter each such that one of its end touches the wall and the other
touches the floor as shown in Figure 1. What should be the distance along the
floor from the base of the wall to the bottom of the beam. Let y be the distance
in meters along the beam from the floor to the edge of the box and let x be
the distance in meters from the bottom of the box to the bottom of the beam.
Then, we have the following equation:

f2(y) = y4 + 2y3 − 14y2 + 2y + 1 = 0.

The positive solution of the equation 0.3621999926 and 2.7609056329 are
the solutions to the beam positioning problem.

In addition, we take the following test functions from the literature for the
comparison.

f3(y) = e−y
2
(y − 2)(1 + y3 + y6), y0 = 1.8, ω = 2,

f4(y) = sin y − y

100
, y0 = 0.5, ω = 0,

f5(y) = y5 + y4 + 4y2 − 15, y0 = 1.6, ω = 1.3474...,

f6(y) = (y − 1)(y6 + y−6 + 4) sin y2, y0 = 1.3, ω = 1.

We used the programming software Maple 16 for all numerical calculations
with multiple-precision arithmetic. The error of the approximation to the cor-
responding root of nonlinear functions are shown in Table 1, where E(−h)
denotes E × 10−h. In Table 1, it is demonstrated that the proposed family of
methods (NF-1) (17) and (NF-2) (21) has a consistent convergence behavior.
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Table 1. Comparison of With and Without Memory Root Finders

Error Without Memory (β = −0.01, η = 0.1) With Memory (β0 = −0.01, η0 = 0.1)

ZM KT NF-1 ZM KT NF-2

f1, y0 = −1.2
|y1 − ω| 2.84(−2) 4.54(−2) 6.79(−4) 3.11(-4) 1.03(-5) 6.79(-5)

|y2 − ω| 5.27(−16) 5.91(−16) 6.58(−32) 1.62(−44) 2.74(−55) 1.10(−65)

|y3 − ω| 6.54(−128) 2.20(−128) 3.65(−256) 4.95(−528) 3.37(−660) 2.22(−910)
f2, y0 = 1.0

|y1 − ω| 3.11(-4) 1.03(-5) 6.79(-5) 3.11(-4) 1.03(-5) 6.79(-5)

|y2 − ω| 5.27(−32) 5.91(−38) 6.58(−40) 1.62(−40) 2.74(−40) 1.10(−60)
|y3 − ω| 6.54(−256) 2.20(−304) 3.65(−320) 4.95(−320) 3.37(−480) 2.22(−840)

f2, y0 = 1.8

|y1 − ω| 7.88(−7) 1.19(−6) 2.98(−6) 7.88(−7) 1.19(−6) 3.00(−6)
|y2 − ω| 5.27(−49) 5.91(−44) 6.58(−45) 1.62(−38) 2.74(−46) 1.10(−80)

|y3 − ω| 6.54(−389) 2.20(−358) 3.65(−360) 4.95(−244) 3.37(−390) 2.22(−1120)
f3, y0 = 0.5
|y1 − ω| 2.04(−7) 2.13(−6) 7.64(−8) 1.83(−7) 2.13(−6) 7.64(−8)

|y2 − ω| 2.57(−55) 1.24(−53) 5.74(−69) 4.08(−67) 4.36(−69) 3.47(−104)
|y3 − ω| 5.45(−613) 1.91(−500) 4.35(−619) 1.25(−642) 1.37(−709) 1.25(−1418)

f4, y0 = 1.6

|y1 − ω| 3.03(−7) 1.73(−6) 1.99(−6) 3.03(−7) 1.73(−6) 1.99(−6)
|y2 − ω| 4.56(−44) 4.47(−45) 1.74(−46) 2.95(−41) 7.36(−48) 1.48(−78)

|y3 − ω| 1.21(−365) 9.00(−363) 5.89(−367) 1.05(−262) 5.60(−399) 3.33(−1092)

f5, y0 = −2
|y1 − ω| 9.96(−4) 2.96(−4) 2.78(−4) 9.96(−5) 2.96(−4) 2.78(−4)

|y2 − ω| 1.94(−25) 3.06(−27) 8.45(−28) 1.77(−25) 7.12(−29) 3.25(−52)

|y3 − ω| 4.18(−215) 4.07(−201) 6.21(−216) 3.32(−153) 1.43(−227) 2.17(−728)

Comparing the results of proposed families of with and without memory meth-
ods, it can be seen that the new families (17) and (21) have better performance
than the existing families (KT) (44) and (ZM) (45).

5. Dynamical Analysis

For visualizing the dynamical properties of associated rational functions of
iterative methods, we use basins of attraction technique. This technique gives
an important information about the stability and reliability of the iterative
methods. In this section, we give the dynamical comparison of the proposed
with-memory iterative method (21) (NF-2) and with-memory method of Kung
and Traub (44) (KT) by showing their convergence planes for n = 3, β0 =
−0.01, η0 = 0.1. We use the technique of basins of attraction and apply
iterative methods to complex functions to get the planes of associated rational
function. Two different methods are considered to obtain the dynamical planes
on Matlab R2018 programming software. In the complex plane we use a
rectangle [−2, 2]× [−2, 2] and initial approximations by a mesh of 1000×1000
points. The initial guess for a zero lies in the basins of attraction if the root
finder converges in 30 iterations or error estimation less than 10−5. In the
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first method points are coloured according to the number of iterations needed
to find a root, so those method visualize speed of convergence. A particular
color is allotted to each initial guess. The color will be more intense if the
root finder has faster convergence. The initial guess is assigned with dark
blue color if after 30 iterations it is not converging to any of the zeros. In the
second method, each root gets the distinct color and the points are colored
based on the distance to the nearest root, i.e., after finding a root we find
a closest root and assign its color to the starting point. Thus the second
method shows only to which of the roots the method converges. we use error
approximation less than 10−5 and 25 iterations. In this method, depending
upon the number of iterations for the convergence of the root finder to any of
the root of given nonlinear polynomial each initial approximation is allotted
a different color. Again, the color will be more intense if the iterative method
has faster convergence. The initial guess is assigned with black color if, after
25 iterations it is not converging to any of the roots. The complex polynomials
used for the dynamical comparison of the proposed with-memory method (21)
(NF-2) and Kung-Traub family of with-memory methods [7] (44) are given
below with their roots:

p1(z) = z3 − 1, ω = 1.0,−0.5000 + 0.86605I,−0.5000− 0.86605I

p2(z) = z5 − 1, ω = 1.0, 0.3090 + 0.95105I, −0.8090 + 0.58778I,

−0.8090− 0.58778I, 0.30902− 0.95105I

p3(z) = z6 − 1

2
z5 +

11(i+ 1)

4
z4 − 3i+ 19

4
z3 +

5i+ 11

4
z2

+
i− 11

4
z +

3

2
− 3i,

ω = −1.0068 + 2.0047i, 0.0281 + 0.9963i, 0.0279− 1.5225i,

1.0235− 0.9556i, 0.9557− 0.0105i,−0.5284− 0.5125i.

Figures 2 − 7 consists of the dynamical planes of the presented family of
methods with-memory (21) (NF-2) and the family of methods with-memory
by Kung and Traub [7] (44). In all figures two kinds of attraction basins are
shown. It can be seen from the color maps of both types of figures that to
which root an initial guess converges and in how much number of iterations
the iterative sequence convergence. In all figures appearance of wider darker
regions confirms that the proposed family of root finding methods (21) (NF-2)
use less number of iterations in contrast with (44). Since dynamical planes
of the presented family of root finders has less dark blue and black regions in
contrast with (44) (KT), it means that the presented family of methods (21)
(NF-2) is the better alternate to existing families of the same domain.
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Figure 2. Convergence Regions of p1(z) for (KT)

Figure 3. Convergence Regions of p1(z) for (NF-2)

Figure 4. Convergence Regions of p2(z) for (KT)

Figure 5. Convergence Regions of p2(z) for (NF-2)
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Figure 6. Convergence Regions of p3(z) for (KT)

Figure 7. Convergence Regions of p3(z) for (NF-2)

6. Concluding Remarks

We have presented a new n−step general derivative free family of without
memory root finding methods as well as its extension to the general family
of with-memory methods. It is shown that the R−order of convergence of
the new family of without memory methods (6) has been boosted from 2n to
2n + 2n−1 + 2n−2. The speed of convergence is accelerated by using suitable
variation of two free parameters in each iterative step. For the computation of
the self-accelerating parameters, Newton’s interpolation polynomials of third
and fourth degree are used. Numerical and dynamical comparisons confirm
that the proposed families of with and without memory methods have better
efficiency, convergence regions and speed in contrast with the existing methods
of the same kind. Dynamical behavior of the proposed family of with-memory
methods demonstrates that the proposed family is more efficient and reliable
as compare to the previous families of the same kind.
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