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THE NEW AUXILIARY METHOD IN THE SOLUTION OF
THE GENERALIZED BURGERS-HUXLEY EQUATION

MUHAMMAD ASIM KHANY*, M. ALI AKBAR?, NORHASHIDAH HJ. MOHD. ALT*,
MUHAMMAD ABBAS?

ABSTRACT. A recently developed direct method known as the new auxil-
iary method shown significant improvement for solving non-leaner partial
differential equations (PDEs) and gives more exact solutions compared
to the traditional direct method. In this paper, we used the new auxil-
iary method for solitary wave solutions of the generalized Burgers Huxley
equation (B-HE). The new auxiliary method is a very powerful, felicitous,
effective method to get solitary wave solutions of PDEs.
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1. INTRODUCTION

Zabusky and Kruskal are the two physicists who first introduce soliton in
1965, and they showed that numerous phenomena of our daily life from differ-
ent fields like Chemistry, Biology, plasma physics, Fluid mechanics mathemat-
ical physics, etc can be represented by linear and non-linear partial differential
equations. But, mostly it is difficult to solve these partial differential equations
due to its complexity, so researcher are always looking for the numerical and
analytical methods to find the solution of these types of differential equations
[1-13]. In particular, there are many methods exist in the literature to find
the analytical solutions of non-linear partial differential equations, for exam-
ple The Tanh method [14], modified extended direct algebraic method [15],
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The Sub-equation method [16], Exp-function method [17? ], G’ /G-Expansion
Method [18], Extended Jacobi elliptic function expansion method [19] and
many others.

Especially, the non-linear Burgers Huxley equation has been solved by many
researchers, for example Wang et al. [20] solved for exact solutions using
the Adomian decomposition method, Ismail et al. [21, 27] get the analytical
solution in the series form, Deng [23] used the first-integral method and get
traveling solitary wave solutions.

However, most of the exact solutions obtain by using the above methods
are not explicit in general, therefore it is important to develop a new reliable
method for the solution of non-linear partial differential equations. The new
auxiliary method is a direct method, which is an effective and reliable method,
and gives more exact solution for the non-linear partial differential equations.
Therefore, in this article, we present the formulation of the new auxiliary
method [24, 25] in the solutions of non-linear generalized B-HE.

The generalized Burgers Huxley equation is [26]

Ut + au"uy — Ugg = fu(l —u") (u" —7v), 0<x <1,t>0, (1)

where n is a positive integer, «, 5 > 0 are real constants and v € (0, 1).

The Burgers-Huxley equation describes the interaction between convection
effects, diffusion transfer and reaction mechanisms [27], also it is a particular
case of many famous equations for example when n = 1, &« = 0 then it became
FitzHugh-Nagumo equation, when n = 1,5 = 0 then it is burger equation,
when n =1, = 0,7 = —1 then it becomes Newell-Whitehead equation [28].
The paper is presented as follows: In Section 2, we describe the proposed
method. In Section 3, we present the application of the proposed method for
the generalized B-HE, and finally the conclusion in Section 4.

2. THE PROPOSED METHOD

In this section, we explain the steps for the new auxiliary method [24]. The
non-linear differential equation in form

F(w, wy, Wy, Wy, Wey, Wet, ...) = 0, (2)

where F is polynomial of w(x, y,t). The proposed method involve the following
steps.

step 1. Apply the transformation:

F(z,t) = F(v), v = x — ct. where ¢ is constant for (2), by applying this
transformation we get the Ordinary Differential Equation (ODE) in the form

T(w,w,w”",..) =0, (3)
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where T' depicted polynomial of w(v) and its derivatives.
Step 2. Let (3) has solutions in the form

N
w(v) = Z a;a ), (4)
=0

where a}s are constants, and f(v) in (4) will satisfy
1
"0) = — (pna—f® —f()y, 5
f'(v) In(a) (poa +qo +roa” ") (5)

Step 3. In (4) the value of N will be computed using the balancing of the
nonlinear term and higher order derivative.

Step 4. Substituting (4) and (5) into (1) and then equating to zero, we get
the system of linear equations which gives the values of a;, po, qo, 70-

Step 5. In the last step, substituting the values of af/(*) into (3), we will get
the solitary wave solutions for (1)

3. APPLICATION OF THE PROPOSED METHOD

To show the effectiveness of the proposed method, we solve the generalized
B-HE using the proposed method.
First, make the following transformation

w=u" (6)
and we obtain the following from (1)
1
wwy + aw’w, + (1 — E)wi — Wy — (1 —w)(w—7)=0. (7)
Let the traveling wave transformation in the form
w(z,t) = w(v), (8)
where v =z — ct. Substituting Egs. (8) and (6) into (1), we get
1
—cww’ + aww’ +2(1 — =)(w)? —ww” — pnw?(l —w)(1—~)=0, (9)
n

where
ow(v)
or
By balancing of non-linear part and highest order derivative, we get the solu-
tion in the form

w' =w'(v) =

wv) = ag + aja’ ™), (10)

By substituting (10) and its derivatives into (9), and then equating the coef-
ficients for the different powers of a’/(*) to zero, we get algebraic equations.
Solving these algebraic equations using Mathematics software, we will get four
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sets of solutions;

Set 1:
oot a o V2o VB(Rydn-2) 2q3 — Bn*
VNI S V2 T T s
(11)
Set 2:
P R _ Voo VB2y+n-2) ) _ 203 —pn®
YT VaEn 2T VB Vi T s
(12)
Set 3:
o LV L Ve VBO(-2) 42 26— 60
079 T VBn \/Bn’ - NG y Po = 8ro .
(13)
Set 4:
a _ 1 +\/§QO a _@ c_a_\/B(’Y(”_Q)+2) _M
0_2 Y \/Bn ’ 1_\/,371’ - \/§ , PO = 87’()
(14)

Substituting (14) into (13), we get the solitary wave solution of the generalized
B-HEs are

1 q0 \[7‘0 f
w(zr,t) = (= — 15
Using (11), we get the solitary wave solutions for the Set 1
1
1 q0 \/>T0 o/ @)
u $,t = - — , 16
If g3 — 4poro < 0 and ro # 0,
—2 —
of(©) = S 4 @tan (x/@f)
or (17)
16 — —w0 _ Viporo—ag o ( VAporo—a}
a T 271 2ro co 2 £

If g2 — 4poro > 0 and 7o # 0,

2 2
af(g) = —q — \/mtanh <m€> (18)

21 270 2
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or

/2
O "0 _ V%~ 4poro coth

27‘0

2’/’0

If qg +4p% <0, rg # 0 and ry = —po,

or

feep - 90
a =
2po
O = 2
2po

]

(45 + 4p5

2po

2po

If g3 + 4p3 > 0, 79 # 0 and r9 = —p,

2 2 2 2
g +4p +4p
o a V@) (6 ) )
2po 2po 2
or
2 2 /(.2 2
+4 + 4
J© _ 90 (45 + 4p3) coth (5 130)g .
2po 2po 2
If qg — 4p(2) < 0 and r9 = po,
2 2 2 2
_ — (g —4p — (g5 —4p
af(g) _ q0 + ( 0 0) tan ( 0 0)&_
2po 2po 2
or
g\~ (a5 —4p5) — (4§ — 43
af® = — cot | —¢
2po 2po 2
If g3 — 4p3 > 0 and r¢ = po,
2 4 2 2 _ 4 2
LSO — ~90 (a5 — 4p) tanh (5 Po)g
2po 2po 2
or
re —a0 V(46— 49) (45 — 495)
a = coth &l
2po 2po 2

— (g3 + 4p3)

tan

/\/—\

cot

 ~

=)
S
T )

Q
N
o |
N
=
()
3
()
i

N——

— (48 + 4p3)
2

— (a3

+
<
[=]\V)

)

§

i

(20)

(22)

(24)

(26)

(27)



If g3 = 4poro,
oSO — 21 a8

2ro€
If ropg < 0, go = 0 and rg # 0,
/O = — |22 tanh(y/=ropog)
or
af® = — /— coth(y/=ropof).

If g = 0 and pg = —7o,
@ Lre?ed)
-1+ e(_QTOf)
If Po=To = O,
a’® = cosh(g€) + sinh(gof).
If po =qgo =k and r9 =0,

al©) — k¢ _ 1.
If g9 =r9 =k and pg =0,
k.
ol — i.
1 — ek€
If g0 = po + ro,
f(f) B 1— poe(pO*TO)g
a =
1-— 7“0@(170—7"0)5
If g0 = —(po + 70),
WO _ Po — e(Po—T0)¢

o — e(PO ro)§’
If Po = 0,
q0€
e _ et
1 — rgedof
If ro = qo = po # 0,

1
al® = {\ftan (ﬁp(){) —1}.
2 2
If To = qo = 0,

al® = poc.
pro =4qo0o = 07 1
& — =
a’y = .
ro§

If ro = pg and g9 = 0,

21

(31)

(32)

(33)
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If ro =0,
al(©) = p20& _ %‘ (42)

Similarly, we can find the above solutions for the remaining three sets.

F1GURE 1. Graph of (42) when @ = 8 = 1.5, v = 0.001 and
n=1

FIGURE 2. Graph of (41) when a« = 5 = 1.5, 7 = 0.001 and
n=1

From the above, it can be seen that we get twenty-six exact solitary wave
solutions for (1) from Eqs. (16) to (42) for Set 1 only and similarly, we find
these solutions for Set 2 to Set 4, which show that we get more solutions as
compared to [26]. Figure 1 to Figure 5 are the 3D graphs of different solutions
for (1), which shows the efficiency and reliability of the proposed method. The
new auxiliary method is more efficient tool for the solitary wave solutions of
linear and non-linear partial differential equations.
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FIGURE 4. Graph of (33) when @ = 8 = 1.5, v = 0.001 and
n=1

FIGURE 5. Graph of (28) when o« = =1,y =10.001 and n =1
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4. CONCLUSION

In this article, we apply the new auxiliary method to get the exact solitary
wave solutions for the B-HE. By applying the new auxiliary method, we get
twenty-six exact solutions and comparing these solutions with [21, 23, 27]; it is
evident that the proposed method gives more solution obtain by the existent
method in literature use for the solution of B-HE. The new auxiliary method
has many advantages such as it is simple, straight forward, minimize the com-
putational work; therefore it has wide-range applicability and a powerful tool
for the exact solitary wave solutions of different type of non-linear PDEs.

REFERENCES

[1] Akgiil, A. (2019). Reproducing kernel Hilbert space method based on re-
producing kernel functions for investigating boundary layer flow of a Pow-
ellEyring non-Newtonian fluid. Journal of Taibah University for Science,
13(1), 858-863.

[2] Sobamowo, M. G., Kamiyo, O. M., Yinusa, A. A., & Akinshilo, T. A.
Magneto-squeezing flow and heat transfer analyses of third grade fluid
between two disks embedded in a porous medium using Chebyshev spectral
collocation method. Open Journal of Mathematical Sciences, 4 (1), 305-322.

[3] Akgiil, A. (2018). A novel method for a fractional derivative with non-local
and non-singular kernel. Chaos, Solitons € Fractals, 114, 478-482.

[4] Akgiil, E. K. (2019). Solutions of the linear and nonlinear differential equa-
tions within the generalized fractional derivatives. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 29(2), 023108.

[5] Hassan, R., El-Agamy, M., Latif, M. S. A., & Nour, H. On Backlund
transformation of Riccati equation method and its application to nonlin-
ear partial differential equations and differential-difference equations. Open
Journal of Mathematical Sciences, 4 (1), 56-62.

[6] Khan, M. A., & Ali, N. H. M. (2020). High-order compact scheme for the
two-dimensional fractional RayleighStokes problem for a heated general-
ized second-grade fluid. Advances in Difference Equations, 2020(1), 1-21.

[7] Baleanu, D., Fernandez, A., & Akgiil, A. (2020). On a Fractional Operator
Combining Proportional and Classical Differintegrals. Mathematics, 8(3),
360.

[8] Khan, M. A., & Ali, N. H. M. (2020). Fourth-order Compact Iterative
Scheme for the Two-dimensional Time Fractional Sub-diffusion Equations,
Mathematics and Statistics, 8, 52-57.



25

[9] Khan, M. A., Ullah, S., & Mohd Ali, N. H. (2018). Application of Optimal
Homotopy Asymptotic Method to Some Well-Known Linear and Nonlinear
Two-Point Boundary Value Problems. International Journal of Differential
Fquations, 2018.

[10] Haq, E. U., Ali, M., & Khan, A. S. On the solution of fractional Riccati
differential equations with variation of parameters method. Engineering
and Applied Science Letter,3(3), 1-9.

[11] Ogunmola, B. Y., & Yinusa, A. A. Generalized dynamics on the pene-
tration of two phase fuel spray using differential transform method. Engi-
neering and Applied Science Letter,2(4), 33-44.

[12] Hamrouni, A., & Beloul, S. On the existence of solutions for fractional
boundary valued problems with integral boundary conditions involving
measure of non compactness. Open Journal of Mathematical Analysis,
4(2), 56-63.

[13] Gouasmia, M., Ardjouni, ., & Djoudi, A. (2020). Study of asymptotic be-
havior of solutions of neutral mixed type difference equations. Open Journal
of Mathematical Analysis, 4 (1), 11-19.

[14] Wazwaz, A. M. (2004). The tanh method for traveling wave solutions of
nonlinear equations. Applied Mathematics and Computation, 154 (3), 713-
723.

[15] Arshad, M., Seadawy, A., Lu, D., & Wang, J. (2016). Travelling wave
solutions of generalized coupled ZakharovKuznetsov and dispersive long
wave equations. Results in Physics, 6, 1136-1145.

[16] Zhang, S., & Zhang, H. Q. (2011). Fractional sub-equation method and
its applications to nonlinear fractional PDEs. Physics Letters A, 375(7),
1069-1073.

[17] He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave
equations. Chaos, Solitons €& Fractals, 30(3), 700-708.

[18] Baleanu, D., Ugurlu, Y., In, M., & Kilic, B. (2015). Improved (G’/G)-
Expansion Method for the Time-Fractional Biological Population Model
and CahnHilliard Equation. Journal of Computational and Nonlinear Dy-
namics, 10(5), 051016.

[19] Zhang, H. (2007). Extended Jacobi elliptic function expansion method
and its applications. Communications in Nonlinear Science and Numerical
Simulation, 12(5), 627-635.

[20] Wang, X. Y., Zhu, Z. S., & Lu, Y. K. (1990). Solitary wave solutions of the
generalised Burgers-Huxley equation. Journal of Physics A: Mathematical
and General, 23(3), 271.

[21] Ismail, H. N., Raslan, K., & Abd Rabboh, A. A. (2004). Adomian decom-
position method for Burger’sHuxley and Burger’sFisher equations. Applied
mathematics and computation, 159(1), 291-301.



26

[22] Hashim, I., Noorani, M. S. M., & Al-Hadidi, M. S. (2006). Solving the
generalized BurgersHuxley equation using the Adomian decomposition
method. Mathematical and Computer Modelling, 43(11-12), 1404-1411.

[23] Deng, X. (2008). Travelling wave solutions for the generalized Burger-
sHuxley equation. Applied Mathematics and Computation, 204(2), 733-
737.

[24] Bibi, S., Mohyud-Din, S. T., Khan, U., & Ahmed, N. (2017). Khater
method for nonlinear Sharma Tasso-Olever (STO) equation of fractional
order. Results in physics, 7, 4440-4450.

[25] Khater, M. M., Seadawy, A. R., & Lu, D. (2017). Elliptic and solitary
wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-
Pempinelli equations system and Time-fractional Cahn-Allen equation. Re-
sults in physics, 7, 2325-2333.

[26] Gao, H., & Zhao, R. X. (2010). New exact solutions to the generalized
BurgersHuxley equation. Applied Mathematics and Computation, 217(4),
1598-1603.

[27] Hashim, I., Noorani, M. S. M., & Al-Hadidi, M. S. (2006). Solving the
generalized BurgersHuxley equation using the Adomian decomposition
method. Mathematical and Computer Modelling, 43(11-12), 1404-1411.

[28] Deng, X. (2008). Travelling wave solutions for the generalized Burger-
sHuxley equation. Applied Mathematics and Computation, 204(2), 733-
737.



