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A NEW EFFICIENT METHOD FOR TIME-FRACTIONAL

SINE-GORDON EQUATION WITH THE CAPUTO AND

CAPUTO-FABRIZIO OPERATORS

ALI KHALOUTA1,∗, ABDELOUAHAB KADEM1

Abstract. In this work, a new efficient method called, Elzaki’s fractional
decomposition method (EFDM) has been used to give an approximate se-
ries solutions to time-fractional Sine-Gordon equation. The time-fractional
derivatives are described in the Caputo and Caputo-Fabrizio sense. The
EFDM is based on the combination of two different methods which are:
the Elzaki transform method and the Adomian decomposition method. To
demonstrate the accuracy and efficiency of the proposed method, a numer-
ical example is provided. The obtained results indicate that the EFDM is
simple and practical for solving the fractional partial differential equations
which appear in various fields of applied sciences.
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1. Introduction

In recent years, the study of fractional partial differential equations (FPDEs)
has drawn much attention by mathematical and physical researchers, due to
their commonly appearance in different kinds of sciences, such as mathemat-
ics, physics, chemistry, optimal control theory, finance, biology, engineering,
aerodynamics, electrodynamics and so forth [1–14].

Nowadays, many methods have been devloped to solve FPDEs, among
them: backward Euler method (BEM) [15], B-spline collocation method (BSCM)
[16–18], Adomian decomposition method (ADM) [19], homotopy analysis method
(HAM) [20], fractional reduced differential transform method (FRDTM) [21],
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fractional residual power series method (FRPSM) [22], generalized Taylor frac-
tional series method (GTFSM) [23].

In this article, we propose a new efficient method, called Elzaki’s fractional
decomposition method (EFDM) to solve the time-fractional Sine-Gordon equa-
tion in the form

Dα
t u(x, t)− a2uxx(x, t)− b sin(u(x, t)) = 0, (1)

with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), (2)

where Dα
t is the time-fractional derivative operator in the sense of Caputo of

order α, 1 < α ≤ 2, a and b are constants. And in the form

D(µ)
t u(x, t)− a2uxx(x, t)− b sin(u(x, t)) = 0, (3)

with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), (4)

where D(µ)
t = D(α+1)

t is the time-fractional derivative operator in the sense of
Caputo-Fabrizio of order µ = α + 1, 0 < α ≤ 1. When α = µ = 2, equations
(1) and (3) reduces to the standard Sine-Gordon equation.

The sine-Gordon equation is one of the most crucial nonlinear hyperbolic
partial differential equation in 1+1 dimensions involving the d’Alembert oper-
ator and the sine of the unknown function, where it was first discovered in the
nineteenth century in the course of study of various problems of differential
geometry. The Sine-Gordon equation appears in many physical applications
in relativistic field theory, the propagation of fluxons in Josephson junctions (a
junction between two superconductors), the motion of rigid pendula attached
to a stretched wire, dislocations in crystals, mechanical transmission line and
so on [24–26].

This article is structured as follows: In section 2, we give the basic defini-
tions and properties of the fractional calculus and Elzaki transform. In section
3, we describe the Elzaki’s fractional decomposition method (EFDM) to solve
time-fractional Sine-Gordon equation in the sense of the Caputo and Caputo-
Fabrizio (1) and (3). In section 4, we establish the convergence of numerical
scheme based on EFDM. In section 5, we apply the EFDM to solve a numer-
ical example to demonstrate the accuracy and effectiveness of this method.
Section 6, is devoted to the conclusions on this work.

2. Definitions and properties

In this section, we give the basic definitions and properties of the fractional
calculus and Elzaki transform.
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Definition 1. [27] Let f ∈ L1(R+). The Riemann-Liouville fractional integral
of order α ≥ 0 is defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t− ξ)α−1 f(ξ)dξ, (5)

where Γ(.) is the Euler gamma function.

Definition 2. [27] Let f (n) ∈ L1(R+). The Caputo fractional derivative of
order α ≥ 0 is defined as

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1 f (n)(ξ)dξ, (6)

where n− 1 < α ≤ n, n = [α] + 1 with [α] being the integer part of α.

In equation (5) if transformations happen as follows

(t− ξ)n−α−1 −→ exp

[
−α (t− ξ)

1− α

]
and

1

Γ(n− α)
−→ M(α)

1− α
,

the new definition of fractional operator is expressed by Caputo and Fabrizio.

Definition 3. [28] Let f ∈ H1(R+), then the Caputo-Fabrizio fractional de-
rivative of order α, 0 < α ≤ 1 is defined as

D(α)f(t) =
M(α)

1− α

t∫
0

f ′(ξ) exp

[
−α (t− ξ)

1− α

]
dξ (7)

=
M(α)

1− α

(
f ′(t) ∗ exp

[
− αt

1− α

])
,

where ∗ denotes the convolution and M(α) is a normalization function that
satisfies M(0) = M(1) = 1.

From equation (7) it follows that if f(t) = C is a constant, then D(α)C = 0
as in the sense of Caputo [27].

If f /∈ H1(R+), then its fractional derivative is redefined as [28]

D(α)f(t) =
αM(α)

1− α

t∫
0

(f(t)− f(ξ)) exp

[
−α (t− ξ)

1− α

]
dξ, t > 0.

For n ≥ 1 and 0 < α ≤ 1, the fractional derivative of order (α+n) is defined
by

D(α+n)f(t) = D(α)(D(n)f(t)). (8)
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The above Caputo-Fabrizio fractional derivative was later modified by Jorge
Losada and Juan José Nieto [29] as

D(α)f(t) =
(2− α)M(α)

2(1− α)

t∫
0

f ′(ξ) exp

[
−α (t− ξ)

1− α

]
dξ, t > 0. (9)

The fractional integral corresponding to the derivative in equation (9) was
defined by Jorge Losada and Juan José Nieto in 2015, as follows.

Definition 4. [29] Let 0 < α ≤ 1. The fractional integral of order α of f is
defined by

I(α)f(t) =
2(1− α)

(2− α)M(α)
f(t) +

2α

(2− α)M(α)

t∫
0

f(ξ)dξ, t > 0. (10)

From the definition in equation (10), the fractional integral of Caputo-
Fabrizio type of a function f of order 0 < α ≤ 1 is an average between
function f and its one order integral, i.e.,

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1.

Therefore,

M(α) =
2

2− α
, 0 < α ≤ 1.

Due to this, Losada and Nieto remarked that Caputo-Fabrizio fractional
derivative can redefined as

Definition 5. [29] Let 0 < α ≤ 1. The fractional Caputo-Fabrizio derivative
of order α of a function f is given by

D(α)f(t) =
1

1− α

t∫
0

f ′(ξ) exp

[
−α (t− ξ)

1− α

]
dξ, t > 0, (11)

and its fractional integral is defined as

I(α)f(t) = (1− α)f(t) + α

t∫
0

f(ξ)dξ, t > 0.

Definition 6. [30] The Elzaki transform is defined over the set of functions

A =

{
f(t)/∃M,k1, k2 > 0, |f(t)| < M exp

(
|t|
kj

)
, if t ∈ (−1)j × [0,∞)

}
,

by the following integral

E [f(t)] = T (v) = v

∫ ∞
0

f(t) exp

(
− t
v

)
dt, t > 0,
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where v is the factor of variable t.

Property 1: The Elzaki transform is a linear operator. That is, if λ and
µ are non-zero constants, then

E [λf(t)± µg(t)] = λE [f(t)]± µE [g(t)] .

Property 2: If f (n)(t) is the n−th derivative of the function f(t) ∈ A with
respect to ”t” then its Elzaki transform is given by

E
[
f (n)(t)

]
=

1

vn
T (v)−

n−1∑
k=0

v2−n+kf (k)(0).

Property 3: Suppose T (v) and G(v) are the Elzaki transforms of f(t) and
g(t), respectively, both defined in the set A. Then

E [(f ∗ g) (t)] =
1

v
T (v)G(v).

Property 4: Some special Elzaki transforms

E(1) = v2,

E(t) = v3,

E
(
tn

n!

)
= vn+2, n = 0, 1, 2, ...

E (sin(at)) =
av3

1 + a2v2
.

Property 5: The Elzaki transform of tα is given by

E (tα) = vα+2Γ (α+ 1) .

Theorem 1. [31] Let n ∈ N∗ and α > 0 be such that n− 1 < α ≤ n and T (v)
be the Elzaki transform of the function f(t), then the Elzaki transform denoted
by Tα(v) of the Caputo fractional derivative of f(t) of order α, is given by

E [Dαf(t)] = Tα(v) =
1

vα
T (v)−

n−1∑
k=0

v2−α+kf (k)(0). (12)

Proof. See. Khalouta, A., & Kadem, A. (2020). Theorem 2.7. [31] �

Theorem 2. The Elzaki transform of the Caputo-Fabrizio fractional deriva-
tive of the function f(t) of order α + n, where 0 < α ≤ 1 and n ∈ N∪{0}, is
given by

E
[
D(α+n)f(t)

]
=

1

1− α(1− v)

[
1

vn
E (f(t))−

n∑
k=0

v2−n+kf (k)(0)

]
. (13)
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Proof. By the Definition of the 5 and relation (8), we have

E
[
D(α+n)f(t)

]
= E

[
D(α)(D(n)f(t))

]
=

1

1− α
v

+∞∫
0

exp

(
− t
v

) t∫
0

f (n)(ξ) exp

[
−α (t− ξ)

1− α

]
dξ

=
1

1− α
v

+∞∫
0

exp

(
− t
v

)(
f (n)(t) ∗ exp

[
− αt

1− α

])

=
1

1− α
E
(
f (n)(t) ∗ exp

[
− αt

1− α

])
.

Hence, from the Properties (2), (3) and (4) of the Elzaki transform, we have

E
[
D(α+n)f(t)

]
=

1

1− α
1

v
E
(
f (n)(t)

)
E
(

exp

[
− αt

1− α

])
=

v

1− α(1− v)

[
1

vn
E (f(t))−

n−1∑
k=0

v2−n+kf (k)(0)

]

=
v

1− α(1− v)

[
1

vn+1
E (f(t))−

n∑
k=0

v1−n+kf (k)(0)

]

=
1

1− α(1− v)

[
1

vn
E (f(t))−

n∑
k=0

v2−n+kf (k)(0)

]
.

The proof is complete. �

3. Description of the Elzaki’s fractional decomposition method
(EFDM)

In this section,we propose an algorithm based on EFDM to solve time-
fractional Sine-Gordon equation with the Caputo and Caputo-Fabrizio oper-
ators.

Theorem 3. Consider the following time-fractional Sine-Gordon equation
with the Caputo and Caputo-Fabrizio operators (1) and (3). The EFDM gives
the solutions of (1) and (3) in the form of infinite series as follows

u(x, t) =
∞∑
n=0

un(x, t). (14)

Proof. Consider the following time-fractional Sine-Gordon equation with the
Caputo and Caputo-Fabrizio operators (1) and (3).

1) In the case of the Caputo operator.
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First, we apply the Elzaki transform on both sides of (1) and using the
Theorem 1, we obtain

E [u(x, t)] = v2f(x) + v3g(x) + vαE
[
a2uxx(x, t) + b sin(u(x, t))

]
. (15)

Then, we take the inverse Elzaki transform on both sides of (15), we have

u(x, t) = f(x) + tg(x) + E−1
(
vαE

[
a2uxx(x, t) + b sin(u(x, t))

])
. (16)

Now, we represent the solution in an infinite series form

u(x, t) =
∞∑
n=0

un(x, t), (17)

and the nonlinear terms sin(u(x, t)) can be decomposed as

sin(u(x, t)) =

∞∑
n=0

An, (18)

where An are the Adomian polynomials [32], can be calculated by the following
formula

An =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λiui(x, t

)]
λ=0

. (19)

The first few components of An are given by

A0 = sin(u0(x, t)),

A1 = u1(x, t) cos(u0(x, t)),

A2 = u2(x, t) cos(u0(x, t))− 1

2!
u2

1(x, t) sin(u0(x, t)),

A3 = u3(x, t) cos(u0(x, t))− u2(x, t)u1(x, t) sin(u0(x, t))− 1

3!
u3

1(x, t) cos(u0(x, t)),

...

Substituting (17) and (18) in (16), we obtain

∞∑
n=0

un(x, t) = f(x) + tg(x) + E−1

(
vαE

[
a2unxx(x, t) + b

∞∑
n=0

An

])
. (20)
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By comparing both sides of (20), we get the following relation

u0(x, t) = f(x) + tg(x),

u1(x, t) = E−1
(
vαE

[
a2u0xx(x, t) + bA0

])
,

u2(x, t) = E−1
(
vαE

[
a2u1xx(x, t) + bA1

])
,

u3(x, t) = E−1
(
vαE

[
a2u2xx(x, t) + bA2

])
,

...

un(x, t) = E−1
(
vαE

[
a2u(n−1)xx(x, t) + bAn−1

])
. (21)

Then, the solution of (1) is given in the form of infinite series as follows

u(x, t) =
∞∑
n=0

un(x, t).

2) In the case of the Caputo-Fabrizio operator.
First, we apply the Elzaki transform on both sides of (3) and using the

Theorem 2, we obtain

E [u(x, t)] = v2f(x) + v3g(x) + v (1− α(1− v)) E
[
a2uxx(x, t) + b sin(u(x, t))

]
.

(22)
Then, we take the inverse Elzaki transform on both sides of (22), we have

u(x, t) = f(x) + tg(x) + E−1
(
v (1− α(1− v)) E

[
a2uxx(x, t) + b sin(u(x, t))

])
.

(23)
Now, we represent the solution in an infinite series form

u(x, t) =

∞∑
n=0

un(x, t), (24)

and the nonlinear terms sin(u(x, t)) can be decomposed as

sin(u(x, t)) =

∞∑
n=0

An. (25)

Substituting (24) and (25) in (23), we obtain

∞∑
n=0

un(x, t) = f(x)+tg(x)+E−1

(
v (1− α(1− v)) E

[
a2unxx(x, t) + b

∞∑
n=0

An(t)

])
.

(26)
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By comparing both sides of (26), we get the following relation

u0(x, t) = f(x) + tg(x),

u1(x, t) = E−1
(
v (1− α(1− v)) E

[
a2u0xx(x, t) + bA0

])
,

u2(x, t) = E−1
(
v (1− α(1− v)) E

[
a2u1xx(x, t) + bA1

])
,

u3(x, x) = E−1
(
v (1− α(1− v)) E

[
a2u2xx(x, t) + bA2

])
,

...

un(x, x) = E−1
(
v (1− α(1− v)) E

[
a2u(n−1)xx(x, t) + bAn−1

])
. (27)

Then, the solution of (3) is given in the form of infinite series as follows

u(x, t) =
∞∑
n=0

un(x, t).

The proof is complete. �

4. Convergence analysis

In this section, we establish the convergence of our numerical scheme based
on EFDM.

Theorem 4. Let (B, ‖.‖) be a Banach space, Then the series solutions of (1)
and (3) converges to S ∈ B , if there exists γ, 0 < γ < 1 such that

‖un‖ ≤ γ ‖un−1‖ ,∀n ∈ N.

Proof. Define the sequences {Sn}n≥0 of partial sums of the series given by the

recursive relation (21) or (27) as

Sn(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ...+ un(x, t),

and we need to show that {Sn}n≥0 are a Cauchy sequences in Banach space
B. For this purpose, we consider

‖Sn+1 − Sn‖ ≤ ‖un+1‖ ≤ γ ‖un‖ ≤ γ2 ‖un−1‖ ≤ ... ≤ γn+1 ‖u0‖ . (28)

For every n,m ∈ N, n ≥ m, by using (28) and the triangle inequality
successively, we have

‖Sn − Sm‖ = ‖Sm+1 − Sm + Sm+2 − Sm+1 + ...+ Sn − Sn−1‖
≤ ‖Sm+1 − Sm‖+ ‖Sm+2 − Sm+1‖+ ...+ ‖Sn − Sn−1‖
≤ γm+1 ‖u0‖+ γm+2 ‖u0‖+ ...+ γn ‖u0‖
= γm+1

(
1 + γ + ...+ γn−m−1

)
‖u0‖

≤ γm+1

(
1− γn−m

1− γ

)
‖u0‖ .
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Since 0 < γ < 1, so 1− γn−m ≤ 1 then

‖Sn − Sm‖ ≤
γm+1

1− γ
‖u0‖ .

Since u0 is bounded, then

lim
n,m−→∞

‖Sn − Sm‖ = 0.

Therefore, the sequences {Sn}n≥0 are Cauchy sequences in the Banach space

B, so the series solution defined in (14) converges.
This completes the proof. �

Theorem 5. The maximum absolute truncation error of the series solution
(14) of (1) or (3) is estimated to be

sup
(x,t)∈Ω

∣∣∣∣∣un(x, t)−
m∑
k=0

uk(x, t)

∣∣∣∣∣ ≤ γm+1

1− γ
sup

(x,t)∈Ω
|u0(x, t)| , (29)

where the region Ω ⊂ R× R+.

Proof. From the Theorem 4, we have

‖Sn − Sm‖ ≤
γm+1

1− γ
sup

(x,t)∈Ω
|u0(x, t)| . (30)

But we assume that Sn =
n∑
k=0

uk(x, t) and since n → ∞, we obtain Sn →

un(x, t), so (30) can be rewritten as

‖un(x, t)− Sm‖ =

∥∥∥∥∥un(x, t)−
m∑
k=0

uk(x, t)

∥∥∥∥∥ ≤ γm+1

1− γ
sup

(x,t)∈Ω
|u0(x, t)| .

So, the maximum absolute truncation error in the region Ω ⊂ R× R+ is

sup
(x,t)∈Ω

∣∣∣∣∣un(x, t)−
m∑
k=0

uk(x, t)

∣∣∣∣∣ ≤ γm+1

1− γ
sup

(x,t)∈Ω
|u0(x, t)| .

This completes the proof. �

5. Application

In this section, we verify the accuracy and effectiveness of the EFDM de-
scribed in Section 3, by solving an example of time-fractional Sine-Gordon
equation with the Caputo and Caputo-Fabrizio operators.
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Example 1. Let us consider the time-fractional Sine-Gordon equation with
the Caputo operator

Dα
t u(x, t)− uxx(x, t)− sin(u(x, t)) = 0, 1 < α ≤ 2, (31)

with the initial conditions

u(x, 0) =
π

2
, ut(x, 0) = 0. (32)

Following the description of the FEDM presented in Section 3, gives

u0(x, t) =
π

2
,

u1(x, t) =
tα

Γ(α+ 1)
,

u2(x, t) = 0,

u3(x, t) = − Γ(2α+ 1)t3α

2Γ2(α+ 1)Γ(3α+ 1)
,

...

and so on.
Then, the series solution of (31) and (32), is given by

u(x, t) =
π

2
+

tα

Γ(α+ 1)
− Γ(2α+ 1)t3α

2Γ2(α+ 1)Γ(3α+ 1)
+ ... (33)

When α = 2 in (33), we have

u(x, t) =
π

2
+
t2

2
− t6

240
+ ...

which is in complete agreement with the result by the ADM [33].
Now, we consider the time-fractional Sine-Gordon equation with the Caputo-

Fabrizio operator

D(µ)
t u(x, t)− uxx(x, t)− sin(u(x, t)) = 0, µ = α+ 1, 0 < α ≤ 1, (34)

with the initial conditions

u(x, 0) =
π

2
, ut(x, 0) = 0. (35)
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Following the description of the FEDM presented in Section 3, gives

u0(x, t) =
π

2
,

u1(x, t) = (1− α)t+ α
t2

2
,

u2(x, t) = 0,

u3(x, t) = −(1− α)3

6
t3 − α(1− α)2

6
t4 − α2(1− α)

20
t5 − α3

240
t6,

...

and so on.
Then, the series solution of (34) and (35), is given by

u(x, t) =
π

2
+ (1− α)t+

α

2
t2 − (1− α)3

6
t3 − α(1− α)2

6
t4

−α
2(1− α)

20
t5 − α3

240
t6 + ... (36)

When α = 1 in (36), we have

u(x, t) =
π

2
+
t2

2
− t6

240
+ ...

which is in complete agreement with the result by the ADM [33].
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Figure 1. 3D plots of the 4−term approximate solutions for
various values of α for equation (31) and ADM-solution [33].
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Figure 2. 3D plots of the 4−term approximate solutions for
various values of α for equation (34) and ADM-solution [33].

0 0.5 1 1.5 2

t

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

u
(x

,t
)

FEDM Caputo

ADM

α=2

α=1.9

α=1.8

α=1.7

0 0.5 1 1.5 2

t

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

u
(x

,t
)

FEDM Caputo-Fabrizio

ADM

α=1

α=0.9

α=0.8

α=0.7

Figure 3. 2D plots of the 4−term approximate solutions for
various values of α and ADM-solution [33].
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Table 1. The numerical values of the 4-term approximate so-
lutions for various values of α for equation (31) and ADM-
solution [33].

t α = 1.6 α = 1.7 α = 1.8 α = 1.9 α = 1 ADM-solution
0.1 1.5884 1.5837 1.5802 1.5777 1.5758 1.5758
0.3 1.6726 1.6544 1.6391 1.6263 1.6158 1.6158
0.5 1.8007 1.7696 1.7419 1.7173 1.6957 1.6957
0.7 1.9621 1.9214 1.8832 1.8478 1.8153 1.8153
0.9 2.1484 2.1033 2.0586 2.0152 1.9736 1.9736

Table 2. The numerical values of the 4-term approximate
solutions for various values of α of equation (34) and ADM-
solution [33].

t α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1 ADM-solution
0.1 1.6138 1.6043 1.5948 1.5853 1.5758 1.5758
0.3 1.7174 1.6921 1.6667 1.6413 1.6158 1.6158
0.5 1.8432 1.8068 1.7701 1.7330 1.6957 1.6957
0.7 1.9890 1.9468 1.9037 1.8598 1.8153 1.8153
0.9 2.1508 2.1090 2.0654 2.0202 1.9736 1.9736

6. Conclusion

In this article, a new efficient method called Elzaki’s fractional decompo-
sition method (EFDM) is presented to solve the time-fractional Sine-Gordon
equation with the Caputo and Caputo-Fabrizio operators. The EFDM gives
an infinite series which converges rapidly to the exact solution. A numeri-
cal example was used to demonstrate the accuracy and effectiveness of this
method. Series solutions of the time-fractional Sine-Gordon equation are suc-
cessfully obtained using the proposed method, and the results are compared
with the results of the existing methods in literature. Graphics and numerical
results show that this method is very efficient and practical to solve this type
of equations. On the basis of the results obtained, we can conclude that the
proposed method is a powerful mathematical tool to solve a wide range of frac-
tional partial differential equations which appear in various fields of applied
sciences.

In future works, we will try to propose new methods to study the solutions
of nonlinear fractional partial differential equations in particular, nonhomoge-
neous space and time fractional Sine-Gordon equation.
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