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NUMERICAL SOLUTIONS OF THE FRACTIONAL SIS

EPIDEMIC MODEL VIA A NOVEL TECHNIQUE

ALI KHALOUTA1,∗, ABDELOUAHAB KADEM1

Abstract. This article introduces a novel technique called modified frac-
tional Taylor series method (MFTSM) to find numerical solutions for the
fractional SIS epidemic model. The fractional derivative is considered in
the sense of Caputo. The most important feature of the MFTSM is that it
is very effective, accurate, simple, and more computational than the meth-
ods found in literature. The validity and effectiveness of the proposed
technique are investigated and verified through numerical example.
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1. Introduction

The fractional SIS epidemic model is given as{
DαS(t) = −rS(t)I(t) + µI(t),
DαI(t) = rS(t)I(t)− µI(t),

(1)

subject to

S(0) = S0, I(0) = I0, (2)

where Dα is the fractional derivative operator in the Caputo sense of order
α, 0 < α ≤ 1, S(t) is the susceptible population, I(t) is the infected population,
r > 0 is the infectivity coefficient, and µ > 0 is the recovery coefficient, while
S0 > 0 and I0 > 0 are given constants.

When α = 1, the system (1) reduces to the classical SIS epidemic model. Re-
cently, many methods have been developed to solve the classical SIS epidemic
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model. Among these methods are: Lie group (LG) [1], homotopy analysis
method (HAM) [2], differential transformation method (DTM) [3].

The fractional SIS epidemic model described in system of first nonlinear
fractional order ordinary differential equations. Nowadays, there is increasing
attention to nonlinear fractional differential equations and their applications
in different research fields, where these equations appear in many branches of
physics, engineering and applied mathematics such as: fluid mechanics, vis-
coelasticity, diffusion, signal processing, electromagnetism, electrochemistry,
nonlinear control theory, nonlinear biological systems, biomedical, chemical
reaction theory, and so on [4–20].

In all these scientific fields, it is necessary to determine the exact or at least
approximate solutions for the nonlinear fractional differential equations. In
general, there is no specific method that gives an exact solution to these equa-
tions due to the complex nonlinear parts involved, most of these methods are
only approximate. For this reason, many analytical and numerical methods
have been proposed recently to solve the nonlinear fractional differential equa-
tions. For example, fractional natural decomposition method (FNDM) [21],
natural variational iteration method (NVIM) [22], fractional Elzaki projected
differential transform method (FEPDTM) [23], fractional residual power se-
ries method (FRPSM) [24], fractional reduced differential transform method
(FRDTM) [25].

The main goal of this article is to propose a new technique called modified
fractional Taylor series method (MFTSM) to find numerical solutions for the
fractional SIS epidemic model (1) subject to (2).

The MFTSM is one of the efficient methods which use to solve the nonlin-
ear fractional differential equations without using linearization and any other
restriction, which gives the solution in the form of an infinite series which
converges rapidly to the exact solution.

The rest of the article has been organized as follows. In Section 2, we de-
scribe the basic definitions of fractional calculus used throughout the article.
In Section 3, we solve the fractional SIS epidemic model (1) subject to (2) by
the MFTSM and establish its convergence. In Section 4, we suggest a numer-
ical example which demonstrate the effectiveness of our proposed technique.
In Section 5, we discuss our obtained results represented by figures and tables.
At last, conclusion is given.

2. Basic definitions

In this section, we provide some definitions and properties of the fractional
calculus which are used further in this article. For more details (see, [17–19]).

Definition 1. The Riemann-Liouville fractional integral of order α ≥ 0 for a
function f(t) is defined by
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Iαf(t) =


1

Γ(α)

t∫
0

(t− τ)α−1 f(τ)dτ, α > 0,

f(t), α = 0,

(3)

where Γ(.) denotes Euler’s gamma function.

Definition 2. The Caputo fractional derivative of order α ≥ 0 for a function
f(t) is defined by

Dαf(t) =


1

Γ(n− α)

t∫
0

(t− τ)n−α−1 f (n)(τ)dτ, n− 1 < α < n,

f (n)(t), α = n,

(4)

where n = [α] + 1 with [α] being the integer part of α.

For this definition we have the following properties

1)
Dα(λ) = 0, where λ is a constant.

2)

Dαtβ =

{
Γ(β+1)

Γ(β−α+1) t
β−α, β > n− 1,

0, β ≤ n− 1.

3)
Dα(f(t)g(t)) = f(t)Dαg(t) + g(t)Dαf(t).

3. Analysis of MFTSM for the fractional SIS epidemic model

Theorem 1. Let consider the fractional SIS epidemic model (1) subject to
(2). Then, by MFTSM, the solutions of (1) and (2) can be expressed by an
infinite series as follow

S(t) =
∞∑
i=0

Si
tiα

Γ(iα+ 1)

I(t) =
∞∑
i=0

Ii
tiα

Γ(iα+ 1)

, 0 < α ≤ 1, 0 < t < R, (5)

where Si and Ii are the coefficients of the series (5) and R is the radius of
convergence.

Proof. Consider the fractional SIS epidemic model (1) subject to (2).
Suppose the solutions takes the form of an infinite series as follows

S(t) =
∞∑
i=0

Si
tiα

Γ(iα+ 1)
, (6)

I(t) =
∞∑
i=0

Ii
tiα

Γ(iα+ 1)
. (7)
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Therefore, the n−order approximate solutions of (1), can be written as

Sn(t) =
n∑
i=0

Si
tiα

Γ(iα+ 1)
= S0 +

n∑
i=1

Si
tiα

Γ(iα+ 1)
, (8)

In(t) =
n∑
i=0

Ii
tiα

Γ(iα+ 1)
= I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)
. (9)

Applying the operator Dα on (8) and (9), we get the following formula

DαSn(t) =

n−1∑
i=0

Si+1
tiα

Γ(iα+ 1)
, (10)

DαIn(t) =
n−1∑
i=0

Ii+1
tiα

Γ(iα+ 1)
. (11)

After that, we substitute (8), (9), (10), and (11) in (1). So, we have the
following recurrence relation

0 =
n−1∑
i=0

Si+1
tiα

Γ(iα+ 1)
+ r

(
S0 +

n∑
i=1

Si
tiα

Γ(iα+ 1)

)(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)

−µ

(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)
,

and

0 =

n−1∑
i=0

Ii+1
tiα

Γ(iα+ 1)
− r

(
S0 +

n∑
i=1

Si
tiα

Γ(iα+ 1)

)(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)

+µ

(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)
.

We follow the same analog used to obtain the Taylor series coefficients. In
particular, to obtain the coefficient Sn and In n = 1, 2, 3, .., we must solve the
following

D(n−1)α {F1(t, α, n)} ↓ t=0 = 0,

D(n−1)α {F2(t, α, n)} ↓ t=0 = 0,

where

F1(t, α, n) =

n−1∑
i=0

Si+1
tiα

Γ(iα+ 1)
+ r

(
S0 +

n∑
i=1

Si
tiα

Γ(iα+ 1)

)(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)

−µ

(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)
,
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and

F2(t, α, n) =
n−1∑
i=0

Ii+1
tiα

Γ(iα+ 1)
− r

(
S0 +

n∑
i=1

Si
tiα

Γ(iα+ 1)

)(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)

+µ

(
I0 +

n∑
i=1

Ii
tiα

Γ(iα+ 1)

)
.

Now, we obtain the first terms of the sequence {Sn}N1 and {In}N1 .
For n = 1 we have

F1(t, α, 1) = S1+r

(
S0 + S1

tα

Γ(α+ 1)

)(
I0 + I1

tα

Γ(α+ 1)

)
−µ
(
I0 + I1

tα

Γ(α+ 1)

)
,

and

F2(t, α, 1) = I1−r
(
S0 + S1

tα

Γ(α+ 1)

)(
I0 + I1

tα

Γ(α+ 1)

)
+µ

(
I0 + I1

tα

Γ(α+ 1)

)
.

Solving F1(t, α, 1) = 0 and F2(t, α, 1) = 0, gives

S1 = −rS0I0 + µI0,

I1 = rS0I0 − µI0.

To obtain S2 and I2, we consider

F1(t, α, 2) = S1 + S2
tα

Γ(α+ 1)
+ r

(
S0 + S1

tα

Γ(α+ 1)
+ S2

t2α

Γ(2α+ 1)

)
×
(
I0 + I1

tα

Γ(α+ 1)
+ I2

t2α

Γ(2α+ 1)

)
−µ
(
I0 + I1

tα

Γ(α+ 1)
+ I2

t2α

Γ(2α+ 1)

)
,

and

F2(t, α, 2) = I1 + I2
tα

Γ(α+ 1)
− r

(
S0 + S1

tα

Γ(α+ 1)
+ S2

t2α

Γ(2α+ 1)

)
×
(
I0 + I1

tα

Γ(α+ 1)
+ I2

t2α

Γ(2α+ 1)

)
+µ

(
I0 + I1

tα

Γ(α+ 1)
+ I2

t2α

Γ(2α+ 1)

)
.

Then, we solve Dα {F1(t, α, 2)} ↓t=0= 0 and Dα {F2(t, α, 2)} ↓t=0= 0, to
get

S2 = −r(S1I0 + S0I1) + µI1,

I2 = r(S1I0 + S0I1)− µI1.
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To obtain S3 and I3, we consider F1(t, α, 3) and F2(t, α, 3) and we solve
D2α {F1(t, α, 3)} ↓t=0= 0 and D2α {F2(t, α, 3)} ↓t=0= 0. Therefore

S3 = −r(S2I0 + 2S1I1 + S0I2) + µI2,

I3 = r(S2I0 + 2S1I1 + S0I2)− µI2.

To obtain S4 and I4, we consider F1(t, α, 4) and F2(t, α, 4) and we solve
D3α {F1(t, α, 4)} ↓t=0= 0 and D3α {F2(t, α, 4)} ↓t=0= 0. Therefore

S4 = −r(S3I0 + 3S2I1 + 3S1I2 + S0I3) + µI3,

I4 = r(S3I0 + 3S2I1 + 3S1I2 + S0I3)− µI3.

In general, to obtain the other coefficient Sk and Ik, by solving
D(k−1)α {F1(t, α, k)} ↓t=0= 0 and D(k−1)α {F2(t, α, k)} ↓t=0= 0.

Finally, the solutions of (1) subject to (2), can be expressed by

S(t) = lim
n−→∞

Sn(t) = lim
n−→∞

n∑
i=0

Si
tiα

Γ(iα+ 1)
=

∞∑
i=0

Si
tiα

Γ(iα+ 1)
,

I(t) = lim
n−→∞

In(t) = lim
n−→∞

n∑
i=0

Ii
tiα

Γ(iα+ 1)
=
∞∑
i=0

Ii
tiα

Γ(iα+ 1)
.

�

Theorem 2. If there exists a constant 0 < γ, δ < 1 such that{
‖Sn+1(t)‖ ≤ γ ‖Sn(t)‖ ,
‖In+1(t)‖ ≤ δ ‖In(t)‖ ,

where n ∈ N, 0 < t < R, then the sequence of approximate solutions (5)
converges to the exact solutions.

Proof. For all 0 < t < R, we have

‖S(t)− Sn(t)‖ =

∥∥∥∥∥
∞∑

k=n+1

Sk(t)

∥∥∥∥∥ ≤
∞∑

k=n+1

‖Sk(t)‖ ≤
∞∑

k=n+1

γ ‖Sk−1(t)‖

≤
∞∑

k=n+1

γ2 ‖Sk−2(t)‖ ≤ ... ≤ ‖S0‖
∞∑

k=n+1

γk

=
γn+1

1− γ
‖S0‖ .

Since 0 < γ < 1 and S0 is bounded, then

lim
n−→∞

‖S(t)− Sn(t)‖ = 0.
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On another side

‖I(t)− In(t)‖ =

∥∥∥∥∥
∞∑

k=n+1

Ik(t)

∥∥∥∥∥ ≤
∞∑

k=n+1

‖Ik(t)‖ ≤
∞∑

k=n+1

δ ‖Ik−1(t)‖

≤
∞∑

k=n+1

δ2 ‖Ik−2(t)‖ ≤ ... ≤ ‖I0‖
∞∑

k=n+1

δk

=
δn+1

1− δ
‖b0‖ .

Since 0 < δ < 1 and I0 is bounded, then

lim
n−→∞

‖I(t)− In(t)‖ = 0.

�

4. Application

In this section, we suggest a numerical example to demonstrate the efficiency
and accuracy of the proposed approach.

Example 1. Let consider the fractional SIS epidemic model with r = 2 and
µ = 1. Then (1) becomes{

DαS(t) = −2S(t)I(t) + I(t),
DαI(t) = 2S(t)I(t)− I(t),

(12)

subject to
S(0) = 0.45, I(0) = 0.55, (13)

where Dα is the fractional derivative operator in the Caputo sense of order
α, 0 < α ≤ 1.

For α = 1, the exact solutions of (12) subject to (13) is (See. [26])

S(t) = 1− 1

2− 2
11e
−t ,

I(t) =
1

2− 2
11e
−t .

According the description of the MFTSM presented in Section 3, we have

S(t) =
∞∑
i=0

Si
tiα

Γ(iα+ 1)
,

I(t) =
∞∑
i=0

Ii
tiα

Γ(iα+ 1)
,

and

S0 = 0.45, S1 = 0.055, S2 = −0.066, S3 = 0.0913, S4 = −0.15312...

I0 = 0.55, I1 = −0.055, I2 = 0.066, I3 = −0.0913, I4 = 0.15312...
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Therefore, the solutions of (12) subject to (13), is given by

S(t) = 0.45 +
0.055tα

Γ(α+ 1)
− 0.066t2α

Γ(2α+ 1)
+

0.091 3t3α

Γ(3α+ 1)
− 0.153 12t4α

Γ(4α+ 1)
+ ...

I(t) = 0.55− 0.055tα

Γ(α+ 1)
+

0.066t2α

Γ(2α+ 1)
− 0.091 3t3α

Γ(3α+ 1)
+

0.153 12t4α

Γ(4α+ 1)
− ...

The special case of α = 1, will give the following result

S(t) = 0.45 + 0.055t− 0.033t2 + 0.015217t3 − 0.00638t4 + ...

I(t) = 0.55− 0.055t+ 0.033t2 − 0.015217t3 + 0.00638t4 − ...

which is the numerical solutions of the classical SIS epidemic model [3].

5. Numerical results and discussion

Figures 1 and 2 represents the graphical behaviour of the exact solutions
S(t) and I(t) and approximate solutions S4(t) and I4(t) for different values
of order of fractional derivative α. From Figures 1 and 2, we see that when
the order of the fractional derivative α tends to 1, the approximate solutions
obtained by MFTSM tends continuously to the exact solutions. Tables 1 and
2 represents the numerical values of the approximate solutions S4(t) and I4(t)
and exact solutions S(t) and I(t). It can be observed from Tables 1 and 2
that exact solutions for (12) are in close agreement with 4−term approximate
solutions using the MFTSM.

Table 1. The numerical values of the exact solution S(t) and
the approximate solutions S4(t) for different values of α.

t α = 0.7 α = 0.8 α = 0.95 α = 1 Exact solution |Sexact − SMFTSM |
0.1 0.46024 0.45831 0.45587 0.45518 0.45518 2.4978× 10−8

0.2 0.46509 0.46331 0.46064 0.45979 0.45979 7.7622× 10−7

0.3 0.46841 0.46710 0.46472 0.46389 0.46389 5.6872× 10−6

0.4 0.47070 0.47006 0.46825 0.46753 0.46755 2.3128× 10−5

0.5 0.47213 0.47234 0.47130 0.47075 0.47082 6.8175× 10−5

Remark 1. In this paper, only 4−term approximate solution is used to cal-
culate the numerical solution and the MFTSM can provide a more precise
solution with less absolute error by calculating a higher order approximation.
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Figure 1. The behavior of the exact solution S(t) and the
approximate solutions S4(t) by MFTSM for different values of
α.
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Figure 2. The behavior of the exact solution I(t) and the
approximate solutions I4(t) by MFTSM for different values of
α.
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Table 2. The numerical values of the exact solution I(t) and
the approximate solutions I4(t) for different values of α.

t α = 0.7 α = 0.8 α = 0.95 α = 1 Exact solution |Iexact − IMFTSM |
0.1 0.53976 0.54169 0.54413 0.54482 0.54482 2.4978× 10−8

0.2 0.53491 0.53669 0.53936 0.54021 0.54021 7.7622× 10−7

0.3 0.53159 0.53290 0.53528 0.53611 0.53611 5.6872× 10−6

0.4 0.52930 0.52994 0.53175 0.53247 0.53245 2.3128× 10−5

0.5 0.52787 0.52766 0.52870 0.52925 0.52918 6.8175× 10−5

6. Conclusion

In this article, a new technique has been introduced called modified frac-
tional Taylor series method (MFTSM) to find numerical solutions for the frac-
tional SIS epidemic model. In order to clarify the accuracy and effectiveness
of the proposed method, it is applied to a numerical example. Numerical re-
sults demonstrate the ease and accuracy of the MFTSM to solve this model.In
addition, this technique gives solutions in the form of convergent series with
components that can be calculated directly without using linearization, pertur-
bation or restrictive assumptions. Finally, based on the efficiency and simplic-
ity of the proposed technique, we conclude that it is a powerful and effective
mathematical tool for many systems of fractional differential equations.

In the future studies, we will extend this approach to study the solutions of
a wide range of systems of nonlinear fractional differential equations involving
a higher-order fractional derivatives α, where n− 1 < α ≤ n and n ≥ 1.
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