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A NEW APPROACH FOR THE ENUMERATION OF
COMPONENTS OF DIGRAPHS OVER QUADRATIC MAPS

M. HARIS MATEEN!, M. KHALID MAHMOOD?*

ABSTRACT. Various partial attempts to count cycles and components of
digraphs from congruences have been made earlier. While the problem is
still open till date. In this work, we introduce a new approach to solve
the problem over quadratic congruence equations. Define a mapping g :
Zy v Zm by g(t) = t?, where Z,, is the ring of residue classes modulo
m. The digraph G(2,m) over the set of residue classes assumes an edge
between the residue classes T and g if and only if ¢g(Z) = ¥ (mod m) for
m € Z7T. Classifications of cyclic and non-cyclic vertices are proposed
and proved using basic modular arithmetic. Finally, explicit formulas for
the enumeration of non-isomorphic components are proposed followed by
simple proofs from number theory.
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1. INTRODUCTION

The modular arithmetic has great importance to explore the discrete graphs
and their structures based on the congruence equations ¥ = 3 (mod m) from
last few decades. These congruence equations are very helpful to express the
relationship between graphs and number theory. The present work is also de-
voted to discuss the digraphs through congruence equations. For this purpose,
we consider an integer m > 0 and define a class 7, which contains the set of
all integers having remainder » modulo m. The corresponding set of complete
residue classes of all integers modulo m is defined as {0, 1, 2, 3, ..., m — 1}.
Furthermore, we construct a diagraph through the following set of residue
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classes of m, i.e., there exists an edge between two vertices x and y if and only
if 22—y =0 (mod m).
Consequently, the vertices x1, xs, ..., z; form a cycle of length ¢ if and only if

2 = 1z (mod m),
2 = x3 (mod m),
r? = 1 (mod m). (1)

A component is a maximal connected subgraph of the corresponding undi-
rected graph. The number of edges coming to a vertex x is called indegree
of x which is denoted by indeg(x) and the number of edges leaving the ver-
tex is referred as outdegree, assigned by outdeg(zx). Since, remainder of every
number modulo m is unique, therefore the outdegree of each vertex is one.

Let G1(2,m) and G2(2,m) be two subdigraphs of G(2,m) induced by co-
prime and not coprime vertices to m, respectively. These subdigraphs define
a partition of G(2,m). The digraph G(2,38) is depicted in Figure.1.
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Figure 1. The digraph G(2,38)

Elahi et al. discussed an algorithm for zero divisor graphs of finite commu-
tative rings and their vertex-based eccentric topological indices in [1]. It is
proved in [2] that each component of such digraphs modulo a prime number p
contains a unique cycle. Rogers [3] and Wilson [4] considered and investigated
the digraphs associated with the congruence a®> = b (mod m) as well. Number
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of fixed points and cyclic subdigraphs for the quadratic congruences have also
been explored in [3, 4]. The symmetric structures (isomorphic components)
and few previous results of these power digraphs have been proposed in [5]. An
informal enumeration of squares of 2¥ through similar derive established in [6].
Moreover, the power digraphs associated with 2 = y (mod m) and a similar
work by employing the exponential congruence a® = y (mod m) have been
studied in [7, 8], respectively. Mahmood and Anwar [9, 10] discussed struc-
tures of loops, components and cycles in digraphs over Lambert’s mapping.
Ali and Mahmood introduced and investigated new numbers on Eular’s to-
tientnt function with applications in graph labeling [11, 12]. The structures of
power digraphs together with their applications in computer science have been
discussed in [13, 14]. To make this paper self readable, readers are suggested
to read [15, 16, 17, 18, 19, 20, 21, 22, 23] as well.

2. CycLIiC VERTICES AND COMPONENTS

This section is devoted to investigate the components of the congruence
2" =y (mod m), for n = 2. We formulate an explicit formula to enumerate
the cyclic vertices of the digraph G(2, p®), where p is prime and e is any positive
exponent. By using mathematical induction the inequality given below can
easily be shown.

Lemma 1. Fore >3, e<f(e—2), =2, 3.

Theorem 2. In the graph G(2,3¢), the vertices 1 + 25371 form a cycle of
length 2, for s =10, 1 and e > 1.

Proof. In the graph G(2,3°), the vertices 5y and (1 construct a cycle of length
2 if and only if 82 = 81 (mod 3¢) and 32 = 3y (mod 3¢). This can be expressed
as

(14293712 = 142sFIge Ll 4 925322 — 1 | 95F13"1(10d3¢), s = 0,(R)
(1422312 = 142932672 1 233°7! (mod 39) (3)

= 1+ (2+6)3° +2132¢72 (mod 39)

= 1423714234+ 2432 (mod 3°)

= 1+2.3°" (mod 3°). (4)
Hence, by using equation (3) and (4), we conclude that in the graph G(2,3°)
the vertices 1 + 23! for s = 0,1 and e > 1, form a cycle of length 2. O

Theorem 3. In the graph G(2,3°), the vertices 1 + 232 form a cycle of
length 6, for s=10, 1, 2, 3, 4, 5 and e > 2.

Proof. The graph G(2,3°) and vertices By, P1, B2, B3, B4, B form a cy-
cle of length 6 if and only if 32 = 81 (mod 3¢), 87 = (2 (mod 3°), B3 =
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B3 (mod 39), B3 = B4 (mod 3¢), 87 = 35 (mod 3¢), 82 = By (mod 3¢). Now,
fors=0, 1, 2, 3, 4, 5and e > 2.

(142°3572)2 = 14 228324 | gstlge—2 (5)
2253%~4 = ( (mod 3°)
(1+2°3°72)? = 1+2°713°72 (mod 3°). (6)
We observe that
14203572 = 14 (1+7.3%)3°2
= 1+3°2 (mod 3°). (7)

Hence, by considering the equations (6) and (7), we conclude that in the graph
G(2,3°), the vertices 1 +2°3°2 for s = 0, 1, 2, 3, 4, 5 and e > 3 form a
cycle of length 6. O

Corollary 2.1. If the vertices 1+2°3°72 in G(2,3°) withs =0, 1, 2, 3, 4, 5
and e > 2 form a cycle of length 6 then, the vertices 1+ 2371 in G(2,3°t1)
with s =0, 1, 2, 3, 4, 5 and e > 2 also give a cycle of length 6.

The proof of this corollary is straightforward if we put e = v+ 1 and apply
Theorem 3.

Theorem 4. [3] Let g does not divide b and b # *1, where ord, b =1 and
assume that q is an odd prime. Let ty be the largest integer such that q®° | b*—1.
Then ordg b =1 for1 <t <ty andl.gt=% fort >t

Theorem 5. [15] The digraph G1(m) contains a cycle of length | if and only
if | = ordg k where d|A(m).

Theorem 6. (1) In the graph G(2,3°), the vertices 1 + 253°~V=1 form a
cycle of length 2.3", for s = 0,1,2,3,...,23" =1, ¢ > 3 and v =
1,2,3,..., u, where

[\

ife=4
u = %—1 for even e > 5
%1 for odd e > 5

(2) In the graph G(2,3°), the vertices 14257137~ form a cycle of length
2.3Y, foru<v<e—2 ande > 4.

Proof. Firstly, we prove that in the graph G(2,3¢) there exist cycles of length
2.3%, where 0 < v < e — 2. Here, we represent the order of 2 modulo 3V by
ords»2. Obviously, ords2 = 2 and ordsz 2 = 6, then by applying Theorem
4, we have eg = 1, d = 2. Hence, ordss 2 = 2.3~1. But the only divisor of
$(3Y) are 1,3,32,...3""! where ordss—1 2 = 2.3V"2. So by applying Theorem
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5, there exists a cycles of length 2.3V, 0 < v < e — 2. Now, for e > 4, it is
straightforward to observe that
36 | 228‘32(671)71)‘ (8)
By using the above result, the following equation
(1 + 28367’071)2 =1+ 22832(67’071) + 9s+lge—v—1

can be expressed as

(1+2°37"71)2 =1+ 27137~ (mod 3°). (9)

The proof is simple for e = 4. So, we examine the following two cases to
complete the proof.

Case: (a) Assume that e is an even integer and by considering u =
we find a cycle of length 2.3V, provided v = wu, then equatio
becomes

(1+2°37)2 =1+ 2137 (mod 3°), s =0,1,2,3,...,2.3* — 1. (10)
and if s = 2.3V — 1 = 2.3% — 1, then we get

-1
n (9

1oty _ gy 87 g5 (11)
=14 (14337133
=1+ (1+33%+,...)3%
=1+3% +3°+... terms involving 3°
=1+3% (mod 39). (12)

Case: (b) Now, we suppose that e is an odd integer. Then by definition
1

e—

u = %=, we find a cycle of length 2.3%. Again by equation (9), we get
(1+2°37)2 =14 2°7132 (mod 3°), s =0,1,2,3,...,2.3" — 1. (13)
and if s =2.3"—1=2.3%—1, then we have
(1+2°135)2 =1+ 43° '35
=14 (1+3)%2 138
=1+ (1+335+,...)3%
=1+3% 4+ 3°+... terms involving 3°.
=1+ 3% (mod 3°). (14)
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Let 50 -1 +203efu71’ 51 -1 _1_2136711,71’...’ 52.3u_1 = 1+
22:3"~13¢=u=1_"Then equations (9), (12) and (14) implies that

B2 By (mod 39),
% = ag (mod 39,

Basu_y = B, (mod 3°).

which shows that the vertices By, 81 ..., B2.3u_1 form a cycle of length
2.3% — 1.
In a similar way we can prove part 2. O

Corollary 2.2. In the graph G(2,3°), the vertices 1 + 2571371 and 1 +
253V~ qre always at a cycle of length 2.3%, fors =0, 1, 2, ... ,2.3" =1, e >
2and 0 <v<e—2.

Corollary 2.3. In the graph G(2,3¢), the mazimum possible length of any
cycle is 2.3°72.

Corollary 2.4. In the digraph G(2,3°), there are e — 1 non-isomorphic cycles
of length > 1.

In the digraph of G(2,3¢), the classification of non-cyclic vertices are given
by the following theorems.

Theorem 7. (1) In the digraph G(2,3¢), the vertices —(25+13¢7v=1 1)+
3¢ and —(2°3°7v=1 4-1) 4+ 3° are non-cyclic vertices and always mapped
on the cyclic vertices, for s =0,1,2,... ,2.3" =1, e > 2.
(2) The vertices 1+3°71, 2371 —1, £(3°+1), 1 are mapped on 3°~! +
1, 231 +1,3°+1, 1, e > 2.

Proof.
(1) The proof is simple. Since (— (251136771 4+1)43¢)2 £ —(25T13¢7v1 4
1) (mod 3¢). In fact the vertices (1 + 25713¢7?~1) are always mapped
on cycle of length 2.3, for s =0, 1, ... ,2.3V — 1 . In similar way we
prove for the vertices —(1 + 2°3¢7v~1) 4 3.
(2) Now, (2.3°71 4+ 1) = 4.32(¢=D) 11 — 436D =1 — 3= (mod 3°)
this implies (2.3~ + 1) mapped on 1 — 3(¢=1)_ Similarly, the vertices
+1, 3°71 — 1, (1 + 3°) are mapped on 1, 371 4+ 1, 14 3.
O
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The figure 2 depicted the Theorem 2.5, Corollary 2.2, 2.3, 2.4.
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Figure 2: Shows the cycles 2, 2.3, 2.3%2, 2.33
of G(2,3°)

Theorem 8. In the graph G(2,p°), the mazimum possible length of a cycle is
2d.p’,v=0,1,2,...,e — 1, where d = ordy2 and p > 5 be any prime.

Theorem 9. For any prime p > 5 and d be the positive divisor of @. If
2% = 1( mod p®). Then in the graph G(2,p¢), the vertices 1 + 25p*~71 e >
2, s = 0,1,2,...,2dp" — 1 construct cycles of length 2d.p’,v = 0,1,2,...,q,
where
= {%—1 for even e
%3 for odd e

Proof. We observe that

_)§—1 forevene
52 forodde
for any v,
e—v—1 — , for even e
- *2'1, for odd e
Then, e < 2. (e — v — 1), So, p¢ | p>¢=v=1_ where p be prime. This implies
that, p2k——1) = ¢ ( mod p°). Then the equation (1 + 25p°~v=1)2 = 1 +
2stlpe—v=1 4 92sp2(e—v—1) reduced to this expression

(1 + 2$pe—'u—1)2 =14+ 25+1pe—v—1 ( mod pe) (15)

N
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Moreover, if 2¢ = 1( mod p®) where, d be the positive divisor of @. Then
22dr" — (292" = (1)%" = 1( mod p®). (16)
Now, we investigate about the cycle of maximum length 2dp”. Using equation
(15),
(14 25pe~v—1)2 1+ 25+ pe=o=1 (mod p°)
1+p° ! (mod p®), using (16)
That is, (1+2°%"71pev"1)> = 14 p° ! (‘mod p°). (17)
Let o =1+ 207V, B1 =14 21p° 7071, Bogpr—y = 1 4 42"~ 1pemol,
Then equations (15) and (17) gives that
B2 = B (mod p°)
B2 = 5 (mod p)

,B%dpv_l = o ( mod p).
Hence, the vertices By, B1,..., Baqpr—1 construct a cycle of length 2dp®. O

The simple consequences of Theorem 8 gives the following corollary.

Corollary 2.5. For any prime p > 5 and d be the positive divisor of @.
If 2¢ = 1( mod p°). Then, in the graph G(2,p%), e > 2, the sets of vertices
1+2p:0<s<2dp2 -1} {1+2%p:0<s<2dp* 3 —1},..., {1 +2%p:
0 < s < 2d — 1} construct cycles of length 2.d.p¢=2,2.d.p¢=3,..., and 2.d,
respectively.

Now, we discuss the digraph G5(2,3°) that contain the vertices which are
not prime to 3 and established a tree with root at zero. We observe that if
e > 5 is odd then the vertices 33, 8 = 1,2,...,3° — 1 has 3 4+ 1 branch
points with no root. In the graph G2(2,3¢), the vertices (9a)? and 3°~! for
a=1,4,9,.., (367;_1)2, where ged(a,3) = 1, are called branch points. We
also investigate that the vertices 35, 8 =1,2,3,...,3° — 1 are mapped either
on the children of branch point or any of the branch points of the graph. The
vertices 33, 8 = 1,2,...,3° — 1 has 3°° branch points excluding root in the
case of e > 5 is even. For a = 1,4,9, ..., (36_;71)2, where gcd(a,3) = 1, the
vertices (9a)? are the branch points of the graph G(2,3¢). In other words we
see that the vertices 33, 8 =1,2,3,...,3°— 1 are mapped on any of the branch
point or children of the branch point.

Lemma 10. In the digraph G(2,p%),e > 1 there are two fized points 0 and 1.

Lemma 11. (1) In the digraph G(2,p°), corresponding to all fized points
there are two possible non-isomorphic components.
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(2) There are e+1 non-isomorphic components in the digraph G(2,3¢), e >
1.

Proof. (1) In the graph G(2,p®), the vertices 1 and 0 are the only fixed points.
Because 1 # 0( mod p€), so the vertices 0 and 1 are not adjacent. Now, assume
(if possible) that the vertices @ and /5 of the components attaining the fixed
points 0 and 1, respectively satisfied a? = 8 ( mod p¢). This implies, o and
B are the adjacent vertices. The integers [y, lo, ..., s must exits in such a way
that a? = I1p ( mod p°), (I1p)? = lap ( mod p®),..., (Isp)?> = 0 ( mod p°).
Then obviously a? = 0 ( mod p¢) for some integer I. In similar fashion there
must exist integers 71,79, ..., 7; in such a way that 42 = r; ( mod p®) and 7? =
7o ( mod p®) and so on 7# = 1 ( mod p¢). Then , we obtain, a* =1 ( mod p®),
for some integer r. Let k = Lem(21,2r) and if o? = 8 ( mod p®), then (a?)* =
B* ( mod p¢). This implies that (o*)2 = % ( mod p®) or 1 = 0 ( mod p®) which
is impossible. Consequently, the disjoint components contain the vertices 0
and 1. Lastly, the number of incongruent solutions of the congruence a? =
1 ( mod p°) is known as the deg(1). Thus deg(1l) < 2 but deg(0) is at least
pz 1 as (Ip)?2 = 0 ( mod p¢). Hence, the components attaining the fixed points
0 and 1 are non-isomorphic.

(2) By Theorem 6, there are e — 1 possible cycles except the fixed points.
Also by using Theorem 5, a cycle is contains in each component, so in the
digraph G(2,3¢) there are e — 1 possible non-isomorphic components. Fur-
thermore, by considering Lemma 11(i), in the graph G(2,3¢) corresponding
to all fixed points there are 2 non-isomorphic components. Hence, there are
e — 1+ 2 = e+ 1 non-isomorphic components in the digraph G(2, 3¢). O

Theorem 12. In the graph G(2,p), For any prime p > 5 such that ¢(p) =
25¢'¢, where q, > 3 be any prime.

(1) If 8 divide ¢(p), then there are e + 2 non-isomorphic components in
G(2,p).

(2) If 8 does not divide ¢(p), then G(2,p) have e — ty + 3 non-isomorphic
components, where tg is the greatest integer such that 25 = 1 (( mod ¢'*0).

Proof. (1) If 3 divide ¢(p) then ¢’ = 3. As ordse2 = 2.3°71 | ¢(p) = 253¢, by
applying Theorem 5, we conclude that cycles of lengths 2,2.3,2.32, ...,2.3¢7!
are exist in the digraph G(2,p). Thus, except the fixed points there exist e
possible cycles. Also, by Lemma 11(1), corresponding to all fixed points there
are 2 non-isomorphic possible components. Because each component has a
cycle, we infer that when 3 divides ¢(p), then there exist e 4 2 non-isomorphic
components.

(2) Now, we assume that 3 does not divide ¢(p), then ¢’ > 5. Obviously,
ordy2 > 1. As tg is the greatest integer such that 2% =1 ( mod ¢*), by
applying Theorem 4, order of 2 modulo ¢’ is 8 for e = 1,2, ...,ty and B¢’°~ %
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for e > to. We conclude that cycles of lengths 3, 3¢, ..., 8¢"¢7 % exist. So,
except the fixed points there exist e —tg+ 1 non-isomorphic cycles. By Lemma
11(i), corresponding to all fixed points there exist 2 possible non-isomorphic
components. Hence, we conclude that there are e — ¢y + 3 cycles of different
lengths and these cycles are non-isomorphic. Therefore, we find that when
3 divides ¢(p), then there exist e + 2 non-isomorphic components. If 3 does
not divide ¢(p), in the digraph G(2,p), there are e — ¢ty + 3 non-isomorphic
components. ]

Example 1. If we choose p = 487. Then ¢(p) = 2.3°, 3 divide ¢(p). Take
¢ =3. As ordg2 = 2.3 | ¢(p) = 2.3°, by applying Theorem 5, we conclude
that cycles of lengths 2,2.3,2.3%,2.33,2.3% exist in the digraph G(2,p). Thus,
other then fixed points there exist 5 possible cycles. Also, by Lemma 11(1),
corresponding to all fized points there are 2 non-isomorphic possible compo-
nents. Because each component has a cycle, we infer that there exist 5+2 =17
non-isomorphic components when 3 divide ¢(p).

(2) Now, take p = 5477. Then ¢(p) = 22(37)%. ¢ = 37. Here,e =2 and to = 1
as ordy2 = 36, ord,22 = 1332 = 36¢'. Thus, there exist 2 non-isomorphic
components attaining cycles of lengths 36 and 1332. Also, by Lemma 11(1),
corresponding to all fized points there exist 2 non-isomorphic possible compo-
nents. Because each component has a cycle. Hence, we infer that there exist

=2-1+ 8 =e—tyg+ 3 possible non-isomorphic components.
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