
Journal of Prime Research in Mathematics Vol. 16(2)(2020), 56-66

A NEW APPROACH FOR THE ENUMERATION OF

COMPONENTS OF DIGRAPHS OVER QUADRATIC MAPS

M. HARIS MATEEN1, M. KHALID MAHMOOD2,∗

Abstract. Various partial attempts to count cycles and components of
digraphs from congruences have been made earlier. While the problem is
still open till date. In this work, we introduce a new approach to solve
the problem over quadratic congruence equations. Define a mapping g :
Zm 7→ Zm by g(t) = t2, where Zm is the ring of residue classes modulo
m. The digraph G(2,m) over the set of residue classes assumes an edge
between the residue classes x and y if and only if g(x) ≡ y (mod m) for
m ∈ Z+. Classifications of cyclic and non-cyclic vertices are proposed
and proved using basic modular arithmetic. Finally, explicit formulas for
the enumeration of non-isomorphic components are proposed followed by
simple proofs from number theory.
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1. Introduction

The modular arithmetic has great importance to explore the discrete graphs
and their structures based on the congruence equations xk ≡ y (mod m) from
last few decades. These congruence equations are very helpful to express the
relationship between graphs and number theory. The present work is also de-
voted to discuss the digraphs through congruence equations. For this purpose,
we consider an integer m > 0 and define a class r, which contains the set of
all integers having remainder r modulo m. The corresponding set of complete
residue classes of all integers modulo m is defined as {0, 1, 2, 3, . . . , m− 1}.
Furthermore, we construct a diagraph through the following set of residue
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classes of m, i.e., there exists an edge between two vertices x and y if and only
if x2 − y ≡ 0 (mod m).
Consequently, the vertices x1, x2, ..., xt form a cycle of length t if and only if

x21 ≡ x2 (mod m),

x22 ≡ x3 (mod m),

...

x2t ≡ x1 (mod m). (1)

A component is a maximal connected subgraph of the corresponding undi-
rected graph. The number of edges coming to a vertex x is called indegree
of x which is denoted by indeg(x) and the number of edges leaving the ver-
tex is referred as outdegree, assigned by outdeg(x). Since, remainder of every
number modulo m is unique, therefore the outdegree of each vertex is one.

Let G1(2,m) and G2(2,m) be two subdigraphs of G(2,m) induced by co-
prime and not coprime vertices to m, respectively. These subdigraphs define
a partition of G(2,m). The digraph G(2, 38) is depicted in Figure.1.
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Figure 1. The digraph G(2, 38)

Elahi et al. discussed an algorithm for zero divisor graphs of finite commu-
tative rings and their vertex-based eccentric topological indices in [1]. It is
proved in [2] that each component of such digraphs modulo a prime number p
contains a unique cycle. Rogers [3] and Wilson [4] considered and investigated
the digraphs associated with the congruence a2 ≡ b (mod m) as well. Number
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of fixed points and cyclic subdigraphs for the quadratic congruences have also
been explored in [3, 4]. The symmetric structures (isomorphic components)
and few previous results of these power digraphs have been proposed in [5]. An
informal enumeration of squares of 2k through similar derive established in [6].
Moreover, the power digraphs associated with x4 ≡ y (mod m) and a similar
work by employing the exponential congruence ax ≡ y (mod m) have been
studied in [7, 8], respectively. Mahmood and Anwar [9, 10] discussed struc-
tures of loops, components and cycles in digraphs over Lambert’s mapping.
Ali and Mahmood introduced and investigated new numbers on Eular’s to-
tientnt function with applications in graph labeling [11, 12]. The structures of
power digraphs together with their applications in computer science have been
discussed in [13, 14]. To make this paper self readable, readers are suggested
to read [15, 16, 17, 18, 19, 20, 21, 22, 23] as well.

2. Cyclic Vertices and Components

This section is devoted to investigate the components of the congruence
xn ≡ y (mod m), for n = 2. We formulate an explicit formula to enumerate
the cyclic vertices of the digraph G(2, pe), where p is prime and e is any positive
exponent. By using mathematical induction the inequality given below can
easily be shown.

Lemma 1. For e > 3, e ≤ β(e− 2), β = 2, 3.

Theorem 2. In the graph G(2, 3e), the vertices 1 + 2s3e−1 form a cycle of
length 2, for s = 0, 1 and e > 1.

Proof. In the graph G(2, 3e), the vertices β0 and β1 construct a cycle of length
2 if and only if β2

0 ≡ β1 (mod 3e) and β2
1 ≡ β0 (mod 3e). This can be expressed

as

(1 + 2s3e−1)2 = 1 + 2s+13e−1 + 22s32e−2 ≡ 1 + 2s+13e−1(mod3e), s = 0, 1,(2)

(1 + 223e−1)2 = 1 + 2432e−2 + 233e−1 (mod 3e) (3)

= 1 + (2 + 6)3e−1 + 2432e−2 (mod 3e)

= 1 + 2.3e−1 + 2.3e + 2432(e−1) (mod 3e)

≡ 1 + 2.3e−1 (mod 3e). (4)

Hence, by using equation (3) and (4), we conclude that in the graph G(2, 3e)
the vertices 1 + 2e3e−1 for s = 0, 1 and e > 1, form a cycle of length 2. �

Theorem 3. In the graph G(2, 3e), the vertices 1 + 2s3e−2 form a cycle of
length 6, for s = 0, 1, 2, 3, 4, 5 and e > 2.

Proof. The graph G(2, 3e) and vertices β0, β1, β2, β3, β4, β5 form a cy-
cle of length 6 if and only if β2

0 ≡ β1 (mod 3e), β2
1 ≡ β2 (mod 3e), β2

2 ≡
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β3 (mod 3e), β2
3 ≡ β4 (mod 3e), β2

4 ≡ β5 (mod 3e), β2
5 ≡ β0 (mod 3e). Now,

for s = 0, 1, 2, 3, 4, 5 and e > 2.

(1 + 2s3e−2)2 = 1 + 22s32e−4 + 2s+13e−2 (5)

22s32e−4 ≡ 0 (mod 3e)

(1 + 2s3e−2)2 ≡ 1 + 2s+13e−2 (mod 3e). (6)

We observe that

1 + 263e−2 = 1 + (1 + 7.32)3e−2

≡ 1 + 3e−2 (mod 3e). (7)

Hence, by considering the equations (6) and (7), we conclude that in the graph
G(2, 3e), the vertices 1 + 2s3e−2 for s = 0, 1, 2, 3, 4, 5 and e > 3 form a
cycle of length 6. �

Corollary 2.1. If the vertices 1+2s3e−2 in G(2, 3e) with s = 0, 1, 2, 3, 4, 5
and e > 2 form a cycle of length 6 then, the vertices 1 + 2s3e−1 in G(2, 3e+1)
with s = 0, 1, 2, 3, 4, 5 and e > 2 also give a cycle of length 6.

The proof of this corollary is straightforward if we put e = v+ 1 and apply
Theorem 3.

Theorem 4. [3] Let q does not divide b and b 6= ±1, where ordq b = l and
assume that q is an odd prime. Let t0 be the largest integer such that qt0 | bt−1.
Then ordqt b = l for 1 ≤ t ≤ t0 and l.qt−t0 for t ≥ t0

Theorem 5. [15] The digraph G1(m) contains a cycle of length l if and only
if l = ordd k where d|λ(m).

Theorem 6. (1) In the graph G(2, 3e), the vertices 1 + 2s3e−v−1 form a
cycle of length 2.3v, for s = 0, 1, 2, 3, . . . , 2.3v − 1, e > 3 and v =
1, 2, 3, . . . , u, where

u =











2 if e = 4
e
2 − 1 for even e ≥ 5
e−1
2 for odd e ≥ 5

(2) In the graph G(2, 3e), the vertices 1+2s+13e−v−1 form a cycle of length
2.3v , for u < v ≤ e− 2 and e > 4.

Proof. Firstly, we prove that in the graph G(2, 3e) there exist cycles of length
2.3e, where 0 ≤ v ≤ e − 2. Here, we represent the order of 2 modulo 3v by
ord3v2. Obviously, ord32 = 2 and ord32 2 = 6, then by applying Theorem
4, we have e0 = 1, d = 2. Hence, ord3v 2 = 2.3v−1. But the only divisor of
φ(3v) are 1, 3, 32, . . . 3v−1, where ord3v−1 2 = 2.3v−2. So by applying Theorem
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5, there exists a cycles of length 2.3v , 0 ≤ v ≤ e − 2. Now, for e > 4, it is
straightforward to observe that

3e | 22s.32(e−v−1). (8)

By using the above result, the following equation

(1 + 2s3e−v−1)2 ≡ 1 + 22s32(e−v−1) + 2s+13e−v−1

can be expressed as

(1 + 2s3e−v−1)2 ≡ 1 + 2e+13e−v−1 (mod 3e). (9)

The proof is simple for e = 4. So, we examine the following two cases to
complete the proof.

Case: (a) Assume that e is an even integer and by considering u = e
2−1,

we find a cycle of length 2.3v , provided v = u, then equation (9)
becomes

(1 + 2s3
e−1

2 )2 ≡ 1 + 2s+13
e−1

2 (mod 3e), s = 0, 1, 2, 3, . . . , 2.3u − 1. (10)

and if s = 2.3v − 1 = 2.3u − 1, then we get

1 + 2s+13
e−1

2 = 1 + 43
e−1
2 3

e−1

2 (11)

= 1 + (1 + 3)3
e
2 −13

e
2

= 1 + (1 + 3.3
e−1

2 +, . . . )3
e−1

2

= 1 + 3
e−1

2 + 3e + . . . terms involving 3e

≡ 1 + 3
e−1

2 (mod 3e). (12)

Case: (b) Now, we suppose that e is an odd integer. Then by definition
u = e−1

2 , we find a cycle of length 2.3u. Again by equation (9), we get

(1 + 2s3
e
2 )2 ≡ 1 + 2s+13

e
2 (mod 3e), s = 0, 1, 2, 3, . . . , 2.3v − 1. (13)

and if s = 2.3v − 1 = 2.3u − 1, then we have

(1 + 2s+13
e
2 )2 = 1 + 43

e
2
−1

3
e
2

= 1 + (1 + 3)3
e
2−13

e
2

= 1 + (1 + 3.3
e
2+, . . . )3

e
2

= 1 + 3
e
2 + 3e + . . . terms involving 3e.

≡ 1 + 3
e
2 (mod 3e). (14)
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Let β0 = 1 + 203e−u−1, β1 = 1 + 213e−u−1, . . . , β2.3u−1 = 1 +
22.3

u
−13e−u−1. Then equations (9), (12) and (14) implies that

β2
0 ≡ β1 (mod 3e),

β2 ≡ a2 (mod 3e),

...

β2
2.3u−1 ≡ βo (mod 3e).

which shows that the vertices β0, β1 . . . , β2.3u−1 form a cycle of length
2.3u − 1.

In a similar way we can prove part 2. �

Corollary 2.2. In the graph G(2, 3e), the vertices 1 + 2s+13e−v−1 and 1 +
2s3e−v−1 are always at a cycle of length 2.3v, for s = 0, 1, 2, . . . , 2.3v−1, e >
2 and 0 ≤ v ≤ e− 2.

Corollary 2.3. In the graph G(2, 3e), the maximum possible length of any
cycle is 2.3e−2.

Corollary 2.4. In the digraph G(2, 3e), there are e−1 non-isomorphic cycles
of length > 1.

In the digraph of G(2, 3e), the classification of non-cyclic vertices are given
by the following theorems.

Theorem 7. (1) In the digraph G(2, 3e), the vertices −(2s+13e−v−1+1)+
3e and −(2s3e−v−1+1)+3e are non-cyclic vertices and always mapped
on the cyclic vertices, for s = 0, 1, 2, . . . , 2.3v − 1, e > 2.

(2) The vertices 1+3e−1, 2.3e−1−1, ±(3e+1), ±1 are mapped on 3e−1+
1, 2.3e−1 + 1, 3e + 1, 1, e > 2.

Proof.
(1) The proof is simple. Since (−(2s+13e−v−1+1)+3e)2 6≡ −(2s+13e−v−1+

1) (mod 3e). In fact the vertices (1 + 2s+13e−v−1) are always mapped
on cycle of length 2.3v , for s = 0, 1, . . . , 2.3v − 1 . In similar way we
prove for the vertices −(1 + 2s3e−v−1) + 3e.

(2) Now, (2.3e−1 + 1)2 = 4.32(e−1) + 1 − 4.3(e−1) ≡ 1 − 3(e−1) (mod 3e)
this implies (2.3e−1 + 1) mapped on 1− 3(e−1). Similarly, the vertices
±1, 3e−1 − 1, ±(1 + 3e) are mapped on 1, 3e−1 + 1, 1 + 3e.

�
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The figure 2 depicted the Theorem 2.5, Corollary 2.2, 2.3, 2.4.
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Figure 2: Shows the cycles 2, 2.3, 2.32, 2.33

of G(2, 35)

Theorem 8. In the graph G(2, pe), the maximum possible length of a cycle is
2d.pv, v = 0, 1, 2, ..., e − 1, where d = ordp2 and p ≥ 5 be any prime.

Theorem 9. For any prime p ≥ 5 and d be the positive divisor of φ(p)
2 . If

2d ≡ 1( mod pe). Then in the graph G(2, pe), the vertices 1 + 2spe−v−1, e ≥
2, s = 0, 1, 2, ..., 2dpv − 1 construct cycles of length 2d.pv, v = 0, 1, 2, ..., q,
where

q =

{

e
2 − 1 for even e
e−3
2 for odd e

Proof. We observe that

q =

{

e
2 − 1 for even e
e−3
2 for odd e

for any v,

e− v − 1 =

{

e
2 , for even e
e+1
2 , for odd e

Then, e ≤ 2. (e − v − 1), So, pe | p2(e−v−1), where p be prime. This implies

that, p2(k−r−1) ≡ 0 ( mod pe). Then the equation (1 + 2spe−v−1)2 = 1 +

2s+1pe−v−1 + 22sp2(e−v−1) reduced to this expression

(1 + 2spe−v−1)2 ≡ 1 + 2s+1pe−v−1 ( mod pe) (15)
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Moreover, if 2d ≡ 1( mod pe) where, d be the positive divisor of φ(p)
2 . Then

22dp
v

= (2d)2p
v

≡ (1)2p
v

≡ 1( mod pe). (16)

Now, we investigate about the cycle of maximum length 2dpv. Using equation
(15),

(1 + 2spe−v−1)2 ≡ 1 + 2s+1pe−v−1 ( mod pe)

≡ 1 + pe−v−1 ( mod pe), using (16)

That is, (1 + 22dp
v
−1pe−v−1)2 ≡ 1 + pe−v−1 ( mod pe). (17)

Let β0 = 1 + 20pe−v−1, β1 = 1 + 21pe−v−1,..., β2.dpv−1 = 1 + 42.dp
v
−1pe−v−1.

Then equations (15) and (17) gives that

β2
0 ≡ β1 ( mod pe)

β2
1 ≡ β2 ( mod pe)

...

β2
2dpv−1 ≡ β0 ( mod pk).

Hence, the vertices β0, β1,..., β2dpv−1 construct a cycle of length 2dpv . �

The simple consequences of Theorem 8 gives the following corollary.

Corollary 2.5. For any prime p ≥ 5 and d be the positive divisor of φ(p)
2 .

If 2d ≡ 1( mod pe). Then, in the graph G(2, pe), e ≥ 2, the sets of vertices
{1 + 2sp : 0 ≤ s ≤ 2d.pe−2 − 1}, {1 + 2sp : 0 ≤ s ≤ 2d.pe−3 − 1}, ..., {1 + 2sp :
0 ≤ s ≤ 2d − 1} construct cycles of length 2.d.pe−2, 2.d.pe−3,..., and 2.d,
respectively.

Now, we discuss the digraph G2(2, 3
e) that contain the vertices which are

not prime to 3 and established a tree with root at zero. We observe that if
e > 5 is odd then the vertices 3β, β = 1, 2, ..., 3e − 1 has 3e−5 + 1 branch
points with no root. In the graph G2(2, 3

e), the vertices (9α)2 and 3e−1 for

α = 1, 4, 9, ..., (3
e−4

−1
2 )2, where gcd(α, 3) = 1, are called branch points. We

also investigate that the vertices 3β, β = 1, 2, 3, ..., 3e − 1 are mapped either
on the children of branch point or any of the branch points of the graph. The
vertices 3β, β = 1, 2, ..., 3e − 1 has 3e−5 branch points excluding root in the

case of e > 5 is even. For α = 1, 4, 9, ..., (3
e−4

−1
2 )2, where gcd(α, 3) = 1, the

vertices (9α)2 are the branch points of the graph G2(2, 3
e). In other words we

see that the vertices 3β, β = 1, 2, 3, ..., 3e−1 are mapped on any of the branch
point or children of the branch point.

Lemma 10. In the digraph G(2, pe), e ≥ 1 there are two fixed points 0 and 1.

Lemma 11. (1) In the digraph G(2, pe), corresponding to all fixed points
there are two possible non-isomorphic components.
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(2) There are e+1 non-isomorphic components in the digraph G(2, 3e), e >
1.

Proof. (1) In the graph G(2, pe), the vertices 1 and 0 are the only fixed points.
Because 1 6≡ 0( mod pe), so the vertices 0 and 1 are not adjacent. Now, assume
(if possible) that the vertices α and β of the components attaining the fixed
points 0 and 1, respectively satisfied α2 ≡ β ( mod pe). This implies, α and
β are the adjacent vertices. The integers l1, l2, ..., ls must exits in such a way
that α2 ≡ l1p ( mod pe), (l1p)

2 ≡ l2p ( mod pe),..., (lsp)
2 ≡ 0 ( mod pe).

Then obviously α2l ≡ 0 ( mod pe) for some integer l. In similar fashion there
must exist integers r1, r2, ..., rl in such a way that β2 ≡ r1 ( mod pe) and r21 ≡
r2 ( mod pe) and so on r2l ≡ 1 ( mod pe). Then , we obtain, α2r ≡ 1 ( mod pe),

for some integer r. Let k = Lcm(2l, 2r) and if α2 ≡ β ( mod pe), then (α2)k ≡
βk ( mod pe). This implies that (αk)2 ≡ βk ( mod pe) or 1 ≡ 0 ( mod pe) which
is impossible. Consequently, the disjoint components contain the vertices 0
and 1. Lastly, the number of incongruent solutions of the congruence α2 ≡
1 ( mod pe) is known as the deg(1). Thus deg(1) ≤ 2 but deg(0) is at least

p
e
2
−1 as (lp)2 ≡ 0 ( mod pe). Hence, the components attaining the fixed points

0 and 1 are non-isomorphic.
(2) By Theorem 6, there are e − 1 possible cycles except the fixed points.

Also by using Theorem 5, a cycle is contains in each component, so in the
digraph G(2, 3e) there are e − 1 possible non-isomorphic components. Fur-
thermore, by considering Lemma 11(i), in the graph G(2, 3e) corresponding
to all fixed points there are 2 non-isomorphic components. Hence, there are
e− 1 + 2 = e+ 1 non-isomorphic components in the digraph G(2, 3e). �

Theorem 12. In the graph G(2, p), For any prime p ≥ 5 such that φ(p) =

2sq′e, where q
′

≥ 3 be any prime.

(1) If 3 divide φ(p), then there are e + 2 non-isomorphic components in
G(2, p).

(2) If 3 does not divide φ(p), then G(2, p) have e− t0 + 3 non-isomorphic
components, where t0 is the greatest integer such that 2β ≡ 1 ( mod q′t0).

Proof. (1) If 3 divide φ(p) then q′ = 3. As ord3e2 = 2.3e−1 | φ(p) = 2s3e, by
applying Theorem 5, we conclude that cycles of lengths 2, 2.3, 2.32 , ..., 2.3e−1

are exist in the digraph G(2, p). Thus, except the fixed points there exist e

possible cycles. Also, by Lemma 11(1), corresponding to all fixed points there
are 2 non-isomorphic possible components. Because each component has a
cycle, we infer that when 3 divides φ(p), then there exist e+2 non-isomorphic
components.
(2) Now, we assume that 3 does not divide φ(p), then q′ ≥ 5. Obviously,
ordq′2 > 1. As t0 is the greatest integer such that 2β ≡ 1 ( mod q′t0), by
applying Theorem 4, order of 2 modulo q′e is β for e = 1, 2, ..., t0 and βq′e−t0
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for e ≥ t0. We conclude that cycles of lengths β, βq′, ..., βq′e−t0 exist. So,
except the fixed points there exist e−t0+1 non-isomorphic cycles. By Lemma
11(i), corresponding to all fixed points there exist 2 possible non-isomorphic
components. Hence, we conclude that there are e − t0 + 3 cycles of different
lengths and these cycles are non-isomorphic. Therefore, we find that when
3 divides φ(p), then there exist e + 2 non-isomorphic components. If 3 does
not divide φ(p), in the digraph G(2, p), there are e − t0 + 3 non-isomorphic
components. �

Example 1. If we choose p = 487. Then φ(p) = 2.35, 3 divide φ(p). Take
q′ = 3. As ord352 = 2.34 | φ(p) = 2.35, by applying Theorem 5, we conclude
that cycles of lengths 2, 2.3, 2.32 , 2.33, 2.34 exist in the digraph G(2, p). Thus,
other then fixed points there exist 5 possible cycles. Also, by Lemma 11(1),
corresponding to all fixed points there are 2 non-isomorphic possible compo-
nents. Because each component has a cycle, we infer that there exist 5+2 = 7
non-isomorphic components when 3 divide φ(p).

(2) Now, take p = 5477. Then φ(p) = 22(37)2. q′ = 37. Here, e = 2 and t0 = 1
as ordq′2 = 36, ordq′22 = 1332 = 36q′. Thus, there exist 2 non-isomorphic
components attaining cycles of lengths 36 and 1332. Also, by Lemma 11(1),
corresponding to all fixed points there exist 2 non-isomorphic possible compo-
nents. Because each component has a cycle. Hence, we infer that there exist
4 = 2 - 1 + 3 = e− t0 + 3 possible non-isomorphic components.
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