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NOVEL FRACTIONAL DIFFERENTIAL OPERATOR AND
ITS APPLICATION IN FLUID DYNAMICS

MUHAMMAD IMRAN ASJAD

ABSTRACT. Theoretical analysis of unsteady incompressible viscous fluid
has been carried with constant proportional Caputo fractional derivative
namely constant proportional Caputo type with singular kernel. The mod-
eled considered in this paper is the fundament problem of fluid dynamics.
The resulting governing equations are modeled with hybrid fractional oper-
ator of singular kernel and its solution obtained by using Laplace transform
method and expressed in terms of series. Some graphs are captured for
fractional parameter « for large and small time and found that velocity
shows dual trend for small and large values of time for different values of
fractional parameter a. Further, compared the present results with the
results obtained with new fractional operators and found that constant
proportional Caputo type operator portrait better velocity decay. More-
over, for increasing time, momentum boundary layer thickness increases
while for grater values of fractional parameter it reduces.
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1. INTRODUCTION

The local conformable derivative formerly introduced in (2014) by Khalil
et al. [1]. Unfortunately there were draw backs like some properties of this
operator [2]. Later on it attracted many researchers who have been intensely
studied with its possible applications in different branches of science for ex-
amples [3-11]. In [12], new class of conformable derivatives and its properties
were introduced in (2015). These operators have applications in control the-
ory. Since there are many fractional operators in the existing literature and
some which have been extensively used by researchers, are Caputo, CF, and
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ABC during the last four to five years. Fractional operators are usually used
to see the history or memory of the functions based on different kernels like,
power law kernel, exponential kernel, Mittage-Leffler kernel etc. These kernels
are usually appear in many physical processes like decay phenomena. Many
researchers successfully found many applications in fluid dynamics, heat trans-
fer, nanotechnology and many more with power law (C), exponential law (CF)
and Mittage-Leffler law (ABC) fractional derivatives and can be seen in the
references for instance [14-29].

In (2020) a new kind of fractional operator with power law recently sug-
gested by Baleanu et al. [30]. It is combined with two types of fractional op-
erators called proportional and Caputo in a single operator which also known
as constant proportional Caputo type fractional derivative. The constant pro-
portional Caputo type derivative is defined as follows:

The hybrid fractional operator by combining proportional and Caupto defini-
tions is defined as [30].
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This operator has application in fractional partial differential equation and
control theory. In this work, solution of fractional PDE’s expressed in terms of
Mittage-Leffler function with limiting cases as follows The Laplace transform
of constant proportional Caputo is given as [30]
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For the moment, there is no single result in the literature discussed with this
new operator. Therefore, our interest here to apply the most recent fractional
operator namely constant proportional Caputo fractional operator to the most
fundamental problem of fluid dynamics. Solution obtained via Laplace trans-
form in terms of Mittage-Leffler function and compared with the solutions of
all the existing fractional operators. In this paper, we show that which oper-
ator is better in exhibiting decay of the velocity of the fluid. We have plotted
some graphs for fractional parameters for small and large time. Also, drawn
some comparison between present power law (C), exponential law (CF) and
Mittage-Leffler law (ABC) and presented graphically.

CPCCan(t) = )dT, 0<a<l. (1)
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2. TSTATEMENT OF THE PROBLEM AND SOLUTION

Consider laminar flow of a viscous unsteady incompressible fluid between
two infinite parallel plate which are kept at a distance L apart in oxyz coor-
dinate system as shown in Fig. 1. We assuming that upper plate is moving
with constant velocity V, in the direction of z — Axis while lower plate is at
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rest and x — Axis perpendicular to it and there is fluid flow properties contri-
bution in the z — Azis. Also, neglecting pressure gradient and body force the
dimensionless governing equation for the flow along with initial and boundary
conditions are [26]

FIGURE 1. Geometry of the physical model

ut(yv t) = uyy(ya t)v (3)
u(y,0) =0, u(0,t) =0, wu(l,t)=1. (4)
Fractional model using [30], we have
CPOCOU(y, ) = uyy(y,t), 0<a<l. (5)
By taking Laplace transform of Eq. (4) and (5) we have
_ Ly 1| o-
Uyy(y,5) = Lo [1 +7s 1] a(y, s), (6)
o
initial and boundary conditions:
1
w(0,5) =0, a(l,s)= - (7)

The solution of Eq. (6) subject Eq. (7) is given by or
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Eq. (8) can be written as in more suitable form so that we can find inverse
Laplace transform analytically,
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Taking Laplace inverse of Eq. (9) we get the final expression for solution in
terms of series
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Now, we find the solution of the problem given in Eqgs. (3) and (4), with
different fractional operators by applying the Laplace transform method one
by one which are listed below.

2.1. Velocity field with power law kernel C. Solution of Eq. (3) with
initial and boundary conditions given in Eq. (4) with Caputo fractional de-
rivative and Laplace transform is given below
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2.2. Velocity field with exponential kernel CF. Solution of Eq. (3) with
initial and boundary conditions given in Eq. (4) with CF fractional derivative
and Laplace transform is given below
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2.3. Velocity field with Mittage-Lefller kernel ABC. Solution of Eq.
(3) with initial and boundary conditions given in Eq. (4) with ABC fractional
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derivative and Laplace transform is given below
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3. NUMERICAL RESULTS AND DISCUSSION

Novel fractional operator called constant proportional fractional operator
applied in the fundamental problem of fluid dynamics. This new operator is
a combination of constant proportional and Caputo type with singular kernel.
Obtained solutions are expressed in terms of Mittage-Lefler function which
has application in control theory as well. We have drawn some comparison
with recent work through some graphs and presented graphically.

The « variations on velocity field is presented in figures 2 and 3. The fluid
velocity shows rapid decay in its profile for the greater values of fractional
parameters « for small time. Also noticed that momentum boundary layer
increases between the layers. This happened due to the power law kernel
fractional fractional operator which are used to explain the memory of the
function at certain time t. The opposite trend was observed for large time.
This means that velocity shows dual solutions for small and large time.

Lastly, in figure 4 and 5 we have drawn the comparison between all the
existing fractional operators and constant proportional and Caputo fractional
operator for large time ¢ = 15, t = 30, 45 and ¢t = 60. By increasing time
fractional velocity falls back rapidly rather than all others fractional operators.
It is also note that momentum boundary layer thickness of the velocity is also
increases by increasing the value of time t. Figures 6 and 7 are plotted to
see the impact for different values of alpha on velocities of different fractional
models for ¢ =45 and o = 0.1,0.2,0.6,0.99 and observed that when oo — 1 all
the fractional models are coincident which is natural to convert into classical
model.

Further, observation is that increasing the values of & momentum boundary
layer thickness reduces.
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FI1GURE 2. Profiles of velocity with constant proportional Ca-
puto fractional derivative for small time ¢t = 0.1
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FI1GURE 3. Profiles of velocity with constant proportional Ca-
puto fractional derivative for large time ¢t = 2.5
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FIGURE 4. Comparison between velocities of power law (C),
exponential law (CF) and Mittage-Leffler law (ABC), fractal
fractional and constant proportional Caputo fractional deriva-
tives for t=15 and t=30
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FIGURE 5. Comparison between velocities of power law (C),
exponential law (CF) and Mittage-Leffler law (ABC), Fractal
fractional and constant proportional Caputo fractional deriva-
tives for t=45 and t=60
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FIGURE 6. Comparison between velocities of power law (C),
exponential law (CF) and Mittage-Leffler law (ABC) and con-
stant proportional Caputo fractional derivatives for t=45 and
a=0.1and a=0.2
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FIGURE 7. Comparison between velocities of power law (C),
exponential law (CF) and Mittage-Leffler law (ABC) and con-
stant proportional Caputo fractional derivatives for t=45 and
a=0.6and a=0.9
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4. CONCLUSIONS

This paper deals with the application of constant proportional Caputo frac-
tional derivative with singular kernel which is a linear combination of con-
formable fractional derivative and Caputo fractional derivative. Analytical so-
lutions are obtained via Laplace transform. The main outcomes of the present
study are:

e Fluid velocity field shows dual behavior for short and long time with differ-
ent fractional a.

e Decay in the velocity is an increasing function for larger values of time.

e Momentum boundary layer thickness between all the fractional models re-
duces for increasing @ — 1 hence coincide with ordinary model.

e In a comparison between constant proportional fractional and all other ex-
isting fractional operators, we concluded that new fractional operator exhibits
memory of the velocity better than power law (C), exponential law (CF) and
Mittage-Leffler law (ABC).
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