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IMPROVEMENT OF THE HARDY INEQUALITY

INVOLVING k-FRACTIONAL CALCULUS

SAJID IQBAL1,∗, MUHAMMAD SAMRAIZ2

Abstract. The major idea of this paper is to establish some new improve-
ments of the Hardy inequality by using k-fractional integral of Riemann-
type, Caputo k-fractional derivative, Hilfer k-fractional derivative and
Riemann-Liouville (k, r)-fractional integral. We discuss the log-convexity
of the related linear functionals. We also deduce some known results from
our general results.
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1. Introduction

The study of non integer order derivative and integral operators is known
as fractional calculus. It draws increasing attention due to its applications in
many fields see e.g. the books [1, 2].

Let us recall the well known definitions of Riemann-Liouville fractional in-
tegrals (see [3], [4]).

Definition 1. Let [a, b] be a finite interval on real axis R. The left-sided and
right-sided Riemann-Liouville fractional integrals Iαa+f and Iαb−f of order α >
0 respectively are defined by

Iαa+f(x) =
1

Γ(α)

x∫
a

f(y)(x− y)α−1dy, (x > a),
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and

Iαb−f(x) =
1

Γ(α)

b∫
x

f(y)(y − x)α−1dy, (x < b),

where Γ(α) is the Gamma function.

The first result yields that fractional integral operators are bounded in
Lp(a, b), −∞ < a < b <∞, 1 ≤ p ≤ ∞, that is

‖Iαa+f‖p ≤ K‖f‖p, ‖Iαb−f‖p ≤ K‖f‖p, (1)

where

K =
(b− a)α

Γ(α+ 1)
.

G. H. Hardy proved the inequality (1) involving left-sided fractional integral
in one of his initial paper (see [5]) and is known as inequality of G. H. Hardy
(see [6]).

We initiate some essential notation and recollect a number of basic specifics
about convex functions, log-convex functions [7, 8] as well as exponentially
convex functions [9, 10, 11]. For More details, see [12, 13, 14, 15, 16] and
references therein.

Definition 2. A positive function f is said to be logarithmically convex if
log f is a convex function on an interval I ⊆ R. For such function f , we
shortly say f is log-convex. A positive function f is log-convex in the Jensen
sense if for each a, b ∈ I

f2

(
a+ b

2

)
≤ f(a)f(b)

holds, i.e., if log f is convex in the Jensen sense.

Definition 3. [17] Let I ⊆ R be an interval and f : I → R be convex on I.
Then for s1, s2, s3 ∈ I such that s1 < s2 < s3, the following inequality holds:

f(s1)(s3 − s2) + f(s2)(s1 − s3) + f(s3)(s2 − s1) ≥ 0.

The function f is log-convex on an interval I, if and only if for all s1, s2, s3 ∈ I,
s1 < s2 < s3 it holds

[f(s2)]s3−s1 ≤ [f(s1)]s3−s2 [f(s3)]s2−s1 .

Definition 4. [10, p. 373] A function h : (a, b) → R is exponentially convex
if it is continuous and

n∑
i,j=1

aiajh(xi + xj) ≥ 0,

for all n ∈ N and all choices of ai ∈ R, xi + xj ∈ (a, b), i, j = 1, ..., n.
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Proposition 1. [9] Let h : (a, b) → R. The following statements are equiva-
lent.
(i) h is exponentially convex.
(ii) h is continuous and

n∑
i,j=1

aiajh

(
xi + xj

2

)
≥ 0,

for every n ∈ N, ai ∈ (a, b) and xi ∈ (a, b), 1 ≤ i ≤ n.

Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite measures
and Ak be an integral operator defined by

Akf(x) :=
1

K(x)

∫
Ω2

k(x, y)f(y)dµ2(y), (2)

where k : Ω1×Ω2 → R is measurable and non-negative kernel, f is measurable
function on Ω2, and

0 < K(x) :=

∫
Ω2

k(x, y)dµ2(y), x ∈ Ω1. (3)

The following theorem is given in [18] (see also [19]).

Theorem 2. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with σ-finite
measures, u be a weight function on Ω1, k be a non-negative measurable func-
tion on Ω1 × Ω2, and K be defined on Ω1 by (3). Suppose that the function

x 7→ u(x)k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈ Ω2 and that v is defined

on Ω2 by

v(y) :=

∫
Ω1

u(x)k(x, y)

K(x)
dµ1(x) <∞. (4)

If Φ is convex on the interval I ⊆ R, then the inequality∫
Ω1

u(x)Φ (Akf(x)) dµ1(x) ≤
∫
Ω2

v(y)Φ (f(y)) dµ2(y),

holds for all measurable functions f : Ω2 → R, such that Imf ⊆ I, where Ak
is defined by (2).

Lemma 3. Let s ∈ R, ϕs : R+ → R be a function defined as

ϕs(x) :=


xs

s(s−1) , s 6= 0, 1,

− log x, s = 0,
x log x, s = 1.

(5)

Then ϕs is strictly convex on R+ for each s ∈ R.
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Proof. Since ϕ
′′
s (x) = xs−2 > 0 for all x ∈ R+, s ∈ R, therefore ϕs is strictly

convex on R+ for each s ∈ R. �

The following theorem is given in [19].

Theorem 4. Let the assumption of the Theorem 2 be satisfied and ϕs be
defined by (5). Let f be a positive function. Then the function ρ : R→ [0,∞)
defined by

ρ(s) =

∫
Ω2

v(y)ϕs(f(y))dµ2(y)−
∫
Ω1

u(x)ϕs(Akf(x))dµ1(x), (6)

is exponentially convex.

The function ρ being exponentially convex is also log-convex function. Then
by Definition 3 the following inequality holds true:

[ρ(p)]q−r ≤ [ρ(q)]p−r[ρ(r)]q−p, (7)

for every choice r, p, q ∈ R, such that r < p < q.

Upcoming result is given in [20].

Theorem 5. Let the assumptions of the Theorem 2 be satisfied. If Φ is convex
on the interval I ⊆ R, and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ Int I, then the inequality∫

Ω2

v(y)Φ (f(y)) dµ2(y)−
∫
Ω1

u(x)Φ (Akf(x)) dµ1(x)

≥
∫
Ω1

u(x)

K(x)

∫
Ω2

k(x, y) | |Φ(f(y))− Φ(Akf(x))|

− |ϕ(Akf(x))|.|f(y)−Akf(x)| | dµ2(y) dµ1(x) (8)

holds for all measurable functions f : Ω2 → R, such that f(y) ∈ I, for all fixed
y ∈ Ω2 where Ak is defined by (2).

The paper is planned in the following manner. After this introduction, in
Section 2 we give the improvement of G. H. Hardy’s inequality for Riemnn-
Liouville fractional integral and deduce some known results from our general
results. Section 3 deals with improvement of an inequality of G. H. Hardy
via Caputo k-fractional derivative. As special case we shall derive the result
of Caputo fractional derivative given in [21]. Section 4 is dedicated to Hilfer
k-fractional derivative and the log-convexity of the related functionals. Last
section is devoted to (k, r)-fractional integral along the log-convexity of the
functionals.
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2. Main Results

Definition 5. [22] If f ∈ L1[a, b] and k > 0, then the Riemann-Liouville
k-fractional integral Iαk,a of order α is defined by

Iαk,af(t) =
1

kΓk(α)

t∫
a

(t− τ)
α
k
−1f(τ)dτ, α > 0, t ∈ [a, b], (9)

where Γk is the Gamma k-function which is defined as:

Γk(x) =

∞∫
0

tx−1e−
tk

k dt,

and

Γk(α+ k) = αΓk(α).

Now we give our first main result.

Theorem 6. Let s > 1, Iαk,af denotes the left-sided Riemann-Liouville k-

fractional integral of order α and ρ1 : R→ [0,∞). Then the following inequality
holds true:

ρ1(s) ≤ σ1(s), (10)

where

ρ1(s) =
1

s(s− 1)

 b∫
a

(b− y)
α
k f s(y)dy −

b∫
a

(x− a)
α
k

(
Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s
dx

 ,
σ1(s) =

(b− a)α(1−s)

s(s− 1)

(b− a)
α
k
s

b∫
a

fs(y)dy − (Γk(α+ k))s
b∫
a

(Iαk,af(x))sdx

 .
(11)

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

ǩ(x, t) =

{
1

kΓk(α)(x− t)
α
k
−1, a ≤ t ≤ x ;

0, x < t ≤ b ,
(12)

we get

Ǩ(x) =
1

αΓk(α)
(x− a)

α
k , (13)

and the integral operator Akf(x) take the form

Ǎkf(x) =
α

k(x− a)
α
k

x∫
a

(x− t)
α
k
−1f(t)dt. (14)
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Then the equation (6)

ρ1(s) =

b∫
a

v̌(y)ϕs(f(y))dy −
b∫
a

u(x)ϕs

(
Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)
dx. (15)

For particular weight function u(x) = (x−a)
α
k , we obtain v̌(y) = (b−y)

α
k and

we take ϕs(x) = xs

s(s−1) , x ∈ R+. So (15) becomes

ρ1(s) =
1

s(s− 1)

 b∫
a

(b− y)
α
k f s(y)dy −

b∫
a

(x− a)
α
k

(
Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s
dx


≤ 1

s(s− 1)

(b− a)
α
k

b∫
a

fs(y)dy − (b− a)
α
k

(1−s)(Γk(α+ k))s
b∫
a

(Iαk,af(x))sdx


=

(b− a)α(1−s)

s(s− 1)

(b− a)
α
k
s

b∫
a

fs(y)dy − (Γk(α+ k))s
b∫
a

(Iαk,af(x))sdx


= σ1(s).

It follows (10). �

Remark 1. For particular value of k = 1, we get the improvement of G. H.
Hardy’s inequality given in [21, Theorem 2.3].

Now we shall provide the refinement of the Theorem 6. For this let us
continue by taking a positive difference between the the left hand-side and the
right-hand side of refined Hardy-type inequality given in (8).

Ψ(Φ) =

∫
Ω2

v(y)Φ (f(y)) dµ2(y)−
∫
Ω1

u(x)Φ (Akf(x)) dµ1(x)

−
∫
Ω1

u(x)

K(x)

∫
Ω2

k(x, y) | |Φ(f(y))− Φ(Akf(x))|

−|ϕ(Akf(x))|.|f(y)−Akf(x)| | dµ2(y) dµ1(x) ≥ 0. (16)

Theorem 7. Let the assumptions of the Theorem 6 be satisfied and ψ1 : R→
[0,∞). Then the following inequality holds:

0 ≤ Ψ1(s) ≤ σ1(s)− λ1(s) ≤ σ1(s), (17)
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where

Ψ1(s) =
1

s(s− 1)

 b∫
a

(b− y)
α
k fs(y)dy

−
b∫
a

(x− a)
α
k

(
Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s
dx

− λ1(s), (18)

λ1(s) =
α

ks(s− 1)

b∫
a

x∫
a

(x− y)
α
k
−1

∣∣∣∣ ∣∣∣∣fs(y)−
(

Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s∣∣∣∣
−s
∣∣∣∣Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

∣∣∣∣s−1

.

∣∣∣∣f(y)− Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

∣∣∣∣
∣∣∣∣∣ dy dx, (19)

and σ1(s) is defined by (11).

Proof. Rewrite equation (16) with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy
and ǩ, Ǩ, Ǎkf(x) is defined by (12), (13), (14) respectively. For particular

weight function u(x) = (x − a)
α
k , we obtain v̌(y) = (b − y)

α
k . If we take

Φ(x) = xs/s(s− 1), x ∈ R+, after some calculations (16) becomes

Ψ1(s) =
1

s(s− 1)

 b∫
a

(b− y)
α
k fs(y)dy −

b∫
a

(x− a)
α
k

(
Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s
dx


− α

ks(s− 1)

b∫
a

x∫
a

(x− t)
α
k
−1

∣∣∣∣ ∣∣∣∣f s(y)−
(

Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

)s∣∣∣∣
−s
∣∣∣∣Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

∣∣∣∣s−1

.

∣∣∣∣f(y)− Γk(α+ k)

(x− a)
α
k

Iαk,af(x)

∣∣∣∣
∣∣∣∣∣ dy dx ≥ 0.

Since α
k (1− s) ≤ 0 for s > 1 and λ1(s) ≥ 0, we obtain that

0 ≤ Ψ1(s) ≤ ρ1(s)− λ1(s) ≤ ρ1(s).

This complete the proof. �

Remark 2. For particular value of k = 1 we get the improvement of G. H.
Hardy’s inequality given in [23, Corollary 2.1].

3. Results for Caputo k-fractional derivative

Following definition of Caputo k-fractional derivatives is given in [24].
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Definition 6. Let α > 0, k ≥ 1 and α /∈ {1, 2, 3, ...}, n = [α]+1, f ∈ ACn[a, b].
The left and right sided Caputo k-fractional derivatives of order α are defined
as follows:

CDα,k
a+ f(x) =

1

kΓk(n− α
k )

∫ x

a

f (n)(t)

(x− t)
α
k
−n+1

dt, x > a (20)

and

CDα,k
b− f(x) =

(−1)n

kΓk(n− α
k )

∫ b

x

f (n)(t)

(t− x)
α
k
−n+1

dt, x < b (21)

where Γk(α) is the k-Gamma function defined as

Γk(α) =

∫ ∞
0

tα−1e
−tk
k dt,

also

Γk(α+ k) = αΓk(α)

If α = n ∈ {1, 2, 3, ...} and usual derivative of order n exists, then Caputo

k-fractional derivative (CDα,1
a+ f)(x) coincides with f (n)(x).

Theorem 8. Let s > 1,
(
CDα,k

a+ f
)

(x) denotes the Caputo k-fractional deriv-

ative defined by (20) and ρ2 : R→ [0,∞). Then the following inequality holds
true:

ρ2(s) ≤ σ2(s), (22)

where

ρ2(s) =
1

s(s− 1)

 b∫
a

(b− y)
n−α
k

(
f (n)(y)

)s
dy

−
b∫
a

(x− a)
n−α
k

(
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

)s
dx

 (23)

and

σ2(s) =
(b− a)(

n−α
k )(1−s)

s(s− 1)

(b− a)(
n−α
k )s

b∫
a

(
f (n)(y)

)s
dy

−
(
kΓk

(
n− α

k
+ k
))s b∫

a

((
CDα,k

a+ f
)

(x)
)s
dx

 . (24)
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Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k̂ (x, y) =

{
1

kΓk(n−αk )
(x− y)n−

α
k
−1 , a ≤ y ≤ x;

0, x < y ≤ b,
(25)

K̂ (x) =
1

k
(
n− α

k

)
Γk
(
n− α

k

) (x− a)n−
α
k , (26)

and

Âkf(x) =
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x) (27)

Then the equation (6) take the form

ρ2(s) =

b∫
a

v̂(y)ϕs

(
f (n)(y)

)
dy−

b∫
a

u(x)ϕs

(
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

)
dx.

(28)

For particular weight function u(x) = (x− a)n−
α
k , x ∈ (a, b) we get v̂(y) =

(b− y)
n−α
k and we take ϕs(x) = xs

s(s−1) , x ∈ R+. So (28) becomes

ρ2(s) =
1

s(s− 1)

 b∫
a

(b− y)
n−α
k

(
f (n)(y)

)s
dy

−
b∫
a

(x− a)
n−α
k

(
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

)s
dx


≤ (b− a)(

n−α
k )(1−s)

s(s− 1)

(b− a)(
n−α
k )s

b∫
a

(
f (n)(y)

)s
dy

−
(
kΓk

(
n− α

k
+ k
))s b∫

a

((
CDα,k

a+ f
)

(x)
)s
dx


= σ2(s).

It follows (22) . �

The improved version of Theorem 8 is given in next theorem.

Theorem 9. Let the assumptions of the Theorem 8 be satisfied and Ψ2 : R→
[0,∞). Then the following inequality holds:

0 ≤ Ψ2(s) ≤ σ2(s)− λ2(s) ≤ σ2(s), (29)
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where

Ψ2(s) =
1

s(s− 1)

 b∫
a

(b− y)
n−α
k

(
f (n)(y)

)s
dy

−
b∫
a

(x− a)
n−α
k

(
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

)s
dx

− λ2(s),

λ2(s) =
(n− α

k )

s(s− 1)

b∫
a

x∫
a

(x− y)
ν(n−µ)

k
−1
∣∣∣ ∣∣∣(f (n)(y)

)s

−
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)s

∣∣∣∣∣ −s
∣∣∣∣∣kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

∣∣∣∣∣
s−1

.

∣∣∣∣∣f (n)(y)−
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

∣∣∣∣∣
∣∣∣∣∣ dy dx, (30)

and σ2(s) is defined by (24).

Proof. Rewrite equation (16) with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy

with k̂, K̂ and Âkf(x) is defined by (25), (26), (27) respectively. For particular

weight function u(x) = (x− a)(n−α
k

) , we obtain v(y) = (b− y)(n−α
k

) . If we
take Φ(x) = xs/s(s− 1), x ∈ R+, after some calculations we get

ψ2(s) =
1

s(s− 1)

 b∫
a

(b− y)
n−α
k

(
f (n)(y)

)s
dy

−
b∫
a

(x− a)
n−α
k

(
kΓk

(
n− α

k + k
)

(x− a)(n−
α
k )

(
CDα,k

a+ f
)

(x)

)s
dx

− λ2(s).

Since
(
n− α

k

)
(1− s) < 0 for s > 1 and λ2(s) ≥ 0. Then

Ψ2(s) ≤ ρ2(s)− λ2(s) ≤ ρ2(s). (31)

This complete the proof. �

Remark 3. Choose k = 1 in Theorem 8 we get the result for Caputo factional
derivative, see [21, Theorem 2.9].
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4. Results Involving Hilfer k-Fractional Derivative

Let us recall the definition of Hilfer k-fractional derivative presented in [25].

Definition 7. Let f ∈ L1[a, b], f ∗K(1−ν)(1−µ) ∈ AC1[a, b]. The k-fractional

derivative operator kDµ,ν
a+ of order 0 < ν ≤ 1 with respect to x ∈ [a, b] is defined

by (
kDµ,ν

a+ f
)

(x) := I
ν(1−µ)
a+,k

d

dx

(
I

(1−ν)(1−µ)
a+,k f(x)

)
, (32)

whenever the right hand side exists. The derivative (32) is called Hilfer k-
fractional derivative.

The more general integral representation of equation (32) is defined by:
Let f ∈ L1 [a, b] , f ∗K(1−ν)(n−µ) ∈ ACn [a, b] , n− 1 < µ < n, 0 < ν ≤ 1, n ∈

N. Then (
kDµ,ν

a+ f
)

(x) =

(
I
ν(n−µ)
a+,k

dn

dxn

(
I

(1−ν)(n−µ)
a+,k f(x)

))
, (33)

which coincide with (32) for n = 1.

Specially for k = 1, ν = 0, Dµ,0
a+f = Dµ

a+f is a Riemann-Liouville fractional

derivative of order µ, and for ν = 1 it is a Caputo fractional derivative Dµ,1
a+f =

CDµ
a+f of order µ. Applying the properties of Riemann-Liouville integral the

relation (33) can be rewritten in the form:(
kDµ,ν

a+ f
)

(x) =
(
I
ν(n−µ)
a+

((
D
n−(1−ν)(n−µ)
a+ f

)
(x)
))

=
1

kΓk (ν (n− µ))

x∫
a

(x− y)
ν(n−µ)

k
−1
((
D
µ+ν(n−µ)
a+ f

)
(t)
)
dt. (34)

Now we shall establish the improvement for Hilfer k-fractional derivative.

Theorem 10. Let s > 1,
(
kDµ,ν

a+ f
)

(x) denotes the Hilfer k-fractional deriva-
tive defined by (33) and ρ3 : R → [0,∞). Then the following inequality holds
true:

ρ3(s) ≤ σ3(s), (35)

where

ρ3(s) =
1

s(s− 1)

 b∫
a

(b− y)
ν(n−µ)

k fs(y)dy

−
b∫
a

(x− a)
ν(n−µ)

k

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)s
dx

(36)
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and

σ3(s) =
(b− a)

ν(n−µ)
k

(1−s)

s(s− 1)

(b− a)
ν(n−µ)

k
s

b∫
a

fs(y)dy

−(Γk (ν (n− µ) + k))s
b∫
a

((
kDµ,ν

a+ f
)

(x)
)s
dx

 . (37)

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k̂ (x, y) =

{
1

kΓk(ν(n−µ)) (x− y)
ν(n−µ)

k
−1 , a ≤ y ≤ x;

0, x < y ≤ b,
(38)

K̂ (x) =
1

(ν(n− µ))Γk (ν (n− µ))
(x− a)

ν(n−µ)
k . (39)

and

Âkf(x) =
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x) (40)

Then the equation (6) becomes

ρ3(s) =

b∫
a

v̂(y)ϕs

((
D
µ+ν(n−µ)
a+ f

)
(t)
)
dy

−
b∫
a

u(x)ϕs

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)
dx. (41)

For particular weight function u(x) = (x− a)
ν(n−µ)

k , x ∈ (a, b) we get v̂(y) =

(b− y)
ν(n−µ)

k and we take ϕs(x) = xs

s(s−1) , x ∈ R+. So (41) becomes

ρ3(s) =
1

s(s− 1)

 b∫
a

(b− y)
ν(n−µ)

k fs(y)dy

−
b∫
a

(x− a)
ν(n−µ)

k

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)s
dx


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≤ (b− a)
ν(n−µ)

k
(1−s)

s(s− 1)

(b− a)
ν(n−µ)

k
s

b∫
a

fs(y)dy

−(Γk (ν (n− µ) + k))s
b∫
a

((
kDµ,ν

a+ f
)

(x)
)s
dx


= σ4(s).

It follows (35) . �

The improvement of Theorem 10 is given in next theorem.

Theorem 11. Let the assumptions of the Theorem 10 be satisfied and Ψ3 :
R→ [0,∞). Then the following inequality holds:

0 ≤ Ψ3(s) ≤ σ3(s)− λ3(s) ≤ σ3(s), (42)

where

Ψ3(s) =
1

s(s− 1)

 b∫
a

(b− y)
ν(n−µ)

k fs(y)dy

−
b∫
a

(x− a)
ν(n−µ)

k

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)s
dx

− λ3(s), (43)

λ3(s) =
ν(n− µ)

ks(s− 1)

b∫
a

x∫
a

(x− y)
ν(n−µ)

k
−1 | |fs(y)

−

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)s∣∣∣∣∣
−s

∣∣∣∣∣
(

Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)∣∣∣∣∣
s−1

.

∣∣∣∣∣f(y)−

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)∣∣∣∣∣
∣∣∣∣∣ dy dx, (44)

and σ3(s) is defined by (37).

Proof. Rewrite equation (16) with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy

with k̂, K̂ and Âkf(x) is defined by (38), (39), (40) respectively. For particular
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weight function u(x) = (x− a)
ν(n−µ)

k , we obtain v(y) = (b− y)
ν(n−µ)

k . If we
take Φ(x) = xs/s(s− 1), x ∈ R+, after some calculations we get

ψ3(s) =
1

s(s− 1)

 b∫
a

(b− y)
ν(n−µ)

k fs(y)dy

−
b∫
a

(x− a)
ν(n−µ)

k

(
Γk (ν (n− µ) + k)

(x− a)
ν(n−µ)

k

(
kDµ,ν

a+ f
)

(x)

)s
dx

− λ3(s).

Since ν(n−µ)
k (1− s) < 0 for s > 1 and λ3(s) ≥ 0. Then

Ψ3(s) ≤ σ3(s)− λ3(s) ≤ σ3(s).

This complete the proof. �

Remark 4. Specially for k = 1, ν = 0, Dµ,0
a+f = Dµ

a+f in Theorem 10 we
get the result for Riemann-Liouville fractional derivative of order µ, and for
ν = 1 it is a Caputo fractional derivative Dµ,1

a+f = CDµ
a+f of order µ.

5. Results for the Riemann-Liouvile (k, r)-fractional Integral

Definition 8. [26] Let f be a continuous function on on a the finite real
interval [a, b]. Then Riemann-Liouville (k, r)-fractional integral of f of order
α > 0 is defined by:

Iα,rk,a f(t) =
(r + 1)1−α

k

kΓk(α)

t∫
a

(tr+1 − τ r+1)
α
k
−1τ rf(τ)dτ, (45)

where k > 0, r ∈ R\{1} and Γk is the generalization of the classical Γ function
defined by Diaz et al. in [27] and is given as follows:

Γk(t) = lim
n→∞

n!kn(nk)
t
k
−1

(t)n,k
, k > 0, R(t) > 0, (46)

where (t)n,k = t(t+ k)(t+ 2k) . . . , (t+ (n− 1)k), n ≥ 1, is called Pochhammer
k symbol. The integral representation is given by

Γk(t) =

∞∫
0

xt−1e
−xk
k dx, R(t) > 0. (47)

Theorem 12. Let s > 1, r ≥ 0, Iα,rk,a denotes the Riemann-Liouville (k, r)-

fractional integral of order α > 0 and ρ4 : R → [0,∞). Then the following
inequality holds true:

ρ4(s) ≤ σ4(s), (48)
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where

ρ4(s) =
1

s(s− 1)

 b∫
a

yr(br+1 − yr+1)
α
k fs(y)dy

−
b∫
a

xr(xr+1 − ar+1)
α
k

(
(r + 1)

α
k Γk(α+ k)

(xr+1 − ar+1)
α
k

Iα,rk,a f(x)

)s
dx

 ,(49)

σ4(s) =
(br+1 − ar+1)

α
k

(1−s)

s(s− 1)

(br+1 − ar+1)
αs
k

b∫
a

yrf s(y)dy

−
(

Γk(α+ k)(r + 1)
α
k

)s b∫
a

(Iα,rk,a f(x))sdx

 .
Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k̃(x, t) =

{
(r+1)1−

α
k

kΓk(α)

(
xr+1 − yr+1

)α
k
−1
yr, a ≤ y ≤ x ;

0, x < t ≤ b ,
(50)

K̃(x) =
(r + 1)−

α
k

Γk(α+ k)

(
xr+1 − ar+1

)α
k (51)

and

Ãkf(x) =
α(r + 1)

k(xr+1 − ar+1)
α
k

x∫
a

(
xr+1 − ar+1

)α
k
−1
yrf(y)dy. (52)

For particular weight function u(x) = xr(xr+1 − ar+1)
α
k , we obtain ṽ(y) =

yr(br+1 − yr+1)
α
k and we take ϕs(x) = xs

s(s−1) , x ∈ R+. So (15) becomes
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ρ4(s) =
1

s(s− 1)

 b∫
a

yr(br+1 − yr+1)
α
k fs(y)dy

−
b∫
a

xr(xr+1 − ar+1)
α
k

(
(r + 1)

α
k Γk(α+ k)

(xr+1 − ar+1)
α
k

Iα,rk,a f(x)

)s
dx


≤ 1

s(s− 1)

 b∫
a

yr(br+1 − ar+1)
α
k f s(y)dy

−
(

(r + 1)
α
k Γk(α+ k)

)s
(br+1 − ar+1)

α
k

(1−s)
b∫
a

xr
(
Iα,rk,a f(x)

)s
dx


=

(br+1 − ar+1)
α
k

(1−s)

s(s− 1)

(br+1 − ar+1)
αs
k

b∫
a

yrfs(y)dy

−
(

Γk(α+ k)(r + 1)
α
k

)s b∫
a

(Iα,rk,a f(x))sdx


= σ4(s).

It follows (48). �

Remark 5. For particular value of r = 0, we get Theorem 6.

Remark 6. For particular value of k = 1, r = 0 we get the improvement of
G. H. Hardy’s inequality given in [21, Theorem 2.3].

Theorem 13. Let the assumption of the Theorem 12 be satisfied and Ψ4 :
< → [0,∞]. Then the following inequality holds:

0 ≤ Ψ4(s) ≤ σ4(s)− λ4(s) ≤ σ4(s),

where

Ψ4(s) =
1

s(s− 1)

 b∫
a

(
br+1 − yr+1

)α
k yrfs(y)dy

−
b∫
a

(
xr+1 − ar+1

)α
k xr

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)s
dx

− λ4(s)

(53)
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λ4(s) =
α(r + 1)

ks(s− 1)

b∫
a

xr
x∫
a

(
xr+1 − yr+1

)α
k
−1
yr ||fs(y)

−

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)s∣∣∣∣∣− s
∣∣∣∣∣
(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Ia,k)f(x)

)s∣∣∣∣∣
s−1

|f(y)−

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)
|

∣∣∣∣∣ dydx (54)

and σ4(s) is defined in defined by (52).

Proof. Rewrite equation with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,
ǩ(x, t), Ǩ(x), Ǎkf(x) are given by (50), (51), (52) respectively. For particular

weight function u(x) = xr(xr+1− ar+1)
α
k , we obtain v̌(y) = yr(br+1− yr+1)

α
k .

If we take ϕ(x) = xs

s(s−1) , for x ∈ <+, after some calculations we get

Ψ4(s) =
1

s(s− 1)

 b∫
a

(
br+1 − yr+1

)α
k yrfs(y)dy −

b∫
a

(
xr+1 − ar+1

)α
k

×xr
(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)s
dx

]

− α(r + 1)

ks(s− 1)

b∫
a

xr
x∫
a

(
xr+1 − yr+1

)α
k
−1
yr||fs(y)

−

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)s
|

−s|

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Ia,k)f(x)

)s
|s−1|f(y)

−

(
αΓk(α)(r + 1)

α
k

(xr+1 − ar+1)
α
k

(Iα,ra,k )f(x)

)
||dydx ≥ 0. (55)

Since α(1−s)
k ≤ 0 for s > 1 and λ5(s) ≥ 0, we obtain that

0 ≤ Ψ4(s) ≤ σ5(s)− λ4(s) ≤ σ4(s)

In the following theorem we prove the three different cases for the above
results related to log-convexity.

Theorem 14. For i = 1, 2, 3, 4 the following inequalities hold true:

(i). [ρi(p)]
q−r
q−p [ρi(q)]

r−p
q−p ≤ σi(r) (56)
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(ii). [ρi(r)]
p−q
p−r [ρi(p)]

q−r
p−r ≤ σi(q) (57)

(iii). ρi(p) ≤ [σi(r)]
q−p
q−r [σi(q)]

p−r
q−r (58)

for every choice p, q, r ∈ R, such that 1 < r < p < q.

Proof. We will prove this theorem just in case i = 1, since all other case are
proved analogous.
(i). Since the function ρ1 is exponentially convex, it is also log-convex. Then
for 1 < r < p < q, r, p, q ∈ R, (7) can be written as

[ρ1(p)]q−r[ρ1(q)]r−p ≤ [ρ1(r)]q−p.

This implies that

[ρ1(p)]
q−r
q−p [ρ1(q)]

r−p
q−p

≤ (b− a)α(1−s)

s(s− 1)

(b− a)
α
k
s

b∫
a

fs(y)dy − (Γk(α+ k))s
b∫
a

(Iαk,af(x))sdx


= σ1(r).

It follows (56).

(ii). Now (7) can be written as,

[ρ1(r)]p−q[ρ1(p)]q−r ≤ [ρ1(q)]p−r.

This implies that

[ρ1(r)]
p−q
p−r [ρ1(p)]

q−r
p−r

≤ (b− a)α(1−s)

s(s− 1)

(b− a)
α
k
s

b∫
a

f q(y)dy − (Γk(α+ k))s
b∫
a

(Iαk,af(x))qdx


= σ1(q).

It follows (57).

(iii). The (7) can be written as,

[ρ1(p)]
q−r
p−r ≤ [ρ1(r)]

q−p
p−r [ρ1(q)],

[ρ1(p)]
q−r
p−r ≤ [ρ1(r)]

q−p
p−r σ1(q).

This implies that

ρ1(p) ≤ [σ1(r)]
q−p
q−r [σ1(q)]

p−r
q−r .

It follows (58). �



Improvement of the Hardy inequality involving k-fractional Calculus 107

Likewise we can give the results for Hilfer k-fractional derivative, Caputo
k-fractional derivative and Riemann-Liouville (k, r)-fractional integral but we
omit the details.
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