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EXISTENCE OF A SOLUTION FOR INTEGRAL URYSOHN

TYPE EQUATIONS SYSTEM VIA FIXED POINTS

TECHNIQUE IN COMPLEX VALUED EXTENDED

b-METRIC SPACES
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Abstract. In this article, we obtain fixed point results and we give a

common fixed point theorem for Ćirić type operators on complex valued
extended b-metric spaces which may satisfy very general assumptions. Our
results extend and generalize the results of Kiran et al. [1], as well as some
known results in the literature. Then an illustrative application to Urysohn
type integral equations system is given.
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1. Introduction

Fixed point theory is a powerful tool in topology, functional analysis, and
nonlinear analysis, in order to obtain results in dynamic optimization, solve
partial or random differential equations, obtain results in the theory of differ-
ential and integral equations, notably in existence in differential and integral
equations or inclusions.

In recent years, the generalizations of the contraction principle have been
obtained by either weakening the contractive properties of the mapping and,
possibly, by simultaneously endowing the space with a sufficiently rich struc-
ture to compensate for the relaxation of the contractiveness, or by extending
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the structure of the space. Many notions of metric-type was introduced (com-
plex metric space, b-metric space, extended b-metric space, complex b-metric
space) and in such spaces several fixed point theorems are obtained. See for
example, [2, 3, 4, 5, 6, 7, 8, 9].

In this paper we will consider generalized contractive mappings of Ćirić type
in complex valued extended b-metric spaces and the main result consists on
the existence of common fixed point.

The class of contractive mappings were first introduced in the context of
metric spaces (see [10]). A self map T : X → X on a metric space (X, δ) is

said to be a Ćirić mapping if, for some γ ∈ (0, 1), it satisfies the following
inequality, for all x, and y in X,

δ(Tx, Ty) � γmax

{
δ(x, y), δ(x, Tx), δ(y, Ty),

1

2
(δ(x, Ty) + δ(y, Tx))

}
.

The notion of b-metric was introduced by Bakhtin and Czerwik in [11, 12]
in order to address problems formulated in spaces whose associated notion of
metric requires a relaxed version of the triangle inequality. In these and other
articles (see, for example, [4, 11, 13, 14, 15, 16]), fixed point theorems have
been proved and applications have been considered.

Let us recall some notation and definitions that will play a key role in the
derivation of our results.

Definition 1 ([11],[14]). Let X be a non empty set and let s ≥ 1 be a given
real number. A functional δ : X ×X → [0,∞) is said to be a b-metric if the
following conditions are satisfied:

(i) δ(x, y) = 0 if and only if x = y,
(ii) δ(x, y) = δ(y, x),

(iii) δ(x, z) ≤ s[δ(x, y) + δ(y, z)],

for all x, y, z ∈ X. A pair (X, δ) is called a b-metric space.

Example 1 ([16]). Let (X, δ) be a metric space and ρ(x, y) = (δ(x, y))p, where
p ≥ 1 is a real number. Then, (X, δ) is a b-metric space with s = 2p−1.

It is clear that a b-metric space becomes a metric space if we take s = 1.
Hence, we conclude that the class of b-metric spaces is larger than that of
metric spaces.

In [17], Karman and co-authors introduced the concept of extended b-metric
space that generalizes the concept of b-metric space.

Definition 2. Let X be a nonempty, and θ : X ×X → [1,+∞). A function
δθ : X×X → [0,+∞) is an extended δ-metric if, for all x, y, z ∈ X, it satisfies:

(i) δθ(x, y) = 0 if and only if x = y,
(ii) δθ(x, y) = δθ(y, x),

(iii) δθ(x, z) ≤ θ(x, z)[δθ(x, y) + δθ(y, z)].
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The pair (X, δθ) is called a extended b-metric space.

Remark 1. If θ(x, y) = s for s ≥ 1, then (X, bθ) satisfies the definition of a
b-metric space.

Example 2. Let X = [0,+∞), θ : X × X → [1,+∞) defined by δθ(x, y) =
(x− y)2 and θ(x, y) = x+ y + 2 Then, (X, δθ) is an extended b-metric space.

Example 3. Let X = C([a, b],R) be the space of all continuous real valued
functions defined on [a, b]. Let δθ(x, y) = sup

t∈[a,b]
|x(t)−y(t)|2, and θ : X×X →

[1,+∞) defined by θ(x, y) := |x(t)| + |y(t)| + 2, then (X, δθ) is a complete
extended b-metric space.

Definition 3. Let (X, δθ) be an extended b-metric space.

(i) A sequence {xn}n∈N in X converges to x ∈ X if, for every ε > 0, there
exists N = N(ε) ∈ N such that

bθ(xn, x) < ε,

for all n ≥ N . Alternatively we may write lim
n→∞

xn = x.

(ii) A sequence {xn}n∈N in X is Cauchy, if for every ε > 0 there exists
N = N(ε) ∈ N such that

δθ(xm, xn) < ε,

for all m,n ≥ N .

Definition 4. An extended b-metric space (X, δθ) is complete if every Cauchy
sequence in X is convergent.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order
� on C as follows:

z1 � z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

It follows that z1 � z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) < Im(z2)

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2)

(C3) Re(z1) < Re(z2) and Im(z1) < Im(z2)

(C4) Re(z1) = Re(z2) and Im(z1) = Im(z2)

In particular, we write z1 � z2 if z1 6= z2 and one of (C1), (C2) and (C3) is
satisfied and we write z1 ≺ z2 if only (C3) is satisfied.
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Definition 5. [18] Let X be a nonempty set. A mapping δ : X × X → C
is called a complex valued metric on X if, for all x, y, z ∈ X, the following
conditions holds:

(CM1) 0 � δ(x, y) and δ(x, y) = 0 if and only if x = y,
(CM2) δ(x, y) = δ(y, x),
(CM3) δ(x, y) � δ(x, z) + δ(z, y).
Then δ is called a complex valued metric on X and (X, δ) is called a complex

valued metric space.

For some examples in this space we refer to [18, 13].

Definition 6. [4] Let X be a nonempty set and let s ≥ 1 be a given real
number. A mapping δ : X ×X → C is called a complex valued b-metric on X
if, for all x, y, z ∈ X, the following conditions holds:

(CBM1) 0 � δ(x, y) and δ(x, y) = 0 if and only if x = y,
(CBM2) δ(x, y) = δ(y, x),
(CBM3) δ(x, y) � s[δ(x, z) + δ(z, y)].
Then δ is called a complex valued b-metric on X and (X, δ) is called a

complex valued b-metric space.

Definition 7. [4] Let X be a nonempty set and let θ : X ×X → [1,+∞) be a
function. Then δθ : X ×X → C is called a complex valued extended b-metric
on X if, for all x, y, z ∈ X, the following conditions holds:

(CBM1) 0 � δθ(x, y) and δθ(x, y) = 0 if and only if x = y,
(CBM2) δθ(x, y) = δθ(y, x),
(CBM3) δθ(x, z) � θ(x, z)[δθ(x, z) + δθ(z, y)].
Then δθ is called a complex valued extended b-metric on X and (X, δθ) is

called a complex valued extended b-metric space.

In order to simplify the notations throughout this paper we will denote the
complex valued extended b-metric space with CV extended b-metric space.

Next, let us recall some properties for complex valued extended b-metric
spaces.

Example 4. [4] Let X be a nonempty set and θ : X×X → [1,+∞) be defined
as

θ(x, y) =
1 + x+ y

1 + x
Further, let:

(i) δθ(x, y) =
i

xy
for all x, y ∈ (0, 1],

(ii) δθ(x, y) = 0↔ x = y ∀x, y ∈ [0, 1],

(iii) δθ(x, 0) = dθ(0, x) =
i

x
for all x ∈ (0, 1].

Then the pair (X, δθ) is known as complex valued extended b-metric space.
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Definition 8. Let (X, δθ) be a CV extended b-metric space and S, T : X → X
be a multivalued mappings
(i) A point x ∈ X is called a fixed point of T if x = Tx,
(ii) A point x ∈ X is called a common fixed point of S and T if x = Tx and
x = Sx.

In this paper, we prove first two new fixed point theorems in CV extended
b-metric spaces under Ćirić type contractive condition for single-valued map-
pings, with the condition of continuity of the operator and with miss of it.
Then we prove that we can obtain in similar conditions common fixed points
theorems, taking into account the continuity of the operators. The fixed point
results generalize and extend other known results from the related literature.
The application section is dedicated to prove the existence of the solution for
a integral Urysohn type equations system.

2. Fixed points results for Ćirić type operators

First of all let us give some lemmas for the case of CV extended b-metric
spaces, which will be useful in proving our first fixed point result.

Lemma 1. Every sequence {xn)}n∈N of elements from a CV extended b-metric
space (X, δ

θ
), satisfying the property

there exists γ ∈ [0, 1) such that δθ(xn+1, xn) � γδθ(xn, xn−1)

where for each x0 ∈ X, γ lim
n,m→+∞

θ(xn, xm) < 1. Then {xn} is a Cauchy

sequence.

Lemma 2. For every sequence {xn}n∈N of elements from a CV extended b-
metric space (X, δθ), the inequality

δθ(x0, xk) �
k−1∑
i=0

δθ(xi, xi+1)

i∏
l=0

θ(xl, xk)

holds for every k ∈ N.

Lemma 3. Every sequence {xn)}n∈N of elements from a CV extended b-metric
space (X, δθ), satisfying the property

there exists γ ∈ [0, 1) such that δθ(xn+1, xn) � γδθ(xn, xn−1) for every n ∈ N,

is a Cauchy sequence.

Remark 2. The previous lemmas are given for the case of extended b-metric
spaces by Q. Kiran and all in [1]. We remark that, using similar steps for the
proof, we get same conclusions for the case of CV extended b-metric spaces.

Let us give our first main fixed point result of this section.
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Theorem 4. Let (X, δθ) be a complete CV extended b-metric space such that
the metric δθ is continuous, let θ : X × X → [1,+∞) and T : X → X be a
single valued continuous mapping such that:

δθ(Tx, Ty) � λmax{δθ(x, y), δθ(x, Tx), δθ(y, Ty),
1

2
[δθ(x, Ty) + δθ(y, Tx)]}

(1)
for all x, y ∈ X, and 0 < λ < 1, such that for each x0 ∈ X and any convergent

sequence {xn}, lim
n,m→∞

θ(xn, xm) <
1

λ
, then T has a unique fixed point.

Proof. Fix x0 ∈ X let x1 = Tx0 and x2 = Tx1 Thus from (1) we have:

δθ(x1, x2) = δθ(Tx0, Tx1) � λmax{δθ(x0, x1), δθ(x0, Tx0), δθ(x1, Tx1),
1

2
[δθ(x0, Tx1) + δθ(x1, Tx0)]}.

This gives:

δθ(x1, x2) � λmax{dθ(x0, x1), δθ(x0, Tx0), δθ(x1, Tx1),
1

2
[δθ(x0, Tx1)+δθ(x1, Tx0)]}.

Which means:

δθ(x1, x2) � λmax{δθ(x0, x1), δθ(x0, x1), δθ(x1, x2),
1

2
[δθ(x0, x2) + δθ(x1, x1)]}.

Then we have:
Case I.

If max{δθ(x0, x1), δθ(x0, x1), δθ(x1, x2),
1

2
[δθ(x0, x2) + δθ(x1, x1)]} = δθ(x1, x2),

we get:

|δθ(x1, x2)| � λ|δθ(x1, x2)|.
This leads to λ ≥ 1. Contradiction.

Case II.

If max{δθ(x0, x1), δθ(x0, x1), δθ(x1, x2),
1

2
[δθ(x0, x2) + δθ(x1, x1)]} = δθ(x0, x1)

we have:

|δθ(x1, x2)| ≤ λ|δθ(x0, x1)|.
Inductively, we can find a sequence {xn} ∈ X such that:

|δθ(xn, xn+1)| ≤ λ|δθ(xn−1, xn)|.

Thus, the conditions of Lemma 3 hold for all terms of the sequence {xn}n∈N
and hence, the generated sequence is Cauchy.

By completeness of X, there exists some x∗ ∈ X such that

lim
p→∞

xn = x∗.
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Case III.

If max{δθ(x0, x1), δθ(x0, x1), δθ(x1, x2),
1

2
[δθ(x0, x2)+δθ(x1, x1)]} =

1

2
δθ(x0, x2)

we have:

δθ(x1, x2) �
λc2
2
δθ(x0, x2),

δθ(x1, x2) �
λc2θ(x0, x2)

2
[δθ(x0, x1) + δθ(x1, x2)],

δθ(x1, x2) �
λc2θ(x0, x2)

2− λc2θ(x0, x2)
δθ(x0, x1).

Proceeding further we get:

δθ(xn+1, xn+2) �
γθ(xn, xn+2)

2− γθ(xn, xn+2)
δθ(xn, xn+1). (2)

it follows that

δθ(xn+1, xn+2) � ηδθ(xn, xn+1).

Now, we show that there exists Nη ∈ N such that, for all n > Nη, η =
η(Nη) < 1.

Since γ lim
n,m→+∞

θ(xn, xm) < 1, we have that: 2 − γ lim
n,m→∞

θ(xn, xm) > 1.

From this, it follows that:

γ lim
n,m→+∞

θ(xn, xm) ≤ 2− γ lim
n,m→+∞

θ(xn, xm),

and, thus, η < 1.
From Lemma 3 we get that {xn} is Cauchy. We conclude that, for all the

three cases, {xn}n∈N is a Cauchy sequence. Since X is complete, there exists
x∗ ∈ X such that δθ(xn, x

∗) → 0 as n → ∞. From the continuity of T it
follows xn+1 = Txn → Tx∗ as n→∞, and, from the uniqueness of the limit,
we conclude that x∗ = Tx∗.

It remains to show the uniqueness of x∗. Assume that y∗ ∈ X is another
fixed point of T . Then

δθ(x
∗, y∗) = δθ(Tx

∗, T y∗)

� γmax{δθ(x∗, y∗), δθ(x∗, Tx∗), δθ(y∗, Ty∗),
1

2
(δθ(x

∗, Ty∗) + δθ(y
∗, Tx∗))}

� γmax{δθ(x∗, y∗), δθ(x∗, x∗), δθ(y∗, y∗),
1

2
(δθ(x

∗, y∗) + δθ(y
∗, x∗))}

= γδθ(x
∗, y∗).

This contradiction leads us to say that T has a unique fixed point.
�

The following result follow the conditions of the previous one but we lift
the continuity assumption as follow.
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Theorem 5. Let (X, δθ) be a complete CV extended b-metric space such that
the metric δθ is continuous, let θ : X × X → [1,+∞) and T : X → X be a
single valued map such that:

δθ(Tx, Ty) � λmax{δθ(x, y), δθ(x, Tx), δθ(y, Ty),
1

2
[δθ(x, Ty) + δθ(y, Tx)]},

(3)
for all x, y ∈ X, and 0 < λ < 1, such that for each x0 ∈ X and any convergent

sequence {xn}, lim
n,m→∞

θ(xn, xm) <
1

λ
, then T has a unique fixed point.

Proof. Let the Cauchy sequence {xn}n∈N be constructed as in Theorem (5).
Since X is complete, there exists x∗ ∈ X such that δθ(xn, x

∗)→ 0 as n→∞.
Since, now, T is not continuous, let us assume that δθ(x

∗, Tx∗) = r > 0.
Then, we may write the following estimates

r = δθ(x
∗, Tx∗) � θ(x∗, Tx∗) (δθ(x

∗, xn+1) + δθ(xn+1, Tx
∗))

� θ(x∗, Tx∗)δθ(x∗, xn+1) + θ(x∗, Tx∗)δθ(Txn, Tx
∗)

� θ(x∗, Tx∗)δθ(x∗, xn+1) + θ(x∗, Tx∗)γmax{δθ(xn, x∗), δθ(xn, Txn),

δθ(x
∗, Tx∗),

1

2
(δθ(xn, Tx

∗) + Tθ(x
∗, Txn))}

� θ(x∗, Tx∗)δθ(x∗, xn+1) + θ(x∗, Tx∗)γmax{δθ(xn, x∗), δθ(xn, xn+1),

δθ(x
∗, Tx∗),

1

2
(δθ(xn, Sx

∗) + δθ(x
∗, xn+1))}

� θ(x∗, Tx∗)δθ(x∗, xn+1) + γθ(x∗, Tx∗)δθ(x
∗, Tx∗)

� θ(x∗, Tx∗)δθ(x∗, xn+1) + θ(x∗, Tx∗)γr.

The inequality before the last one follows by showing that δθ(x
∗, Tx∗) is the

maximal element in the left hand side with a simple contradiction argument,
involving choosing n sufficiently large, forcing all other terms being smaller
than r.

From the last inequality, we obtain:

r ≤ θ(x∗, Tx∗)(δθ(x∗, xn+1) + γr).

Then, since this inequality has to hold for all situations, by considering
lim
n→∞

δθ(x
∗, xn+1) = 0 and θ(x∗, Tx∗) = 1, it follows that γ ≥ 1, and hence, a

contradiction. Then x∗ = Tx∗.
In the same way, we get x∗ = Tx∗. Hence, x∗ is a fixed point for the pair T .

For the uniqueness of the fixed point x∗, we use similar steps as in the proof
of Theorem (5). �

Further, we discuss the existence and uniqueness of common fixed point
for the pair (S, T ) in similar conditions of the Theorem 5. Similar with the
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previous results, we assume that the operators T and S are continuous, while,
in a second result, we lift this assumption.

Theorem 6. Let (X, δθ) be a complete CV extended b-metric space such that
the metric δθ is continuous, and let S, T : X → X be two continuous self
operators such that:

δθ(Sx, Ty) � γmax

{
δθ(x, y), δθ(x, Sx), δθ(y, Ty),

1

2
(δθ(x, Ty) + δθ(y, Sx))

}
,

(4)
for all x, y ∈ X, where 0 < γ < 1, is such that, for each x0 ∈ X, and any
convergent sequence {xn}, γ lim

n,m→+∞
θ(xn, xm) < 1.

Then, the pair (S, T ) has a unique common fixed point.

Proof. Let x0 be arbitrary point in X, and define a sequence {xn} as follows

x2n+1 = Sx2n and x2n+2 = Tx2n+1, n = 0, 1, 2, .... (5)

Then, by (11) and (5), we get:

δθ(x2n+1, x2n+2) = δθ(Sx2n, Tx2n+1)

� γmax{δθ(x2n, x2n+1), δθ(x2n, Sx2n), δθ(x2n+1, Tx2n+1)

1

2
(δθ(x2n, Tx2n+1) + δθ(x2n+1, Sx2n))}

� γmax{δθ(x2n, x2n+1), δθ(x2n, x2n+1), δθ(x2n+1, x2n+2)

1

2
(dθ(x2n, x2n+2) + δθ(x2n+1, x2n+1))}

= γmax{δθ(x2n, x2n+1), δθ(x2n+1, x2n+2 +
1

2
δθ(x2n, x2n+2)}.

Case I.
If max{δθ(x2n, x2n+1), δθ(x2n+1, x2n+2),

1
2δθ(x2n, x2n+2)} = δθ(x2n+1, x2n+2),

then we have

δθ(x2n+1, x2n+2) � γδθ(x2n+1, x2n+2).

This leads to γ ≥ 1. Contradiction.
Case II.

If max{δθ(x2n, x2n+1), δθ(x2n+1, x2n+2),
1
2δθ(x2n, x2n+2)} = δθ(x2n, x2n+1), then

we have:

δθ(x2n+1, x2n+2) � γδθ(x2n, x2n+1). (6)

In a similar way, we obtain:

δθ(x2n+2, x2n+3) � γδθ(x2n+1, x2n+2). (7)

Thus, the conditions of Lemma 3 hold for all terms of the sequence {xn}n∈N
and hence, the generated sequence is Cauchy.
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Case III.
If max{δθ(x2n, x2n+1), δθ(x2n+1, x2n+2),

1
2δθ(x2n, x2n+2)} = 1

2δθ(x2n, x2n+2), then
we have:

1

2
δθ(x2n, x2n+2) =

1

2
δθ(x2n, x2n+2) ≤

1

2
θ(x2n, x2n+2)δθ(x2n, x2n+1). (8)

In this case, we obtain:

δθ(x2n+1, x2n+2) �
θ(x2n, x2n+2)γ

2
(δθ(x2n, x2n+1) + δθ(x2n+1, x2n+2)).

Hence

(1− θ(x2n, x2n+2)γ

2
)δθ(x2n+1, x2n+2) �

γθ(x2n, x2n+2)

2
δθ(x2n, x2n+1).

Thus, we conclude that:

δθ(x2n+1, x2n+2) �
γθ(x2n, x2n+2)

2− γθ(x2n, x2n+2)
δθ(x2n, x2n+1). (9)

By considering an additional iteration, we find that:

δθ(x2n+2, x2n+3) �
γθ(x2n+1, x2n+3)

2− γθ(x2n+1, x2n+3)
δθ(x2n+1, x2n+2). (10)

Thus, from (9), and (10) it follows that δθ(xn+1, xn+2) � η(n)δθ(xn, xn+1)

where η(n) is defined by η(n) :=
γθ(xn, xn+2)

2− γθ(xn, xn+2)
. Now, we show that, there

existsNη ∈ N such that ∀ n > Nη, η = η(Nη) < 1. Since γ lim
n,m→+∞

θ(xn, xm) <

1, we have that: 2− γ lim
n,m→∞

θ(xn, xm) > 1. From this, it follows that:

γ lim
n,m→+∞

θ(xn, xm) � 2− γ lim
n,m→+∞

θ(xn, xm),

and, thus, η < 1. By applying Lemma 3, we conclude that {xn}n∈N is a
Cauchy sequence.

We conclude that, for all the three cases, {xn}n∈N is a Cauchy sequence.
Since X is complete, there exists x∗ ∈ X such that δθ(xn, x

∗)→ 0 as n→∞.
Then, it follows that δθ(x2n, x

∗)→ 0 as n→∞.
From the continuity of S, we have that x2n+1 = Sx2n → Sx∗ as n → ∞,

and, from the uniqueness of the limit, we conclude that x∗ = Sx∗.
At the same time, we have δθ(x2n+1, x

∗)→ 0 as n→∞. From the continuity
of T , it follows x2n+2 = Tx2n+1 → Tx∗ as n → ∞, and from the uniqueness
of the limit, we obtain x∗ = Tx∗.

Thus, we conclude that x∗ is a common fixed point of the pair (S, T ).
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It remains to show the uniqueness of x∗. Assume that y∗ ∈ X is another
common fixed point for the pair (S, T ). Then,

δθ(x
∗, y∗) = δθ(Sx

∗, T y∗)

� γmax{δθ(x∗, y∗), δθ(x∗, Sx∗), δθ(y∗, Ty∗),
1

2
(δθ(x

∗, Ty∗) + δθ(y
∗, Sx∗))}

� γmax{δθ(x∗, y∗), δθ(x∗, x∗), δθ(y∗, y∗),
1

2
(δθ(x

∗, y∗) + δθ(y
∗, x∗))}

= γδθ(x
∗, y∗).

This implies that x∗ = y∗ which complete the proof. �

Using Theorem 6, we give another fixed point result, more general, by
omitting the continuity condition of the mappings S and T .

Theorem 7. Let (X, dθ) be a complete CV extended b-metric space such that
δθ is continuous and let S, T : X → X be two self operators such that:

δθ(Sx, Ty) � γmax

{
δθ(x, y), δθ(x, Sx), δθ(y, Ty),

1

2
(δθ(x, Ty) + δθ(y, Sx))

}
,

(11)
for all x, y ∈ X, where 0 < γ < 1, is such that, for each x0 ∈ X, and any
convergent sequence {xn}, γ lim

n,m→+∞
θ(xn, xm) < 1.

Then, the pair (S, T ) has a unique common fixed point.

Proof. Let the Cauchy sequence {xn}n∈N be constructed as in Theorem 6.
Since X is complete, there exists x∗ ∈ X such that dθ(xn, x

∗)→ 0 as n→∞.
Since S and T are not continuous, let us assume that δθ(x

∗, Sx∗) = r > 0.
Then, we may write the following estimates

r = δθ(x
∗, Sx∗) � θ(x∗, Sx∗) (δθ(x

∗, x2n+2) + δθ(x2n+2, Sx
∗))

� θ(x∗, Sx∗)δθ(x∗, x2n+2) + θ(x∗, Sx∗)δθ(Tx2n+1, Sx
∗)

� θ(x∗, Sx∗)δθ(x∗, x2n+2) + θ(x∗, Sx∗)γmax{δθ(x2n+1, x
∗), δθ(x2n+1, Tx2n+1),

δθ(x
∗, Sx∗),

1

2
(δθ(x2n+1, Sx

∗) + δθ(x
∗, Tx2n+1))}

� θ(x∗, Sx∗)δθ(x∗, x2n+2) + θ(x∗, Sx∗)γmax{δθ(x2n+1, x
∗), δθ(x2n+1, x2n+2),

δθ(x
∗, Sx∗),

1

2
(δθ(x2n+1, Sx

∗) + δθ(x
∗, x2n+2))}

� θ(x∗, Sx∗)δθ(x∗, x2n+2) + γθ(x∗, Sx∗)δθ(x
∗, Sx∗)

� θ(x∗, Sx∗)δθ(x∗, xn+2) + θ(x∗, Sx∗)γr.

The inequality before the last one follows by showing that δθ(x
∗, Sx∗) is the

maximal element in the ” max ” of the left hand side with a simple contradic-
tion argument involving choosing k sufficiently large forcing all other terms
being smaller than r.
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From the last inequality, we obtain:

r ≤ θ(x∗, Sx∗)(|δθ(x∗, x2n+2)|+ γr).

Then, since this inequality has to hold for all situations, by considering
lim
k→∞

δθ(x
∗, x2n+2) = 0 and θ(x∗, Sx∗) = 1, it follows that γ ≥ 1, and hence, a

contradiction. Then, x∗ = Sx∗.
In the same way, we get x∗ = Tx∗. Hence, x∗ is a common fixed point for

the pair (S, T ). For the uniqueness of the common fixed point x∗, we use
similar steps as in the proof of Theorem 6. �

3. Existence of a solution for a system Urysohn integral type
equations

Let us consider the following system of Urysohn type integral equations.{
x(t) = f(t) +

∫ b
a F1(t, s, x(s))ds

y(t) = f(t) +
∫ b
a F2(t, s, y(s))ds

. (12)

where,
(i) x(t) and y(t) are unknown variables for each t ∈ [a, b], a > 0,
(ii) f(t) is the deterministic free term defined for t ∈ [a, b],
(iii) F1(t, s) and F2(t, s) are deterministic kernels defined for t, s ∈ [a, b].

Let X = (C[a, b],Rn), β > 1 and dθ : X ×X → Rn defined by

dθ(x, y) = ‖x(t)− y(t)‖∞ = max
t∈[a,b]

|x(t)− y(t)|2
√

1− β3ei cos−1 β,

for all x, y ∈ X, i =
√
−1 ∈ C where θ : X × X → [1,+∞) is defined as

θ(x, y) = |x(t)|+ |y(t)|+ 1.
Obviously (C[a, b],Rn, ‖·‖∞) is a complete complex valued extended b-metric

space.
Further, we will have a Urysohn integral type system as (12) under the

following conditions:
(u1) f(t) ∈ X,
(u2) F1, F2 : [a, b]× [a, b]× Rn → Rn are continuous functions satisfying

|F1(t, s, u(s))− F2(t, s, v(s))| � 1√
(b− a)eβ

M(u, v),

where,

M(u, v) = max{d(u, v), d(u, Tu), d(v, Tv),
1

2
(d(u, Tv) + d(v, Tu))}.

This section is dedicated to study of existence of a unique solution to the
system (12) applying Theorem 6. Further, we give the main theorem of this
section.
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Theorem 8. (C[a, b],Rn, ‖.‖∞) be a complete complex valued extended b-
metric space, then the system (12) under the conditions (u1) and (u2) has
a unique common solution.

Proof. For x, y ∈ (C[a, b],Rn) and t ∈ [a, b], we define the continuous mappings
S, T : X → X by

Sx(t) = f(t) +
∫ b
a F1(t, s, x(s))ds,

Ty(t) = f(t) +
∫ b
a F2(t, s, y(s))ds.

Then we have

|Sx(t)− Ty(t)|2 =

∫ b

a
|F1(t, s, x(s))− F 2(t, s, y(s))|2 ds

�
∫ b

a

1

(b− a)eβ
|M(x, y)|2 ds

=
1

(b− a)eβ

∫ b

a

e−i cos
−1 β√

1− β3
|M(x, y)|2

√
1− β3ei cos−1 βds

� 1

(b− a)eβ
e−i cos

−1 β√
1− β3

‖M(x, y)‖∞

b∫
a

ds

=
1

eβ
e−i cos

−1 β√
1− β3

‖M(x, y)‖∞ .

Then we get

|Sx(t)− Ty(t)|2
√

1− β3ei cos−1 β � 1

eβ
‖M(x, y)‖∞ ,

or, equivalently

‖Sx(t)− Ty(t)‖∞ �
1

eβ
‖M(x, y)‖∞ .

Then we have
d(Sx, Ty) � γM(x, y).

For 0 < γ = 1
eβ
< 1 and lim

n,m→∞
θ(xn, xm) = 1 < eβ we have accomplished all

the conditions of Theorem 6. Therefore the system (12) has a unique common
solution on X. �
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