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MODIFIED BETA GENERALIZED LINEAR FAILURE RATE

DISTRIBUTION: THEORY AND APPLICATIONS
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Abstract. In this paper we introduce a new comprehensive six-parameter
distribution called the modified beta generalized linear failure rate dis-
tribution. One of the interest of this distribution is to generalize some
well-known flexible distributions discussed in the literature, such as (i) the
beta linear failure rate distribution, (ii) the generalized linear failure rate
distribution, (iii) the beta exponential distribution, (iv) the beta Rayleigh
distribution and (v) the generalized exponential distribution, among oth-
ers. We derive some of its statistical properties, including the moments,
the moment generating function, the quantile function, the order statistics
and the mean deviations. We propose the method of maximum likelihood
for estimating the model parameters. A simulation study is performed in
order to investigate the performance of the maximum likelihood estima-
tors. A real data set is used to illustrate the importance and the flexibility
of the new distribution.
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1. Introduction and motivation

The development of (probability) distributions that have the ability to ex-
tract essential informations from lifetime data remains an important challenge
for the statisticians. Indeed, the classical lifetime distributions such as the
exponential distribution, the Rayleigh distribution, the linear failure rate dis-
tribution or the generalized exponential distribution have some limitations.
One of the common limitation of these distributions is that they can not have
increasing, decreasing and bathtub shaped hazard functions. This point is an
obstacle for the perfect analysis of a wide variety of lifetime data. A suitable
alternative is proposed by the so-called generalized linear failure rate distri-
bution introduced by [1]. It is a three-parameter distribution characterized by
the cumulative distribution function (cdf) given by

G(x) =
[
1− e−(λx+ θ

2
x2)
]α
, x > 0, (1)

where (λ > 0 and θ ≥ 0) or (λ ≥ 0 and θ > 0) and α > 0. Here λ and θ denote
the scale parameters and α denotes the shape parameter of the distribution.
The corresponding probability density function (pdf) is given by

g(x) = α(λ+ θx)e−(λx+ θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]α−1

. (2)

The corresponding hazard rate function (hrf) is given by

h(x) =
α(λ+ θx)e−(λx+ θ

2
x2)
[
1− e−(λx+ θ

2
x2)
]α−1

1−
[
1− e−(λx+ θ

2
x2)
]α . (3)

Let us mention that the generalized linear failure rate distribution contains
several known lifetime distributions. Indeed, when θ = 0 and α = 1, we
obtain the exponential distribution with parameter λ, when λ = 0 and α = 1,
we obtain the Rayleigh distribution with parameter θ, when α = 1, we have
the linear failure rate distribution with parameters λ and θ and when θ = 0,
we obtain the generalized exponential distribution with parameters λ and α.

On the other side, the last two decades of research in the field have been
marked by the development of new general methods for building meaningful
distributions from a baseline of an existing distribution. The most common
approach is to use a so-called generator of distributions derived to common
distributions with well-known structural properties. We refer to the extensive
review of [2, 3, 4, 5, 6, 7], and the references therein. Using several kinds of
generators, several extensions of the linear failure rate distribution have been
proposed (some of them extending the generalized linear failure rate distri-
bution by using a power parameter in their constructions). See, for instance,
[8] used the Kumaraswamy generator, [9] used the McDonald generator, [10]
used the odd generalized exponential (OGE) generator, [11] used the beta
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and the geometric generators, and [12] used the odd generator. In this study,
we focus our attention on an extension of the generalized linear failure rate
distribution obtained by the use of the modified beta generator developed by
[13]. A feature of this generator is to perfectly combine the complementary
flexible properties of the beta generator introduced by [14] and the Marshall-
Olkin generator introduced by [15]. We then benefit of this great advantage to
increase the flexibility of the generalized linear failure rate distribution. The
resulting distribution is naturally called the modified beta generalized linear
failure rate distribution (MBGLFR for short). To the best of our knowledge, it
has never been explored in the literature. In this study, we extensively studied
its statistical and practical properties, and motivate its use for the analysis of
complex data sets via simulation studies and the consideration of a concrete
application.

The remainder of the article is organized as follows. Section 2 defines the
MBGLFR distribution. The main structural properties of the MBGLFR dis-
tribution are investigated in Section 3. Section 4 provides the necessary to the
estimation of the unknown parameters with the maximum likelihood method.
A simulation study is performed to illustrate the theoretical results. The ap-
plicability of the MBGLFR model is studied in Section 4, with comparison
to other competing probability models. Concluding remarks are provided in
Section 5.

2. Modified beta generalized linear failure rate distribution

This section is devoted to the presentation of the MBGLFR distribution.
Firstly, we recall the basics of the modified beta generator, then we present
the crucial functions of the MBGLFR distribution, with an analytical and
graphical study of the shapes of the related pdf and hrf.

2.1. The modified beta generator. First of all, let us recall the construc-
tion of the modified beta generator introduced by [13]. Let c > 0, G(x) be a cdf
and g(x) be a related pdf. Then the modified beta generator is characterized
by the cdf given by

F (x) = I cG(x)
1−(1−c)G(x)

(a, b), (4)

where a, b > 0, B(a, b) denotes the beta function defined by B(a, b) =
∫ 1
0 t

a−1(1−
t)b−1dt and Ix(a, b) denotes the incomplete beta function ratio defined by
Ix(a, b) = (1/B(a, b))

∫ x
0 t

a−1(1 − t)b−1dt, x ∈ [0, 1]. The related pdf is given
by

f(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
, x ∈ R. (5)
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The related hrf is given by

h(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b

(
1− I cG(x)

1−(1−c)G(x)

(a, b)

) , x ∈ R.

The related reversed hrf is given by

r(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b I cG(x)
1−(1−c)G(x)

(a, b)
, x ∈ R.

2.2. The MBGLFR distribution. Let us now present the MBGLFR dis-
tribution. Using the general formulas above with the cdf of the generalized
linear failure rate distribution as baseline, i.e., having the cdf G(x) given by
(1) (and the pdf g(x) given by (2)), the cdf given by (4) becomes

F (x) = I
c

[

1−e
−(λx+ θ

2 x2)
]α

1−(1−c)

[

1−e
−(λx+ θ

2x2)
]α

(a, b), x > 0. (6)

The related pdf given by (5) becomes

f(x) =

caα(λ+ θx)e−(λx+ θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b

,

x > 0. (7)

The related hrf is given by

h(x) =

caα(λ+ θx)e−(λx+ θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b



1− I

c

[

1−e
−(λx+ θ

2 x2)
]α

1−(1−c)

[

1−e
−(λx+ θ

2 x2)
]α

(a, b)




,

x > 0. (8)
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The related reversed hrf is given by

r(x) =

caα(λ+ θx)e−(λx+ θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b

I
c

[

1−e
−(λx+ θ

2 x2)
]α

1−(1−c)

[

1−e
−(λx+ θ

2 x2)
]α

(a, b)

,

x > 0.

2.3. Special cases. The MBGLFR distribution has the faculty to approach
different lifetime distributions when its parameters are changed. A non-
exhaustive list is given below.

(1) When α = 1 and c = 1/(1 − p) with p ∈ (0, 1), we obtain the beta
geometric generalized linear failure rate distribution introduced by [11].

(2) When α = 1 and c = 1, we obtain the beta generalized linear failure
rate distribution introduced by [16].

(3) When α = c = b = 1, then we get the generalized linear failure rate
distribution introduced by [1].

(4) When α = c = 1 and λ = 0, we get the beta Rayleigh distribution
proposed by [17].

(5) When α = c = 1 and θ = 0, we obtain the beta exponential distribution
which is introduced by [18].

(6) For α = c = b = 1 and θ = 0, we get the generalized exponential
distribution proposed by [19].

(7) When a = b = α = c = 1, we get the linear failure rate distribution.

Potential new special distributions are listed below.

(1) When α = 1, we get the modified beta linear failure rate distribution.
(2) When α = 1 and λ = 0, we get the modified beta Rayleigh distribution.
(3) When α = 1 and θ = 0, we obtain the modified beta exponential

distribution.
(4) When α = c = 1, we get the beta linear failure rate distribution

distribution.

Note: For the sake of simplicity in exposition, we suppose in the next that
λ > 0 and θ > 0, which does not exclude the case where they are very small.
This is the most interesting cases in practice. The cases (λ > 0 and θ = 0)
and (λ = 0 and θ > 0) can be investigated in a similar way.
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2.4. Asymptotes and shapes of the pdf and the hrf. Let us now inves-
tigate the asymptotes for f(x). We have

f(x) ∼ ca

B(a, b)
αλaαxaα−1, x→ 0.

So, for a ∈ (0, 1/α), we have limx→0 f(x) = +∞, for a = 1/α, we have

limx→0 f(x) = c1/αλα/B(1/α, b) and for a > 1/α, we have limx→0 f(x) = 0.
We see that the parameter θ play no role. On the other hand, we have

f(x) ∼ 1

cbB(a, b)
αbθxe−b(λx+ θ

2
x2), x→ +∞.

Therefore, we have limx→+∞ f(x) = 0 in all cases. The shapes of f(x) can
be described analytically; the critical points x∗ of the pdf f(x) satisfies the
equation given by ∂ log(f(x∗))/∂x = 0, which corresponds to

θ

λ+ θx∗
− (λ+ θx∗) + (aα− 1)(λ+ θx∗)

e−(λx∗+
θ
2
x2
∗
)

1− e−(λx∗+
θ
2
x2
∗
)

− (b− 1)
α(λ + θx∗)e

−(λx∗+
θ
2
x2
∗
)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α−1

1−
[
1− e−(λx∗+

θ
2
x2
∗
)
]α

+ (a+ b)(1 − c)
α(λ + θx∗)e

−(λx∗+
θ
2
x2
∗
)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α−1

1− (1− c)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α = 0.

As usual in the theory of extrema, a critical point x∗ corresponds to a local
maximum if ∂2 log(f(x∗))/∂x

2 < 0, a local minimum if ∂2 log(f(x∗))/∂x
2 > 0

and a point of inflection if ∂2 log(f(x∗))/∂x
2 = 0.

Let us now focus on the hrf h(x). Similarly to f(x), we have

h(x) ∼ ca

B(a, b)
αλaαxaα−1, x→ 0.

So, for a ∈ (0, 1/α), we have limx→0 h(x) = +∞, for a = 1/α, we have

limx→0 h(x) = c1/αλα/B(1/α, b) and for a > 1/α, we have limx→0 h(x) = 0.
We have

h(x) ∼ b(λ+ θx), x→ +∞.

Therefore, we have limx→+∞ h(x) = +∞, except in the case θ → 0 where
limx→+∞ h(x) = bλ. The critical points x∗ of h(x) satisfies the equation
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∂ log(h(x∗))/∂x = 0, i.e.,

θ

λ+ θx∗
− (λ+ θx∗) + (aα− 1)(λ+ θx∗)

e−(λx∗+
θ
2
x2
∗
)

1− e−(λx∗+
θ
2
x2
∗
)

− (b− 1)
α(λ + θx∗)e

−(λx∗+
θ
2
x2
∗
)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α−1

1−
[
1− e−(λx∗+

θ
2
x2
∗
)
]α

+ (a+ b)(1 − c)
α(λ + θx∗)e

−(λx∗+
θ
2
x2
∗
)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α−1

1− (1 − c)
[
1− e−(λx∗+

θ
2
x2
∗
)
]α

+
caα(λ+ θx∗)e

−(λx∗+
θ
2
x2
∗
)
[
1− e−(λx∗+

θ
2
x2
∗
)
]αa−1 [

1−
[
1− e−(λx∗+

θ
2
x2
∗
)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx∗+

θ
2
x2
∗
)
]α]a+b



1− I

c

[

1−e
−(λx∗+

θ
2 x2

∗
)
]α

1−(1−c)

[

1−e
−(λx∗+

θ
2 x2

∗
)
]α

(a, b)




= 0.

Then a point x∗ corresponds to a local maximum if ∂2 log(h(x∗))/∂x
2 <

0, a local minimum if ∂2 log(h(x∗))/∂x
2 > 0 and a point of inflection if

∂2 log(h(x∗))/∂x
2 = 0.

The critical points and the shapes of f(x) and h(x) can be explored graph-
ically. Figures 1 and 2 show the plots for f(x) and h(x) respectively, for
selected parameter values. In particular, we see that the hrf can be increasing,
decreasing or bathtub shaped, with more different curvatures in comparison
to the former generalized linear failure rate distribution (see [1]).

3. Statistical properties

We now study some important statistical properties of the MBGLFR distri-
bution, i.e., a linear representation of the cdf (and the pdf), the moments, the
moment generating function, the quantile function, the order statistics and
the mean deviations.

3.1. Linear representation for the cdf. Proposition 1 below shows that
F (x) can be expressed as a linear combination of survival functions of linear
failure rate distributions.

Proposition 1. For any integer k and γ ∈ R, let us set
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Figure 1. Some plots of the pdf f(x) for selected parameter values.
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Figure 2. Some plots of the hrf h(x) for selected parameter values.

(
γ

k

)
=
γ(γ − 1) . . . (γ − k + 1)

k!
. The cdf F (x) can be expressed as

F (x) =
+∞∑

m=0

vm[c]Sm(x), (9)

where

vm[c] =


























(−1)mca

B(a, b)

+∞
∑

k=0

+∞
∑

ℓ=0

(α(ℓ+ a+ k)

m

)(−(a+ k)

ℓ

)(b− 1

k

) ck(−1)k+ℓ(1 − c)ℓ

a + k
if c ∈ (0, 1],

(−1)m

B(a, b)

+∞
∑

k=0

+∞
∑

ℓ=0

ℓ
∑

q=0

(−(a + k)

ℓ

)(ℓ

q

)(α(q + a+ k)

m

)(b− 1

k

) (−1)ℓ+q+k(c− 1)ℓc−ℓ

a + k
if c > 1

(10)
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and Sm(x) = e−(mλx+mθ
2

x2) is the survival function related to the linear failure
rate distribution with parameters mλ and mθ.

Proof. The generalized binomial formula can be formulated as follows: for any

z such that |z| < 1 and γ ∈ R, we have (1+z)γ =

+∞∑

k=0

(
γ

k

)
zk. By this formula,

we can express F (x) as the following series:

F (x) = I cG(x)
1−(1−c)G(x)

(a, b) =
1

B(a, b)

+∞∑

k=0

(
b− 1

k

)
(−1)k

∫ cG(x)
1−(1−c)G(x)

0
ta+k−1dt

=
1

B(a, b)

+∞∑

k=0

(
b− 1

k

)
(−1)k

a+ k

[
cG(x)

1− (1− c)G(x)

]a+k

.

Let us suppose that c ∈ (0, 1]. Using again the generalized binomial formula,
we get
[

cG(x)

1− (1− c)G(x)

]a+k

= ca+k
+∞∑

ℓ=0

(−(a+ k)

ℓ

)
(−1)ℓ(1− c)ℓ[G(x)]ℓ+a+k (11)

and again

[G(x)]ℓ+a+k =
[
1− e−(λx+ θ

2
x2)
]α(ℓ+a+k)

=
+∞∑

m=0

(
α(ℓ+ a+ k)

m

)
(−1)mSm(x).

By putting the above equalities together, we prove the announced formula for
c ∈ (0, 1] (with the related expression for vm[c]).

Let us now investigate the case c > 1. We still have

F (x) =
1

B(a, b)

+∞∑

k=0

(
b− 1

k

)
(−1)k

a+ k

[
cG(x)

1− (1− c)G(x)

]a+k

.

By noticing that cG(x)
1−(1−c)G(x) = G(x)

1−(1− 1
c
)(1−G(x))

, by applying the generalized

binomial formula and the standard binomial formula, we obtain
[

cG(x)

1− (1− c)G(x)

]a+k

= [G(x)]a+k
+∞∑

ℓ=0

(−(a+ k)

ℓ

)
(−1)ℓ(c− 1)ℓc−ℓ[1−G(x)]ℓ

=
+∞∑

ℓ=0

ℓ∑

q=0

(−(a+ k)

ℓ

)(
ℓ

q

)
(−1)ℓ+q(c− 1)ℓc−ℓ[G(x)]q+a+k.

We also have

[G(x)]q+a+k =
[
1− e−(λx+ θ

2
x2)
]α(q+a+k)

=
+∞∑

m=0

(
α(q + a+ k)

m

)
(−1)mSm(x).
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By combining these equalities, we prove the announced formula for c > 1 (with
the related expression for vm[c]). �

An important consequence of Proposition 1 is the following. Let um(x) be
a pdf related to the (standard) linear failure rate distribution with parameters
mλ and mθ. By the differentiation of infinite series, we can express the pdf
f(x) as

f(x) =
+∞∑

m=0

wm[c]um(x), (12)

where

wm[c] = −vm[c] =


























(−1)m+1ca

B(a, b)

+∞
∑

k=0

+∞
∑

ℓ=0

(α(ℓ+ a+ k)

m

)(−(a+ k)

ℓ

)(b− 1

k

) ck(−1)k+ℓ(1− c)ℓ

a+ k
if c ∈ (0, 1],

(−1)m+1

B(a, b)

+∞
∑

k=0

+∞
∑

ℓ=0

ℓ
∑

q=0

(−(a + k)

ℓ

)(ℓ

q

)(α(q + a+ k)

m

)(b− 1

k

) (−1)ℓ+q+k(c− 1)ℓc−ℓ

a + k
if c > 1.

Note: Hereafter, we denote by X a random variable having the cdf F (x)
given by (6) (and the pdf f(x) given by (7)) and by Ym a random variable
following the linear failure rate distribution with parameters mλ and mθ, i.e.,
having the survival function Sm(x) (and the pdf um(x), i.e., the pdf given by
(2) with mλ instead of λ and mθ instead of θ).

3.2. Moments. Here, moments of the MBGLFR distribution are presented.
They are crucial since some most important features of the distribution can
be defined through moments (dispersion, skewness, kurtosis . . . ). The result
below presents a sum expression for the r-th moment of X.

Proposition 2. Let r be a positive integer. Let Γ(x) be the gamma function

defined by Γ(x) =
∫ +∞
0 tx−1e−tdt, x > 0. Then the r-th moment of X is given

by

µ′r =

1

λr+2

+∞∑

m=0

+∞∑

k=0

wm[c](−1)k
θk

2kk!λ2k
1

mk+r+1

(
mλ2 + θ(2k + r + 1)

)
Γ(2k + r + 1),

where wm[c] is defined as in Proposition 1.
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Proof. Using the linear representation given by (12), the r-th ordinary moment
of X is given by

µ′r = E (Xr) =

∫ +∞

−∞
xrf(x)dx =

+∞∑

m=0

wm[c]

∫ +∞

−∞
xrum(x)dx

=
+∞∑

m=0

wm[c]E(Y r
m).

Using the exponential series expansion: e−
mθ
2

x2
=

+∞∑
k=0

(−1)k mkθk

2kk!
x2k, x ∈ R,

we obtain

E(Y r
m) = m

∫ +∞

0
xr(λ+ θx)e−(mλx+mθ

2
x2)dx

=

+∞∑

k=0

(−1)k
mk+1θk

2kk!

∫ +∞

0
x2k+r(λ+ θx)e−mλxdx. (13)

By doing the change of variable u = mλx and by using the property Γ(x+1) =
xΓ(x), x > 0, we obtain

∫ +∞

0
x2k+r(λ+ θx)e−mλxdx

= λ

∫ +∞

0
x2k+re−mλxdx+ θ

∫ +∞

0
x2k+r+1e−mλxdx

= λ
1

(mλ)2k+r+1
Γ(2k + r + 1) + θ

1

(mλ)2k+r+2
Γ(2k + r + 2)

=
1

(mλ)2k+r+2

(
mλ2 + θ(2k + r + 1)

)
Γ(2k + r + 1). (14)

By putting all these equalities together, we end the proof of Proposition 2. �

Proposition 2 can be used to determine all quantities depending on the
moments. In particular, the mean of X is given by E(X) = µ′1 and the
variance of X is given by V(X) = µ′2 − (µ′1)

2. The r-th central moment of X
is given by

µr = E
[
(X − µ′1)

r
]
=

r∑

k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k.

The r-th cumulants of X can be obtained by the recursive formula: κr = µ′r−
r−1∑
k=1

(r−1
k−1

)
κkµ

′
r−k, with κ1 = µ′1. The skewness of X is given by γ1 = κ3/κ

3/2
2
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and the kurtosis of X is given by γ2 = κ4/κ
2
2. Finally, the moment generating

function of X is given by

MX(t) = E(etX) =

+∞∑

k=0

tk

k!
µ′k, t ≤ 0,

(an alternative expression, which really generate moments, will be given in
Subsection 3.3).

Table 1 presents the numerical values of some moments (order 1, 2, 3 and 4),
the skewness γ1 and the kurtosis γ2 of X for selected values of the parameters.

Table 1. Some moments, skewness and kurtosis of X for
the following selected parameters values in order (a, b, c, α,
β, θ); (i): (1, 2, 1.5, 1.5, 0.9, 3), (ii): (4, 2, 0.5, 2, 2, 0.2), (iii):
(5, 5, 0.1, 2, 2, 0.1) and (iv): (5, 5, 0.4, 2, 2, 0.5).

(i) (ii) (iii) (iv)
E(X) 0.1848323 1.436719 1.69751 1.13918
E(X2) 0.05675808 2.132057 2.912508 1.331062
E(X3) 0.02448038 3.262164 5.048277 1.592475
E(X4) 0.01358948 5.138691 8.835829 1.947968
V(X) 0.0225951 0.06789533 0.03096792 0.03333187
γ1 1.659701 0.2206476 -0.1597525 0.03524769
γ2 4.096917 0.169661 0.186536 0.017433

3.3. Moment generating function. The result below presents a series ex-
pression for the moment generating function of X.

Proposition 3. Let r be a positive integer. Then the moment generating
function of X is given by

MX(t) =

+∞∑

m=0

+∞∑

k=0

wm[c](−1)k
mk+1θk

2kk!

1

(mλ− t)2k+2
[λ(mλ− t) + θ(2k + 1)] Γ(2k + 1),

t ≤ 0,

where wm[c] is defined as in Proposition 1.

Proof. Using the linear representation given by (12), the moment generating
function of X is given by

MX(t) =

∫ +∞

−∞
etxf(x)dx =

+∞∑

m=0

wm[c]

∫ +∞

−∞
etxum(x)dx =

+∞∑

m=0

wm[c]MYm(t),
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whereMYm(t) = E(etYm) (is the moment generating function of Ym). Using the

exponential series expansion: e−
mθ
2

x2
=

+∞∑
k=0

(−1)k mkθk

2kk!
x2k, x ∈ R, we obtain

MYm(t) = m

∫ +∞

0
etx(λ+ θx)e−(mλx+mθ

2
x2)dx

= m

∫ +∞

0
(λ+ θx)e−((mλ−t)x+mθ

2
x2)dx

=
+∞∑

k=0

(−1)k
mk+1θk

2kk!

∫ +∞

0
x2k(λ+ θx)e−(mλ−t)xdx.

By doing the change of variable u = [mλ − t]x and by using the property
Γ(x+ 1) = xΓ(x), x > 0, we obtain

∫ +∞

0
x2k(λ+ θx)e−(mλ−t)xdx

= λ

∫ +∞

0
x2ke−(mλ−t)xdx+ θ

∫ +∞

0
x2k+1e−(mλ−t)xdx

= λ
1

(mλ− t)2k+1
Γ(2k + 1) + θ

1

(mλ− t)2k+2
Γ(2k + 2)

=
1

(mλ− t)2k+2
[λ(mλ− t) + θ(2k + 1)] Γ(2k + 1).

By combining all these equalities, we complete the proof of Proposition 3. �

3.4. Quantile function. Let I−1
u (a, b) be the inverse of the incomplete beta

function ratio Iu(a, b). Then the quantile function of X is given by

Q(u) =
1

θ




−λ+

√√√√√λ2 − 2θ log


1−

[
I−1
u (a, b)

c+ (1− c)I−1
u (a, b)

] 1
α







, u ∈ (0, 1).

Since Iu(a, b) ∼ (auB(a, b))
1
a when u→ 0, we have

Q(u) ∼ 1

λc
1
α

(auB(a, b))
1
aα , u→ 0.

The median of X is given by M = Q(0.5). By definition of the quantile func-
tion, for a random variable U following the uniform distribution over (0, 1),
the random variable X = Q(U) follows the MBGLFR distribution. Alterna-
tively, noticing that I−1

U (a, b) follows the beta distribution with parameters a
and b, the following characterization holds.
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Lemma 4. Let V be a random variable following the beta distribution with
parameters a and b. Then the random variable X given by

X =
1

θ



−λ+

√√√√λ2 − 2θ log

(
1−

[
V

c+ (1− c)V

] 1
α

)
 ,

follows the MBGLFR distribution. On the other side, let X be a random
variable following the MBGLFR distribution. Then the random variable given
by

V =
c
[
1− e−(λX+ θ

2
X2)
]α

1 + (c− 1)
[
1− e−(λX+ θ

2
X2)
]α ,

follows the beta distribution with parameters a and b.

We can also use Q(u) to define other measures of skewness as, for instance,
the Bowley skewness and the Moors kurtosis. They are respectively defined
by

B =
Q(0.75) +Q(0.25) − 2Q(0.5)

Q(0.75) −Q(0.25)

and

Mo =
Q(0.875) −Q(0.625) +Q(0.375) −Q(0.125)

Q(0.75) −Q(0.25)
.

In comparison to γ1 and γ2, the interest of B and Mo is to be less sensitive
to outliers and to always exist (which is not the case for γ1 and γ2). Further
details can be found in [20] and [21].

3.5. Order statistics. The order statistics play a determinant role in statis-
tics. They naturally arise in reliability theory and life testing. Here, we present
a result characterizing the pdf of the i-th order statistic of the MBGLFR dis-
tribution in terms of sum of pdfs of linear failure rate distributions.

Proposition 5. Let X1, . . . ,Xn be the random sample from X and Xi:n be
the i-th order statistic. Then the pdf of Xi:n can be expressed as a linear
combination of pdfs of linear failure rate distributions.

Proof. The pdf of the i-th order statistic denoted by Xi:n is given by

fi:n(x) =
1

B(i, n − i+ 1)
f(x)[F (x)]i−1 [1− F (x)]n−i , x ∈ R.
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By using the binomial formula and the linear expansions (9) and (12), we get

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑

j=0

(
n− i

j

)
(−1)jf(x)[F (x)]j+i−1

=
1

B(i, n− i+ 1)

n−i∑

j=0

(
n− i

j

)
(−1)j

+∞∑

m=0

wm[c]um(x)

[
+∞∑

k=0

vk[c]Sk(x)

]j+i−1

.

A result from [22] on power series can be formulated as follows. As soon as
the sums exist, for a positive integer s, a sequence of real numbers (ak)k∈N
and y ∈ R, we have

(
+∞∑

k=0

aky
k

)s

=

+∞∑

k=0

ds,ky
k,

where the coefficients (ds,k)k∈N are determined by the following relations:
ds,0 = as0 and, for any m ≥ 1,

ds,m = (ma0)
−1

m∑

ℓ=1

(ℓ(s + 1)−m)aℓds,m−ℓ.

Noticing that Sk(x) =
(
e−(λx+ θ

2
x2)
)k

, the formula above applied with s =

j + i− 1, ak = vk[c] and y = e−(λx+ θ
2
x2) yields

[
+∞∑

k=0

vk[c]Sk(x)

]j+i−1

=

+∞∑

k=0

dj+i−1,k[c]Sk(x),

where dj+i−1,0[c] = (v0[c])
j+i−1 and, for any m ≥ 1,

dj+i−1,m[c] =
1

mv0[c]

m∑

k=1

(k(j + i)−m)vk[c]dj+i−1,m−k[c].

By combining the equalities above, we obtain

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑

j=0

+∞∑

m=0

+∞∑

k=0

(
n− i

j

)
(−1)j wm[c]dj+i−1,k[c]um(x)Sk(x).

We end the proof by observing that

um(x)Sk(x) = m(λ+ θx)e−(m+k)(λx+ θ
2
x2) =

m

m+ k
um+k(x),

where um+k(x) denotes the pdf of the linear failure rate distribution with
parameters (m+ k)λ and (m+ k)θ. �
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It follows from the proof of Proposition 5 that fi:n(x) can be written as

fi:n(x) =

+∞∑

m=0

+∞∑

k=0

zm,k[c]um+k(x),

where

zm,k[c] =
1

B(i, n− i+ 1)

n−i∑

j=0

(
n− i

j

)
(−1)j wm[c]dj+i−1,k[c]

m

m+ k
.

Therefore the r-th ordinary moment of Xi:n can be expressed as

E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx =

+∞∑

m=0

+∞∑

k=0

zm,k[c]

∫ +∞

−∞
xrum+k(x)dx.

By proceeding as in (13) and (14) with m+ k instead of m, we can show that

∫ +∞

−∞
xrum+k(x)dx =

+∞∑

ℓ=0

(−1)ℓθℓ

(k +m)ℓ+r+1λ2ℓ+r+22ℓℓ!

[
(m+ k)λ2 + θ(2ℓ+ r + 1)

]
Γ(2ℓ+ r + 1).

By combining the equalities above, we obtain a sum expression for the r-th
ordinary moment of Xi:n.

3.6. Mean deviations. The mean deviation of X about the mean µ′1 is given
by

δ1 = E(|X − µ′1|) =
∫ +∞

−∞
|x− µ′1|f(x)dx.

The mean deviation of X about the median M is given by

δ2 = E(|X −M |) =
∫ +∞

−∞
|x−M |f(x)dx.

They are two measures of spread in a population. The following result shows
expressions for these two quantities.

Proposition 6. Let γ(d, x) be the lower incomplete gamma function defined

by γ(d, x) =
∫ x
0 t

d−1e−tdt, d > 0, x ≥ 0. Then we have

δ1 = 2µ′1F (µ
′
1)− 2m∗(µ

′
1), δ2 = µ′1 − 2m∗(M),
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where, for any t ≥ 0,

m∗(t) =

∫ t

−∞
xf(x)dx

=

+∞∑

m=0

+∞∑

k=0

wm[c](−1)k
θk

2kk!mk+2λ2k+3

[
mλ2γ(2k + 2,mλt) + θγ(2k + 3,mλt)

]
.

(15)

Proof. We have

δ1 =

∫ µ′

1

−∞
(µ′1 − x)f(x)dx+

∫ +∞

µ′

1

(x− µ′1)f(x)dx

=

∫ µ′

1

−∞
(µ′1 − x)f(x)dx−

∫ µ′

1

−∞
(x− µ′1)f(x)dx

= 2µ′1F (µ
′
1)− 2m∗(µ

′
1).

It follows from (12) that

m∗(t) =
+∞∑

m=0

wm[c]

∫ t

−∞
xum(x)dx.

Using similar mathematical arguments to (13) and (14) but with the integra-
tion over (0, t) instead of (0,+∞) and with r = 1, we get

∫ t

−∞
xum(x)dx =

+∞∑

k=0

(−1)k
mk+1θk

2kk!

∫ t

0
x2k+1(λ+ θx)e−mλxdx,

with∫ t

0
x2k+1(λ+ θx)e−mλxdx = λ

∫ t

0
x2k+1e−mλxdx+ θ

∫ t

0
x2k+2e−mλxdx

= λ
1

(mλ)2k+2
γ(2k + 2,mλt) + θ

1

(mλ)2k+3
γ(2k + 3,mλt)

=
1

(mλ)2k+3

[
mλ2γ(2k + 2,mλt) + θγ(2k + 3,mλt)

]
.

We end the proof of the first equality by putting these equalities together. For
δ2, using F (M) = 0.5, we obtain

δ2 =

∫ M

−∞
(M − x)f(x)dx+

∫ +∞

M
(x−M)f(x)dx

=

∫ M

−∞
(M − x)f(x)dx+ µ′1 −M −

∫ M

−∞
(x−M)f(x)dx

= µ′1 − 2m∗(M).
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The second equality in the proof follows. �

One can also use (15) to determine the Bonferroni curve and the Lorenz
curve which are very useful in many applied areas (economics, reliability, de-
mography, medicine. . . ). They are respectively given by

B(p) =
1

pµ′1
m∗(Q(p)), L(p) =

1

µ′1
m∗(Q(p)), p ∈ (0, 1).

4. Statistical inference

Here, the estimations of the parameters λ, θ, α, a, b and c of the MBGLFR
distribution are performed with the maximum likelihood method.

4.1. Maximum likelihood estimation. The most common method of para-
metric estimation is the maximum likelihood method. The resulting estima-
tors, called the maximum likelihood estimators, enjoy remarkable properties.
Among others, it can be used when constructing confidence intervals and re-
gions in test statistics. Approximation for the maximum likelihood estimators
in distribution theory is easily handled either analytically or numerically. Fur-
ther details can be found in [23]. Here, we determine the maximum likelihood
estimators of the parameters of the MBGLFR distribution from complete sam-
ples only. Let x1, . . . , xn be a random sample of size n from the MBGLFR
distribution. Let φ = (a, b, c, α, λ, θ)T be the 6× 1 vector of parameters. The
total log-likelihood function for φ is given by

Ln = Ln(φ) = na log c+ n log α− n logB(a, b) +
n∑

i=1

log(λ+ θxi)

− λ

n∑

i=1

xi −
θ

2

n∑

i=1

x2i + (αa− 1)

n∑

i=1

log
[
1− e−(λxi+

θ
2
x2
i )
]

+ (b− 1)

n∑

i=1

log
[
1−

[
1− e−(λxi+

θ
2
x2
i )
]α]

− (a+ b)

n∑

i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2
i )
]α]

.

The associated components of the score function is igven by

Un(φ) =

[
∂Ln

∂a
,
∂Ln

∂b
,
∂Ln

∂c
,
∂Ln

∂α
,
∂Ln

∂λ
,
∂Ln

∂θ

]T
.

Let us introduce the digamma function ψ(x) defined by ψ(x) = Γ′(x)/Γ(x).
Then, since we can express B(a, b) as B(a, b) = Γ(a)Γ(b)/Γ(a + b), we have
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∂ logB(a, b)/∂a = ψ(a) − ψ(a+ b). Therefore

∂Ln

∂a
= n log c− nψ(a) + nψ(a+ b) + α

n∑

i=1

log
[
1− e−(λxi+

θ
2
x2
i )
]

−
n∑

i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2
i )
]α]

,

∂Ln

∂b
= −nψ(b) + nψ(a+ b) +

n∑

i=1

log
[
1−

[
1− e−(λxi+

θ
2
x2
i )
]α]

−
n∑

i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2
i )
]α]

,

∂Ln

∂c
=
na

c
− (a+ b)

n∑

i=1

[
1− e−(λxi+

θ
2
x2
i )
]α

1− (1− c)
[
1− e−(λxi+

θ
2
x2
i )
]α ,

∂Ln

∂α
=
n

α
+ a

n∑

i=1

log
[
1− e−(λxi+

θ
2
x2
i )
]

− (b− 1)
n∑

i=1

[
1− e−(λxi+

θ
2
x2
i )
]α

log
[
1− e−(λxi+

θ
2
x2
i )
]

1−
[
1− e−(λxi+

θ
2
x2
i )
]α

+ (a+ b)

n∑

i=1

(1− c)
[
1− e−(λxi+

θ
2
x2
i )
]α

log
[
1− e−(λxi+

θ
2
x2
i )
]

1− (1− c)
[
1− e−(λxi+

θ
2
x2
i )
]α ,

∂Ln

∂λ
=

n∑

i=1

1

λ+ θxi
−

n∑

i=1

xi + (αa− 1)
n∑

i=1

xie
−(λxi+

θ
2
x2
i )

1− e−(λxi+
θ
2
x2
i )

− α(b− 1)
n∑

i=1

xie
−(λxi+

θ
2
x2
i )
[
1− e−(λxi+

θ
2
x2
i )
]α−1

1−
[
1− e−(λxi+

θ
2
x2
i
)
]α

+ α(a+ b)
n∑

i=1

(1− c)xie
−(λxi+

θ
2
x2
i )
[
1− e−(λxi+

θ
2
x2
i )
]α−1

1− (1− c)
[
1− e−(λxi+

θ
2
x2
i )
]α
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and

∂Ln

∂θ
=

n∑

i=1

xi
λ+ θxi

− 1

2

n∑

i=1

x2i + (αa− 1)

n∑

i=1

1
2x

2
i e

−(λxi+
θ
2
x2
i )

1− e−(λxi+
θ
2
x2
i )

− α(b− 1)

n∑

i=1

1
2x

2
i e

−(λxi+
θ
2
x2
i )
[
1− e−(λxi+

θ
2
x2
i )
]α−1

1−
[
1− e−(λxi+

θ
2
x2
i )
]α

+ α(a+ b)

n∑

i=1

(1− c)12x
2
i e

−(λxi+
θ
2
x2
i )
[
1− e−(λxi+

θ
2
x2
i )
]α−1

1− (1− c)
[
1− e−(λxi+

θ
2
x2
i )
]α .

The maximum likelihood estimator of the vector of parameters φ,

say φ̂ = (â, b̂, ĉ, α̂, λ̂, θ̂), is obtained by solving the nonlinear system Un(φ) =
0. These equations cannot be solved analytically, and statistical software (R,
SAS. . . ) can be used to solve them numerically via iterative methods. For
interval estimation and hypothesis tests on the model parameters, we require
the information matrix. The 6 × 6 observed information matrix is given by
In(φ) = {−Iuv}(u,v)∈{a,b,c,α,λ,θ}2 , where

Iuv =
∂2Ln

∂u∂v
.

The general expressions of Iuv can be found in [13, Section 3] with G(x) defined
by (6). Applying the usual large sample approximation, maximum likelihood

estimators of φ, i.e φ̂ can be treated as being approximately N6(φ, Jn(φ)
−1),

where Jn(φ) = E [In(φ)]. Under conditions that are fulfilled for parameters in
the interior of the parameter space but not on the boundary, the asymptotic

distribution of
√
n(φ̂ − φ) is N6(0, J(φ)

−1), where J(φ) = limn→∞ n−1In(φ)
is the unit information matrix. This asymptotic behavior remains valid if

J(φ) is replaced by the average sample information matrix evaluated at φ̂,

say n−1In(φ̂). The estimated asymptotic multivariate normal N6(φ, In(φ̂)
−1)

distribution of φ̂ can be used to construct approximate confidence intervals
for the parameters. For any γ ∈ (0, 1), a 100(1 − γ)% asymptotic confidence
interval (ACI) for each parameter φr is given by

ACIr =

(
φ̂r − zγ

2

√
Îrr, φ̂r + zγ

2

√
Îrr

)
,

where φ̂r is the MLE of φr, Îrr is the corresponding estimation of Irr and zγ
is the upper 100γ-th percentile of the standard normal distribution.

4.2. Simulation. Due to obvious difficulties to compare the theoretical per-
formances of the different maximum likelihood estimates (MLEs) for the
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MBGLFR distribution. Therefore, simulation is needed to compare the per-
formances of the MLE mainly with respect to their mean square errors (MSEs)
for different sample sizes. A numerical study is performed using Mathematica
9 software. Different sample sizes are considered through the experiments at
size n = 50, 100 and 300. The experiment will be repeated 1000 times. In
each experiment, the estimates of the parameters will be obtained by maxi-
mum likelihood method of estimation. The means and MSEs for the different
estimates will be reported from these experiments.

4.3. Applications. This section provides an application to show how the
MBGLFR distribution can be applied in practice. We compare MBGLFR to
Kumaraswamy Weibull-exponential (Kw-WE) by [24] and other well known
distributions in litrature, Kumaraswamy-Weibull (Kw-W), beta Weibull(BW)
and Weibull (W) models. The MLEs are computed using Quasi-Newton
Code for Bound Constrained Optimization and the log-likelihood function
evaluated. The goodness-of-fit measures, Anderson-Darling (A*), Cramer-von
Mises (W*), Akaike Information Criterion (AIC), Bayesian Information Cri-

terion (BIC), and log-likelihood (ℓ̂) values are computed. The lower values
of these criteria, the better fit. The value for the Kolmogorov Smirnov (KS)
statistic and its P-value are also provided.

The following data represent the survival times (in days) of 72 pigs infected
with virulent tubercle bacilli, observed and reported by [25]. The data are as
follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02,
1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22,
1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71,
1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45,
2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.
The required computations are carried out in the R software. Table 4 lists
the maximum likelihood estimates (and the corresponding standard errors in
parentheses) of the unknown parameters of the MBGLFR distribution. The
values of log likelihood, AIC, BIC, W*, A*, KS, P-Value for all the models
are listed in Table 5. The proposed MBGLFR model fits these data better
than the other models according to the Table 5. The plots of the fitted pdfs,
cdfs of some distributions are displayed for visual comparison in Figure 5. The
MBGLFR model may be an interesting alternative to other models available
in the literature for modeling positive real data.
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Table 2. The MLEs and MSEs of parameters of the MBGLFR distribution.

n Parameters Initial MLE MSE Initial MLE MSE

50 a 1.20 1.0150 0.0511 1.00 1.0195 0.015400

b 0.80 1.0570 0.1216 0.80 1.0368 0.111000

c 0.50 0.4986 0.0013 0.50 0.5068 0.001400

α 2.00 3.0801 1.5397 2.00 2.9507 1.144700

λ 0.25 1.1084 0.8736 0.25 1.0530 0.739200

θ 0.50 1.3793 3.8545 0.50 1.2210 1.537500

100 a 1.20 1.0110 0.0408 1.00 1.0060 0.009500

b 0.80 1.0303 0.0778 0.80 1.0170 0.066500

c 0.50 0.5018 0.0005 0.50 0.5020 0.000800

α 2.00 2.9711 1.0646 2.00 2.9509 1.044300

λ 1.20 1.0083 0.0390 0.25 1.0326 0.651100

θ 0.50 1.1086 0.5313 0.50 1.0616 0.410300

300 a 0.80 0.9933 0.0447 1.00 0.9997 0.003000

b 0.50 0.5033 0.0002 0.80 1.0086 0.050100

c 2.00 2.9469 0.9487 0.50 0.5000 0.000300

α 0.50 1.0017 0.2983 2.00 2.9246 0.900500

λ 1.20 1.0150 0.0511 0.25 1.0159 0.599292

θ 0.25 0.9943 0.5687 0.50 1.0248 0.302500

50 a 0.80 1.01190 0.081700 0.50 1.1495 0.689600

b 0.80 1.07230 0.114200 0.80 1.0228 0.080300

c 0.50 0.49640 0.001900 0.50 0.5119 0.004400

α 2.00 2.97440 1.251500 2.00 2.6504 0.612700

λ 0.25 1.11030 0.835100 0.25 1.0248 0.648200

θ 0.50 1.20680 0.869400 0.50 1.0767 0.466000

100 a 0.80 0.99460 0.052000 0.50 1.0519 0.393300

b 0.80 1.02100 0.063000 0.80 1.0381 0.073900

c 0.50 0.49850 0.000800 0.50 0.4970 0.001900

α 2.00 2.90730 0.936600 2.00 2.6946 0.608100

λ 0.25 1.04250 0.654900 0.25 1.0435 0.658400

θ 0.50 1.05010 0.353800 0.50 1.0747 0.379000

300 a 0.80 1.00350 0.047300 0.50 1.0286 0.303200

b 0.80 1.01050 0.050200 0.80 1.0062 0.047000

c 0.50 0.49900 0.000300 0.50 0.5019 0.000800

α 2.00 2.83940 0.752100 2.00 2.6374 0.447600

λ 0.25 1.01618 0.597699 0.25 1.0046 0.577609

θ 0.50 1.02530 0.293600 0.50 1.0145 0.275000

50 a 1.20 1.02740 0.052500 0.80 1.03830 0.111600

b 1.00 1.00890 0.020900 1.20 1.00880 0.050300

c 0.50 0.50730 0.001600 0.50 0.50550 0.002000

α 2.00 2.01030 0.056600 2.00 1.60190 0.181900

λ 0.25 1.05160 0.750900 0.25 1.06560 0.757500

θ 0.50 1.14560 1.022200 0.50 1.13860 0.964000

100 a 1.20 1.01510 0.042200 0.80 1.03730 0.078100

b 1.00 1.00810 0.016700 1.20 0.99880 0.046900

c 0.50 0.50460 0.000800 0.50 0.50930 0.001200

α 2.00 2.00000 0.029500 2.00 1.57810 0.178000

λ 0.25 1.02730 0.658200 0.25 1.00770 0.622500

θ 0.50 1.08510 0.508800 0.50 1.03040 0.365200

300 a 1.20 0.99920 0.041500 0.80 1.01810 0.055300

b 1.00 1.00290 0.003600 1.20 0.99820 0.042900

c 0.50 0.49990 0.000200 0.50 0.50270 0.000500

α 2.00 2.01070 0.010200 2.00 1.57920 0.151100

λ 0.25 1.01628 0.601701 0.25 1.00005 0.576287

θ 0.50 1.01830 0.291100 0.50 1.00570 0.271700

The estimated variance-covariance matrix of the MLEs (â, b̂, ĉ, α̂, λ̂, θ̂) of
the parameters of the MBGLFR distribution for the data set is given by
















0.11144487 0.10584027 −0.1973001 −0.7954907 −0.01736836 −0.05833310
0.10584027 0.14396049 −0.4818798 −0.8597145 −0.02380887 −0.07662741
−0.19730006 −0.48187977 90.0809792 1.9707454 −0.50662976 −1.64273388
−0.79549068 −0.85971454 1.9707454 7.1804502 0.28364724 0.45959755
−0.01736836 −0.02380887 −0.5066298 0.2836472 0.0025787 0.01287525
−0.05833310 −0.07662741 −1.6427339 0.4595976 0.01287525 0.05400238

















.
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Figure 3. TTT plots for the considered data set.
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Figure 4. Kernel density plots for the considered data set.

The confidence intervals (CIs) for the parameters of the MBGLFR distribution
are given in Table 3.

The shape of the most appropriate pdf or hrf for modeling can be deter-
mined by a graphical analysis of the data set. In this context, we can use the
total time on test plot (TTT) (see [26]) for the hrf and a basic kernel density
estimator for the pdf (see [27]). Figure 3 shows that concave shape for the
TTT plot, indicating that the data set has increasing hrf. Figure 4 shows
that the pdf is unimodal with right skewed. Hence the MBGLFR model is in
principle a suitable model for fitting this kind of data set.



146 F. Jamal, I. Elbatal, C. Chesneau, M. Elgarhy, A. S. Hassan

Table 3. Confidence intervals for the parameters of the
MBGLFR distribution for the considered data set (the lower
bounds have been remplaced put to 0 since they take negative
values).

CI a b c α λ θ

95% [0, 1.0752] [0, 1.3390] [0, 35.6590] [0, 8.5570] [0, 0.1778] [0, 0.7055]

99% [0, 1.283986] [0, 1.577236] [0, 41.543040] [0, 10.230880] [0, 0.209206] [0, 0.851490]

Table 4. MLEs (standard errors in parentheses).

Distribution Estimates

MBGLFR(a, b, c, α, λ, θ) 0.4153 0.5860 17.0560 3.2654 0.0784 0.2439
(0.3367) (0.3842) (09.4911) (2.6998) (0.0507) (0.2355)

Kw-WE(λ, a, b, c, β) 3.63748 1.84467 2.14003 0.79822 0.03756
(2.58073) (2.76562) (1.12893) (1.06864) (0.11321)

BW(a, b, c, β) 2.73456 0.90765 0.66618 0.32174
(1.59435) (1.49643) (0.24362) (0.43221)

Kw-W(a, b, c, β) 4.12327 2.94308 0.45855 0.21630
(5.83511) (8.10936) (0.51350) (0.24837)

W(c, β) 1.04782 0.10459
(0.06757) (0.00933)

Table 5. The ℓ̂, AIC, BIC, W*, A*, KS, P-Value values for
the considered data set.

Distributon ℓ̂ AIC BIC W* A* KS P-Value

MBGLFR 100.1782 212.0563 218.0163 0.0465 0.3192 0.0745 0.8187

Kw-WE 102.9913 215.9826 227.3659 0.1141 0.7548 0.1045 0.4103

BW 102.7950 213.5901 222.6967 0.1097 0.7255 0.1010 0.4537

Kw-W 102.7097 213.4195 222.5261 0.1077 0.7107 0.1009 0.4557

W 104.0168 212.7336 219.5869 0.1602 0.9758 0.1134 0.3121

5. Concluding remarks

In this paper, we introduce a new distribution referred to as the modified
beta generalized linear failure rate. It generalizes the well-known; beta lin-
ear failure rate distribution, the generalized linear failure rate distribution,
beta geometric generalized linear failure rate distribution, the beta exponen-
tial distribution, the beta Rayleigh distribution, the generalized exponential
distribution, and the linear failure rate distribution. Besides it contains some
new sub-models. Some basic properties are derived. The maximum likelihood
estimators of the parameters are obtained. Simulation studies as well as a real
data application are described to show superior performance of the proposed
model versus some other existing models.
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Figure 5. Plots of estimated pdfs and cdfs for given data set.
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