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Abstract

In this article it has been shown that one dimensional non-stationary Schrödinger equation with a specific
choice of potential reduces to the quantum Painlevé II equation and the solution of its riccati form appears
as a dominant term of that potential. Further, we show that Painlevé II Riccati solution is an equivalent
representation of centrifugal expression of radial Schrödinger potential. This expression is used to derive
the approximated to the Yukawa potential of radial Schrödinger equation which can be solved by applying
the Nikiforov-Uvarov method. Finally, we express the approximated form of Yukawa potential explicitly in
terms of quantum Painlevé II solution.
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1. Introduction

The Painlevé six equations (Painlevé I-VI) were discovered by Painlevé and his colleagues while clas-
sifying the nonlinear second-order ordinary differential equations with respect to their solutions [1]. The
study of Painlevé equations is important due to the wide applications of these equations in various areas of
mathematics and physics. For example, in hydrodynamics and plasma physics the Painlevé equations are
usually obtained as reduced ODEs of some PDEs that describe the evolution of flows or convective flows
with viscous dissipation [2]. In nonlinear optics, the nonlinear Schrödinger equations play an important
role to explain the wave propagation in media, the ODE reduction of this equation is Painlevé IV equation
[2]. It was shown that the description of two dimensional quantum gravity involves Painlevé I equation
[3, 4, 5] and one of the applications of Painlevé II equation has been studied in [6] for the wave collapse in
the three-dimensional nonlinear Schrödinger equation.

Further it has been shown that the exactly solvable models of statistical physics and the quantum field
theory can be described in terms of Painlevé transcendents [7, 8, 9]. The classical Painlevé equations are
regarded as completely integrable equations and obeyed the Painlevé test [10, 11, 12]. These equations admit
some properties such as linear representations, hierarchies, they possess Darboux transformations(DTs) and
Hamiltonian structure. These equations also arise as ordinay differential equations (ODEs) reduction of
some integrable systems, i.e, the ODE reduction of the KdV equation is Painlevé II equation [13] and [14].
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It seems quite interesting to derive the quantum analogue of these equation and to explore their physical
aspects in various areas of physics and mathematics.

In this paper, we construct a connection of quantum Painlevé II equation [15] and its Riccati solution
to the quantum mechanical system that involves the approximated form of the Yukawa potential. We show
that one dimensional non-stationary Schrödinger equation with a specific choice of potential reduces to the
quantum Painlevé II equation and the dominant term of that potential can be obtained as the solution
of quantum Pianlevé II Riccati equation. Further we observe that quantum Painlevé II solution coincides
with centrifugal expression [16] of the radial schrödinger potential that expression was applied to derive the
approximated form of Yukawa potential [17, 18, 19].

2. Quantum Painlevé II equation and its Riccati form

The quantum Painlevé II equation in the following form{
f

′′
= 2f3 − 2[z, f ]+ + c

zf − fz = i~f (2.1)

can be derived from the compatibility condition of following linear system

Ψλ = A(z;λ)Ψ, Ψz = B(z;λ)Ψ (2.2)

and the Lax matrices A and B are given by{
A = (8iλ2 + if2 − 2iz)σ3 + f

′
σ2 + (14cλ

−1 − 4λf)σ1 + i~σ2
B = −2iλσ3 + fσ1 + fI

(2.3)

where ~ is Planck constant and σ1, σ2, σ3 are Pauli spin matrices and [z, f ]+ is anti-commutator of z and f .
The quantum Painlevé II equation (2.1) was derived in [15] by taking the quantum commutation relations
[20] as a kind of quantization for Noumi-Yamada Painlevé II system [21]. This quatization can be taken aa
a particular case of deformed space that involves the star product and the version of pure non-commutative
Painlevé II under the star product has been derived by V. Retakh and V. Roubtsov [22]. By using the
commutation relation zf − fz = i~f the first equation in system (2.1) can be written as

f
′′

= 2f3 − 4zf − 2i~f + c. (2.4)

The quantum Painlevé II equation (2.4) reduces to the ordinary Painlevé II equation under the classical

limit when ~ → 0. Substituting the eigenvector Ψ =

(
ψ1

ψ2

)
in linear system (2.1) and setting ∆ = ψ1ψ

−1
2 ,

we obtain the quantum Painlevé II equation in Riccati form as follow

∆
′

= −4i∆+ f + [f,∆]− −∆f∆. (2.5)

In section 5 we will show that how the Riccati form (2.5) of the Painlevé II equation helpful to yield the
approximated solution of the Yukawa potential.

3. Non-Stationary Shrödinger equation and Quantum Painlevé II equation

In this section we will observe that how the quantum Painlevé II equation is connected to the quantum
system described by one dimensional non-stationary Schrödinger equation with a specific choice of potential
V (x, t) and eigenfunction ψ(x, t) that has been explained in the following proposition.
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Proposition 3.1. The time dependent Shrödinger equation for a particle of mass m with potential V (x, t)

− i~∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t) (3.1)

reduces to quantum Painlevé II equation (2.4) at constant c = 0 with the choice of potential V (x, t) as follow

V (x, t) = γx− 2ψ∗(x, t)ψ(x, t). (3.2)

where γ = 4i(2m~ )
1
2 and the eigenfunction

ψ(x, t) = f(z, λ)eiαt, z = i(
2m

~2
)
1
2x. (3.3)

The function f(z, λ) satisfies the quantum Painlevé II equation (2.4).

Proof. For the Schrödinger equation (3.1) we can easily evaluate ∂ψ(x,t)
∂t and ∂2ψ(x,t)

∂x2
in terms of z variable

as follow
∂ψ(x, t)

∂t
= iαf(z, λ)eiαt (3.4)

and
∂2ψ(x, t)

∂x2
= −2m

~2
f

′′
(z, λ)eiαt. (3.5)

Now substituting the potential from (3.2) and using the results from (3.4) and (3.5) in Schrödinger equation
(3.1). After simplifications, we obtain the following expression

f
′′

= 2f3 − 4zf − α~f. (3.6)

The expression (3.6) represents quantum Painlevé II equation (2.4) at constant c = 0 and α = 2i.

In the following section we construct the solutions to the Painlevé II equation and its Riccati form which
are used to derive the approximated solution to the Yukawa potential in terms of quantum Painlevé II
variable z and its parameter λ.

4. Solution to the Quantum Painlevé II Riccati equation

This section consists the derivation of solution for the quantum Painlevé II in Riccati form (2.5) that has
been described in Proposition 4.1 and further, in next section we will observe that how this Riccati solution
coincides to the centrifugal expression [16] and it is helpful to construct approximated analytic solution for
the radial Schrödinger equation with the Yukawa potential [17, 18, 19].

Proposition 4.1. We can show that the following choice of f(z;λ) and ∆{
f = β(1− e−8λz)−1e−4λz

∆ = e4λz
(4.1)

satisfies quantum Painlevé II Riccati equation (2.5) where β is a complex parameter.

Proof. By using system (4.1), we can show that

∆f∆ = βe4λz(1− e−8λz)−1, [f,∆]− = 0. (4.2)

Now after using the values of f(z;λ) and ∆ from (4.1) in Riccati equation (2.5), we get

4λe4λz − 4λe−4λz = −4ie4λz + 4ie−4λz + βe−4λz − βe4λz

or
4(λ+ i)e4λz − 4(λ+ i)e−4λz = βe−4λz − βe4λz. (4.3)

We can show that system (4.1) satisfies the Riccati equation (2.5) by taking β = −4(λ + i) in equation
(4.3).
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5. Quantum Painlevé II solution and Yukawa potential approximation

In this section, we show that the quantum Painlevé II solution f coincides with the centrifugal expression
of [16] and finally we express an approximated form of Yukawa potential [17, 18, 19] in terms of quantum
Painlevé II solution f . The explicit expression of Yukawa Potential [23] in radial form can be expressed as
follow

V (r) = −V0
e−2ar

r
, (5.1)

where V0 = αZ, α = (137.037)−1 is the fine-structure constant and Z is the atomic number of neutral atom.
This potential can be applied to evaluate the normalized bound-state and the energy levels of neutral atoms.
In following Proposition ?? we have described a procedure to express approximated form to the Yukawa
potential in terms of Painlevé II solution f .

Proposition 5.1. ?? The potential (3.2) can be expressed in terms of z and spectral parameter λ as follows

V (z, λ) = 4z − 2f2 = 4z − 2β2(e−4λz − e4λz)−2 (5.2)

and a solution to the non-stationary Schrödinger equation (3.1) can written as

ψ(x, t) = β(1− e−8λz)−1e−4λz+iαt, (5.3)

where β2 = β∗β. The quantum Painlevé II solution f in the potential (5.2) is equivalent to the centrifugal
term of the radial Schrödinger equation considered in [16] applied to derive the approximated form of the
Yukawa potential [17, 18, 19]. Later can be sued to solve radial Schrödinger equation by applying Nikiforov-
Uvarov method.

Proof. The dominant term f2 in potential (5.2) represents the square of quantum Painlmevé II solution and
explicitly can be written as and given by

f2 = β2(e−4λz − e4λz)−1 (5.4)

or

f2 = β2
e−8λz

(1− e−8λz)2
. (5.5)

The expression (5.4) is equivalent to the following centrifugal term [16] of radial Schrödinger equation

1

r2
≈ 4a2

e−2ar

(1− e−2ar
)2, (5.6)

by setting the parameters β and a of (5.5) and (5.6) as follows{
β2 = 4a2

a = 4λ
(5.7)

and for one dimensional case we can take r along z − axis. Now after comparing the equation (5.5) and
equation (5.6), we can express 1

r2
in terms of quantum Painlevé II solution f

1

r2
= f2 (5.8)

and
1

r
= ±f. (5.9)

We only consider the positive value of (5.9)
1

r
= f (5.10)
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as the physical meaningful one. The result (5.10) holds for ar � 1 and holds also equivalently for λz � 1.
Finally we can express the approximated form [17, 18, 19] of Yukawa potential (5.1) in terms of quantum
Painlevé II solution with the help of (5.10) in the following form

V (z) = −V0|β|e−4λz e−4λz

(1− e−8λz)
(5.11)

or

V (z) = −V0|β|
e−8λz

(1− e−8λz)
, (5.12)

where |β| = 4(λ2 + 1)
1
2 .

6. Conclusion

In this article, we derived a connection of one dimensional non-stationary Schrödinger equation to the
quantum Painlevé II equation and constructed the solution of Schrödinger equation by using quantum
Painleé II Riccati solution. We expressed the centrifugal term 1

r2
of the radial Schrödinger potential [16]

in terms of quantum Painlevé II solution. We observed that the quantum Painlevé II solution f(z;λ)
coincides to the results of [16] for centrifugal expression by setting the parameters β of quantum Painlevé
II solution and a screening parameter of Yukawa potential, as β2 = 4a2. The radial centrifugal expression
has been applied to derive the approximated analytic solutions of radial Schrödinger equation by using
Nikiforov-Uvarov method.
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