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Abstract

In this article, some important combinatorial and algebraic properties of spanning simplicial complex associ-
ated to the subdivided prism graph P(n,m) are presented. The f—vector of the spanning simplicial complex
As(P(n,m)) and the Hilbert series for the face ring K [A;(P(n,m))] are computed. Further, the associated
primes of the facet ideal Ix(As(P(n,m))) are determined. Finally, the Cohen-Macaulay characterization of
the SR-ring of As(P(n,m)) is discussed.
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1. Introduction

Let G(V(G),E(Q)) be a simple, finite and connected graph. Here, V(G) will be called the set of vertices,
E(G) = {wv | u,v € V(G)} will be called the edge set and uv the edges of the graph G(V(G),E(G)). A
connected graph having all of its vertices and edges on a single straight line is a path graph and a path
with same initial and final vertices is called a cycle. A tree is connected graph without any cycle or closed
path. A subgraph of a graph G(V(G),E(Q)) is a graph whose set of vertices and and edge set are subsets
of those of G. A subgraph of a graph G having no cycle and containing all of its vertices is called a
spanning tree. The set having all edge sets of the spanning trees of G(V(G), E(G)) is represented by s(G)
ie. s(G) ={E(T) C £(G) |T is a spanning tree of G}. An edge uv of a graph G(V(G),E(G)) is said to be
subdivided if it is replaced by a path uwwv, where w is a new vertex. A subdivision of a graph G(V(G), £(G))
is a graph obtained by subdividing at least one edge of the graph G. For further details of the graph theory
and notation we refer to [IJ.

The prism graph P(n,1) is obtained by two disjoint cycles each of n vertices, namely C! and C2,
where V(CL) = {x1,29,..., 2.}, V(C?) = {w1,wa,...,w,}, E(CL) = {xizit1, m120)i € {1,2,...,n — 1}},
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Figure 1: The subdivided prism graph P(3,m)

E(C?) = {wjwir1, wrwyli € {1,2,...,n — 1}} together with additional edges w;z;, where i € {1,2,...,n}.
The subdivision of the prism graph obtained by inserting m vertices between each edge of the cycle C? will
be called subdivided prism graph denoted by P(n,m). The subdivided prism graph P(3,m) is shown in the
Figure I} The edge set of the subdivided prism graph P(n,m) is given by

E(P(n,m)) = {e11,€12, - -, €1(m12)s €1(m+3), €215 €22, - - -, €2(m+2)> €2(m+3)»

€31,€32, ..., 63(m+2), 63(m+3) ey En1,€ER2, ...y en(m+2): en(m+3)} . (1.1)

The edge sets of the apparent cycles Cy,C1,Cy,...,C,, and Cpy1 of the subdivided prism graph
P(n,m) are £(Cy) = {e12,e22,€32,...en2}, E(Cr) = {en1,en2,€n3,€11}, E(Cy) = {€t1,€t2,€t3,€(t+1)1} for
t € {1,2,...,n — 1} and E(Cpy1) = {€13,€14,- -, €1(m13)s €23, €245 - - » €2(m43)s - - - » En3s Ends -+ » Cp(m43) }-
Let [n] = {1,2,3,...,n} be a finite set of positive integers. Then a collection A of subsets of [n] is called
a simplicial complex (SC) on [n], if (a) {j} € A for all j € [n] and (b) F € A implies F' € A, for each
F' C F. A member Fof a SC A is called its face and its dimension is defined as dim(F) = |F | — 1. The
maximal faces of the SC A with respect to inclusion are called its facets. The dimension of a SC A is defined
as dim A = max{dimF|F € A}. A SC A with facets {Fo, F1, ..., Fp} is represented as A = <F0, Fi, ..., Fp>.
The f—vector of the SC A of dimension D is defined as a D+1-tuple f(A) = (fy, fi,- .-, fp), where f; denotes
the number of j—dimensional faces of the SC A, where 0 < 7 <D — 1. Let A be a SC defined on the set
of vertices [y1,v2,...,yn] and S = K[y1,y2,...,yn] be the respective polynomial ring, where K is a field.
Then the Stanley-Reisner ideal of SC A is a monomial ideal Ixr(A) generated by the square free monomials
in polynomial ring S = Kly1,¥2, ..., yn| associated to the non faces of the SC A by assigning one variable
to each vertex of the SC A. The Stanley-Reisner ring of the SC A is a standard graded algebra denoted by
K[A] = S/In(A). The details related to Stanley-Reisner ring and simplicial complex can be seen in [2] and
[3]. In [4], Anwar et al. introduced the notion of the spanning simplicial complex (SSC) on a simple, finite
and connected graph as follows:

Definition 1. [4] Let s(G) = {&1,&2,...,&} be the collection of the edge sets of all the spanning trees of
the graph G(V(G),E(Q)). A simplicial complex As(G) defined on E(G) such that its facets are the members
of s(G) is called spanning simplicial complex (SSC) of G(V(G),E(G)). Mathematically, it can be expressed
as follows:

As(G) = (£, & ).
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Further in [4], the authors characterized all spanning trees of the unicyclic graph Uy, ,,, and computed
h—vector and Hilbert series of the SR-ring K[As(Un,m)]. They showed that the SSC Ag(U,,m) is shifted
and shellable. The algebraic properties of SSC of some other classes of graph were discussed in [5} 6] [7, 8, 9].
These classes include r—cyclic graph G, -, cyclic graph having n edges and r cycles with exactly one common
edge between every two consecutive cycles G,lw, n—cyclic graphs Gy, ¢,....+, with a common edge, Jahangir’s
graph Jpm , and wheel graph W,,. In [§], the authors stated that computing the SSC for an arbitrary graph
GG is an NP-hard problem. This encourages us to discuss algebraic and combinatorial properties of SSC
associated to some more general classes of simple, finite and connected graph.

In this article, some combinatorial and algebraic properties of the subdivided prism graph P(n,m) are
explored. The rest of the article is organized as follows: The Section [2] enlights the combinatorial properties
of the spanning trees of the subdivided prism graph P(n,m). In Section 3| f—vectors associated to the SSC
Ag(P(n,m)) and Hilbert series of the SR-ring K[A4(P(n,m))] are presented. Further, in Section (4] all
associated primes of the facet ideal Ix(As(P(n,m))) of the SSC As(P(n,m)) are discussed. Finally, the
Section [5| debates the Cohen-Macaulayness of the SR-ring associated to the SSC A4(P(n,m)).

2. Combinatorial characteristics of the subdivided prism graph graph P(n,m)

In the following section, some important combinatorial characterizations of the subdivided prism graph
P(n,m) are discussed. The following lemma gives the count of the total edges in a spanning tree of the
subdivided prism graph P(n,m).

Lemma 2.1. The number of edges in a spanning tree of the subdivided prism graph P(n, m) is |E(P(n,m))|—
(n+1).

Proof. Since a spanning tree of a graph is a connected subgraph with no cycles. Therefore, to get the
spanning tree of the subdivided prism graph P(n,m), n edges are deleted from the n successive cycles
C1,C%,Cs, ..., C)y such that one edge is removed from each cycle and one from the cycle Cy, keeping in
mind that when a shared edge is deleted from two or more than two cycles then one edge should be deleted
from unshared edges of the resulting big cycle. If more than one edges are deleted from the n successive
cycles in P(n,m), then a disconnection is obtained which is not a spanning tree. Therefore, spanning tree
has exactly |E(P(n,m))| — (n + 1) edges. This completes the proof. O

It is evident from the Lemma the spanning trees of the subdivided prism graph P(n,m) are obtained
by deleting exactly (n + 1) edges from the graph P(n, m) following the cutting down method as described
below:

1. Exactly one edge is to be removed from the unshared edges of the cycles and one from the cycle Cy.

2. If a shared edge between two or more than two successive cycles is removed, then exactly one edge
must be removed from the resulting big cycle.

3. All shared edges can not be removed at a time.

4. If all edges of the cycle Cy are deleted, then no shared edge is to be deleted to keep the graph connected
and exactly one edge will be deleted from the outer big cycle.

The set of all spanning trees of the subdivided prism graph P(3,1) obtained by the cutting down method is
given as follows:

s(P(3,1)) ={ {e11,e21, €31, €13, €22, €32, €23, €33}, {e11, €21, €31, €13, €22, €32, €23, €34 },

{e11, ea1, €31, €13, €22, €32, €24, €33}, {€11, €21, €31, €13, €22, €32, €24, €34}, {€11, €21, €31, €14,

6227632,623,633}, {6’11,621,631,6’14,622,6327623,634}, {6’11,621,631,6’14,622,632,824,633}»
{611,621,631,614,622,632,6247634}, {611,621,631,613,612,63276237633}, {611762176317613,

e12, €32, €23, €34}, {€11, €21, €31, €13, €12, €32, €24, €33}, {€11, €21, €31, €13, €12, €32, €24, €34},

{e11, €21, €31, €14, €12, €32, €23, €33}, {€11, €21, €31, €14, €12, €32, €23, €34}, {€11, €21, €31, €14,

€12, €32, €24, €33}, {€11, €21, €31, €14, €12, €32, €24, €34}, {€11, €21, €31, €13, €12, €22, €23, €33},



M. Javed, A. Kashif, M. Javaid, Journal of Prime Research in Mathematics, 17(1), (2021), 7-20

10

{6117621,6317613,612,622,6237634}, {61176217631,613,612,62276247633}, {611,62176317613,
€12, €22, €24, €34}, {€11, €21, €31, €14, €12, €22, €23, €33}, {€11, €21, €31, €14, €12, €22, €23, €34 },
{6117621,6317614,612,62276247633}, {61176217631,6147612,62276247634}, {611,6217631,613,
€23, €24, €33, €34}, {€11, €21, €31, €14, €23, €24, €33, €34}, {€11, €21, €31, €23, €13, €14, €33, €34 },
{6117621,6317624,613,6147633,634}, {61176217631,6337613,61476237624}, {611,6217631,634,
613,614,623,624}7 {611,6217631763276337623,6247613}, {611,621,6317632,6337623,6247614},
{611,621,6’31,63276337613,614,623}a {6117621,6’31,6327633,61376147624}, {611,621,6’31,632,
63476237624,613}7 {61176217631,632763476237624,613}, {611,621,6317632,6347613,6147624},
{611,621,631,632,6347613,6147623}, {6117621,6317622,623,633,6347613}, {611,621,63176227
62376337634,614}7 {611762176317622,623761376147633}, {611,621,6317622,623761376147634},
{611,621,631,622,6247633,6347613}7 {6117621,6317622,624,63336347613}, {611,621,631,6227
624,6137614,633}, {61176217631,632,624761376147634}7 {611,621,6317612,6137623,6247633},
{e11, €21, €31, €12, €13, €23, €24, €34}, {€11, €21, €31, €12, €13, €33, €34, €23}, {e11, €21, €31, €12,
61376337634,624}, {61176217631,612,614,62376247633}7 {611,621,6317612,6147623,6247634},
{e11, €21, €31, €12, €14, €33, €34, €23}, {e11, €21, €31, €12, €14, €33, €34, €24}, {€21, €31, €13, €14,
62276327623,633}, {621763176137614,622,63276247633}, {6217631,6137614,6227632,6247634},
{621,631,61376147622763276237634}7 {62176317613,614,612,6327623,633}, {621,63176137614,
6127632,624,833}, {6217631,613,6’14,612,63276237634}, {6’21,631,6’13,6’14,612,632,6’24,634},
{6217631,6137614,6127622,6237633}, {6217631,613,6147612,62276247633}, {621,63176137614,
6127622,623,634}, {621,631,613,614,612,6227624,634}, {621,631,633,634,622,632,6133623}7
{6217631,6337634,6227632,6147623}, {62176317633,6347622,6327613,624}, {621763176337634,
€22, €32, €14, €24}, {€21, €31, €33, €34, €12, €32, €13, €23}, {€21, €31, €33, €34, €12, €32, €14, €23 },
{6217631,6337634,612,632,6137624}7 {62176317633,6347612,63276147624}, {621,63176337634,
e12, €22, €23, €13}, {€21, €31, €33, €34, €12, €22, €24, €13}, {€21, €31, €33, €34, €12, €22, €23, €14 },
{6217631,6337634,612,62276247614}, {62176317612,6337634,62376247613}, {621,6317612,633,
€34, €23, €24, €14}, {€21, €31, €12, €33, €34, €13, €14, €23}, {€21, €31, €12, €33, €34, €13, €14, €24 },
{6217631,612,623,624761376147633}, {62176317612,6237624,61376147634}, {621,6317632,633,
6347623,624,613}7 {621,6317632763376347623,624,614}, {621,631,6327633,6347613,6147623},
{621,631,832,63376347613,614,624}, {6217631,6’32,6237624,613,6147633}, {621,8313632,623,
62476137614,634}7 {61176317623,624,62276327633,613}, {811,631,6237624,6227632,6347613},
{611,631,623,624,6227632,6347614}, {6117631,6237624,622,632,6337614}, {611,631,62376247
61276327633,613}7 {611763176237624,612763276347613}, {611,631,6237624,612763276337614},
{611,631,6237624,6127632,6347614}, {6117631,6237624,612,62276337613}, {611,631,623,6247
61276227634a€13}7 {6117631762376247612762276337614}7 {611,631,623,624,612,622,634,614},
{e11, €31, €13, €14, €22, €32, €33, €23}, {€11, €31, €13, €14, €22, €32, €34, €23}, {€e11, €31, €13, €14,
62276327633,624}, {61176317613,614,622,63276347624}7 {611,631,6137614,6127632,6237633},
{e11,e31, €13, €14, €12, €32, €24, €33}, {€11, €31, €13, €14, €12, €32, €23, €34}, {€e11, €31, €13, €14,
61276327624,634}, {6117631,613,614,612,62276337623}, {6117631,6137614,6127622,6347623},
{e11,e31, €13, €14, €12, €22, €33, €24}, {€11, €31, €13, €14, €12, €22, €34, €24}, {e11, €31, €12, €23,
6247633,634,813}7 {61176317612,6’23,624,6337634,614}7 {6’11,631,6’12,6’13,614,633,6343623},
{611,631,61276137614763376347624}, {61176317612,8237624,6137614,633}, {611,63176127623,
6247613,614,634}, {611,631,622,623,624,6337634,613}, {611,631,622,623,624,633,6343614}7
{6117631,6227613,614763376347623}, {61176317622,6137614,6337634,624}, {611763176227623,
€24, €13, €14, €33}, {€11, €31, €22, €23, €24, €13, €14, €34}, {€11, €21, €23, €24, €12, €22, €33, €13 },
{61176217623762476127622a€347613}7 {6117621762376247612a€227€347614}a {6117621762376247
€12, €22, €33, €14}, {€11, €21, €33, €34, €22, €32, €23, €13}, {€11, €21, €33, €34, €22, €32, €24, €13},
{6117621,6337634,62276327623,614}, {61176217633,6347622,63276247614}, {611,6217633,634,
e12, €32, €23, €13}, {€11, €21, €33, €34, €12, €32, €24, €13}, {€11, €21, €33, €34, €12, €32, €23, €14 },
{6117621,6337634,612,63276247614}, {61176217633,6347612,6227623,613}, {611,6217633,634,
e12, €22, €24, €13}, {€11, €21, €33, €34, €12, €22, €23, €14}, {€11, €21, €33, €34, €12, €22, €24, €14},
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{e11, €21, €23, €24, €22, €32, €33, €13}, {€11, €21, €23, €24, €22, €32, €34, €13}, {€11, €21, €23, €24,
€22, €32, €33, €14}, {€11, €21, €23, €24, €22, €32, €34, €14}, {€11, €21, €23, €24, €12, €32, €33, €13},
{e11, €21, €23, €24, €12, €32, €34, €13}, {€11, €21, €23, €24, €12, €32, €33, €14}, {€11, €21, €23, €24,
€12, €32, €34, €14}, {€11, €21, €22, €23, €24, €33, €34, €13}, {€11, €21, €22, €23, €24, €33, €34, €14},
{e11, €21, €22, €13, €14, €33, €34, €23}, {€11, €21, €22, €13, €14, €33, €34, €24}, {€11, €21, €22, €23,
624,613,614,633}, {611,621,622,6237624,613,614,634}, {611,621,6327623,6247633,6347613},
{e11, €21, €32, €23, €24, €33, €34, €14}, {€11, €21, €32, €13, €14, €33, €34, €23}, {€11, €21, €32, €13,
€14,€33,€34, €24}, {€11, €21, €32, €23, €24, €13, €14, €33 }, {€11, €21, €32, €23, €24, €13, €14, €34},
{e11, €22, €32, €23, €24, €33, €34, €13}, {€11, €22, €32, €23, €24, €33, €34, €14}, {€11, €22, €32, €13,
614,6337634,623}7 {611,622,6327613,614,63376347624}, {611,622,6327613,614,62376247633},
{e11, €22, €32, €13, €14, €23, €24, €34}, {€11, €12, €32, €23, €24, €33, €34, €13}, {e11, €12, €32, €23,
624,6337634,614}, {611,612,632,613,6147633,6347623}, {611,612,6327613,6147633,6347624},
{e11, €12, €32, €13, €14, €23, €24, €33}, {e11, €12, €32, €13, €14, €23, €24, €34}, {e€11, €12, €22, €23,
624,6337634,613}, {611,612,622,623,624,63376347614}, {611,612,6227613,6147633,6347623},
{e11, €12, €22, €13, €14, €33, €34, €24}, {€11, €12, €22, €13, €14, €23, €24, €33}, {e11, €12, €22, €13,
6147623,624,634}, {621,622,6327623,624,63376347613}, {621,622,6327623,6247633,6347614}7
{ea1, €22, €32, €13, €14, €33, €34, €23}, {€21, €22, €32, €13, €14, €33, €34, €24}, {€21, €22, €32, €13,
€14,€23, €24, €33}, {€21, €22, €32, €13, €14, €23, €24, €34 }, {€21, €12, €32, €23, €24, €33, €34, €13 },
{ea1, e12, €32, €23, €24, €33, €34, €14}, {€21, €12, €32, €13, €14, €33, €34, €23}, {€21, €12, €32, €13,
€14, €33, €34, €24}, {€21, €12, €32, €13, €14, €23, €24, €33}, {€21, €12, €32, €13, €14, €23, €24, €34},
{ea1, e12, €22, €23, €24, €33, €34, €13}, {€21, €12, €22, €23, €24, €33, €34, €14}, {€21, €12, €22, €13,
€14, €33, €34, €23}, {€21, €12, €22, €13, €14, €33, €34, €24}, {€21, €12, €22, €13, €14, €23, €24, €33},
{ea1, €12, €22, €13, €14, €23, €24, €34}, {€21, €22, €32, €23, €24, €33, €34, €13}, {€21, €22, €32, €23,
€24, €33, €34, €14}, {€31,€22, €32, €13, €14, €33, €34, €23}, {€31, €22, €32, €13, €14, €33, €34, €24},
{es1, €22, €32, €13, €14, €23, €24, €33}, {€31, €22, €32, €13, €14, €23, €24, €34}, {€31, €12, €32, €23,
€24, €33, €34, €13}, {€31, €12, €32, €23, €24, €33, €34, €14}, {€31, €12, €32, €13, €14, €33, €34, €23},
{631,612,6327613,614,6337634,624}, {631,612,6327613,614,62376247633}, {631,6127632,6137
€14,€23, €24, €34}, {€31, €12, €22, €23, €24, €33, €34, €13 }, {€31, €12, €22, €23, €24, €33, €34, €14},
{es1, e12, €22, €13, €14, €33, €34, €23}, {€31, €12, €22, €13, €14, €33, €34, €24}, {€31, €12, €22, €13,
€14, €23, €24, €33}, {€31, €12, €22, €13, €14, €23, €24, €34} }.

The subdivided prism graph P(n,m) has more cycles other than the cycles Cp,C1,Cs,...,Ch, Cpiq.
These cycles are formed by removing the shared edges from the successive cycles. If C;,, C;,, ..., C;, where
it € {0,1,...,n} are the successive cycles of the graph P(n,m), then the new cycle formed by deleting the
shared edges is represented by Cj, 4,.. ;.. The number of edges in the new cycles is denoted by p;, 4. i, =

‘Cihi%m,ik

. The cycles in the subdivided prism graph P(n,m) can be represented as
Ciy io,...ip, Whered; € {1,2,...,n} and 0 < k < n,

with 4,41 =¢; + 1 when i; # n, 4j41 =1 when i; =n and ¢j41 = when i; =0, wherel € {1,2,...,n}.
The total number of cycles in the subdivided prism graph P(n,m) and the number of the edges in these
cycles is determined in the following lemma.

Lemma 2.2. The total number of the cycles in the subdivided prism graph P(n,m) having cycles Cp,
01, 02, ey Cn,CnJrl are
y=n?+n+2
such that the cardinality of edge set of the cycle C, 4,. .. i, with m subdivisions is
o kEm+2)+2, 1<k<n-—1
Pivizeic =\ k(m+2)+1, k=n
and the length of the cycle Cy j with m subdivisions is

Poje =m+n+2, wherek e {1,2,...,n}.
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Proof. The subdivided prism graph P(n,m) consists of cycles Cy,C1,Ca,Cs,...,Cp,Cpy1. The rest of
the cycles Cj, 4,....i, are obtained by deleting shared edges from the neighboring cycles C;,,C;,, ..., C;, .
Therefore, the resulting cycles are Cyp, 1,Cr—10n,Cpn—2pn—1...,C23,C12 when one shared edge is removed,
Cni1,2,Cn1n1,Cn—2n-1n,---,C1,23 when two shared edges are removed and in the similar manner we
have C12,..n—1,Cn—1n,1...n1-2, Cn—2n—1m,...2.15- - -, C1,2.3...n, when n — 1 shared edges are removed. In ad-
dition to these cycles there are more cycles obtained by deleting the shared edge from the cycle Cy and
the successive cycles C,Ca,C3,...,Cy,. These cycles are n in number and include Cy1,Co2,Co3,...,Con
cycles. Thus, the total new cycles formed by the deletion of the shared edges are:

Con, Con—-1,Con—2,---,C0,1,Cn1,Cn-1,0,Cn2n-1...,C23,C12,Cn12,Cn1n1,Cn—2mn-1n,---,C123,.. .,
Cn12,..n-1Cn1ntn—2.Cn2n-1mn,..21,---,C123...n-

Adding these cycles with the n + 2 cycles we get total cycles of the subdivided prism graph graph
P(n,m) equals to . Since the cycle Cj, i, ... is formed by removing shared edges from the successive
cycles Cj,,Ci,, ..., C;, which are (k — 1) in number. Therefore, the total edges in the subdivided cycle
Cpy.po....pr are calculated by adding the orders of all C;,, Ci,, ..., C;, that is k(m + 4) as the order of each
subdivided cycle of P(n,m) is (m+4) and subtracting 2(k — 1) from it since the shared edges are considered
two times in the sum. This shows that for 1 <k <n -1

Pit iz, ik — ‘Ci1,i27-~7ik

=Y |Cqy| =2k —1) =k(m+4) —2(k— 1) = k(m +2) + 2.
=1

Similarly, for kK = n when only shared edge is left:

=Y |Gyl =2k —1) = 1=k(m+4) —2(k - 1) = 1 =k(m+2)+ 1.
=1

Pirin, iy = ‘Cil,ig,...,ik

and the length of the cycle Cp, with m subdivisions is as follows:
Poi =|Crk| +|Col —2=(m+4)+n—-2=m+n+2.
O

In the following propositions, we take any two cycles Cp, p, . p. and Coq, ... q Where r,t € {1,2,... ,n}
of the subdivided prism graph P(n,m). We use a new notation y — z which shows that y immediate
proceeds z.

Proposition 2.3. Let {p1,p2,...,pr} € {q1,92,...,q:}. Then

Pprpospr — 20 P10} € {q1,ai}
Pp1popr — L P1E{@, @} & pr & {q1, 4t}
Cpipasepr N Coirgorngs| = Pp1pzepr — L Pp €1a1,q} & p1 & {a1, qi}
Pp1,p2,-.pr P1 =q1,Pr = qt OT
b1 = qt, pr = qz-

Proof. Since the cycles Cp, p,... p. and Cy, 4,... 4, are formed by removing the shared edges from the cycles
Cp,,Cpy, ..., Cp,. and Cy,,Cyy, . .., Cy, respectively, then {p1,p,} € {qi,q} shows that {pi,p2,...,pr} C
{¢1,92,...,q}. Hence, the intersection of the cycles Cp, p,,.. p. and Cy, g,,..q contains only the unshared
edges of the cycle Cy, p, ... p, eliminating the two edges on its extreme ends. This implies that the order of
the intersection is pp, p,,...p, — 2. Remaining cases can be proved in the same way.

O

PI‘OpOSitiOH 24. 1t {plvﬁ% s 7]39} - {QI>Q27 .. '>Qt} and Ds € {p17p2a s 7p7“} andﬁs—l — Ds such that
with s < g < r. Then
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Ppy1PayseBy L m=a&q—mn
PPp1PaysPg 2, m=qa&atm
PP1,paye Py L, T)g =q&p—q
Pp1PasPy 2, Po= &pr A @

Proof. The cycles Cp,, Cp,, . . ., Cp, are the g successive neighboring cycles of the cycle Cp, p, ... p, overlapped
with the ¢ successive neighboring cycles from the cycle Cy, 4,. .., as well. When the neighboring cycle Cp,
from the cycle Cp, p,...p,. is overlapping with the initial neighboring cycle C,, from the cycle Cy, g,.. ..
and cycle C,, immediately proceeds the cycle C,, then by Proposition the order of the intersection
1S Pp, py,.p, — 1- Similarly, when Cy, and C), are not successive cycles, then there is no shared edge in

Cm,pz,...,pr N thqz,m,qt =

intersection, then by above Proposition ’Cp17p2,.,,7pT N Cqi,g2,.,a:| = PPy ,Bayb, — 2- The remaining cases can

be shown in the similar way. d

Bag_17 CPayr - ,Cﬁg are not p successive neigh-
boring cycles of the cycle Cp, p,.... . such that there is a sp < ¢ < r and Cﬁsoq and Cﬁso are not successive
cycles. Then the Proposition is applied on the parts which are overlapped to compute the the order of
the intersection Cp, py....p. N Cqi.go,...00-

Remark 1. In Propositio when the cycles Cp,, Cp,, . . ., C, C

Proposition 2.5. Let {p1,p2,...,pr} N {q1,q2,...,q¢:} = ¢ and r < t. Then

o= &g A
, e &g —p
, pr—=a &g —pr
, otherwise.

’CPLPQ,M:I’T N qu,qz,m,qt =

O N = =

Proof. Since the intersection of {p1,p2,...,p,} and {q1,q2,...,q:} is empty then the cycles Cy, p,, .. p. and
Cq1,42,....q¢ are non-overlapping cycles. If C,, /A Cp, and C, — Cy,, then the last cycle C), from the
neighboring cycle Cp, ,, ... p, shares one edge with the initial cycle C,, from the neighboring cycle Cy, 4,,....q.-
Hence, the intersection of Cp, p,. .. p,. and Cy, 4,....q, has only one edge. Remaining can be proved in the same
way. 0

Proposition 2.6. For the subdivided prism graph P(n,m)

_ { Piyjiz,... ik — (k + 2)7 ik <n
Pirsinsei, — (K 4+ 1), i =n.

Proof. Since the cycle Cj, 4,.... i, is obtained by removing the shared edges from the cycles C;,, C;,, Cis, .. ., Cj,. .
If 7, < n, then the intersection will contain only unshared edges of the cycle Cj, ;, ., excluding the two
shared edges from its extreme ends and the k edges shared with the inner small cycle Cy giving order of
the of intersection equals to p;, 4, 4, — (K + 2). Similarly, when i, = n the intersection will contain only
unshared edge of C;, 4, i, excluding one shared edge on one extreme end and k shared edges of the inner

small cycle giving the required order of intersection. This completes the proof. O

Cnt1 N Ciyia,.in

In the following three propositions &(T (A, wsre,...wnrn)) 1S taken as a subset of E(P(n,m)) as de-
fined in Eq. (L.I) with w, € {1,2,...,n} and A, € {1,2,3,...,(m + 3)} and the conditions required
for E(T(w;n, wara,....onrn)) tO De the spanning tree of the subdivided prism graph P(n,m) are described.

Proposition 2.7. S(T(w1/\17w2/\27...,wn>\n)) € s(P(n,m)) when wy\, # wy,1, Vn if and only if5(T(w1/\1,w2/\2,..7,wn/\n))
=E(P(n,m)) \ {€1x,5€2205- - - En, }-

Proof. To obtain a spanning tree of the subdivided prism graph P(n,m) when none of shared edges
€11, €21, - --,en1 are deleted, we need to remove exactly one edge from the unshared edges from each cy-
cle and one from the cycle Cy keeping the graph connected and acyclic by cutting down method. This
completes the proof. O
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Proposition 2.8. &(T(4;x, woha,...conrn)) € $(P(n,m)) when wy\,, = wy1, Vn if and only if

5(T(w1>\1,w2>\2,...,wn>\n)) = 5(P(nv m)) \ {ewl)\17ew2)\27 B ewn)\n}
where {€w; 5,5 €wsdas - - +» €, } Will carry exactly one edge from Cyy, —1)(w,) \{€(w,—1)15 €(w,+1)1} €XCEDE €4y 1.

Proof. To get a spanning tree of the subdivided prism graph P(n,m) using cutting down method when
exactly one shared edge ey,1 is deleted, we have to delete exactly n edges from the remaining edges.
However, we have to delete only one edge from unshared edges of the cycle C(,,, _1)(,) except €y,1 to keep
the graph connected. This completes the proof. O

Proposition 2.9. E(T(y,z; wora,..wnrn)) € S(P(m,n, 1)), where wy\, = wyl and n € {V1,92,...,9,} C
{1,2,...,n}, if and only if the following hold:

1. If the shared edges e, 9,15 €wg,y 15 - - -5 Cwy, 1 ATE from successive cycles, then

8(T(w1)\17wz)\2,...,wn>\n)) = S(P(n, m)) \ {ew1)\17€WQ>\2’ s 7ewn)\n}

such that {ew,n;s€woras- - - Cwy, ,\n‘} w111‘ have only one edge from the cycle Cuy wy,..wy, €xcept
€wy, 1y Cugyly - Ewyg, 15 where wy, immediately proceeds wy, .
2. If none of the shared edges e, 9,15 Cugyls - - - Cuy 1 AT from successive cycles, then

6(T(w1>\1,w2>\2 ..... wnkn)) = 5(P(na m)) \ {ew1>\1v Cuwoday v ewn)\n}

such that for each edge ey, 1, the Proposition [2.5]s satisfied.
3. If some of the shared edges e, 91> €ugy 1y - Cwg, 1 ATE from successive cycles, then

S(T(wl)\l,wg)\g,...,wn)\n)) = S(P<n7 m)) \ {ewl)\17ew2>\27 s 7€wn)\n}

such that for the shared edges of successive cycles and for the remaining shared edges Proposition

and [2:9)2] hold respectively.

Proof. For the first case, when (9, —¥;) shared edges are deleted from the r successive cycles C,, 91 Cy 95770
Cuy, , then the remaining edges to be removed to get the spanning tree are (n + 1) — (¥, — ¥1). Therefore,
to get the spanning tree of the graph P(n,m) exactly one edge must be deleted from the unshared edges of
the cycle C’WO,WI,MWT and the rest of n — (¢, — ¥1) cycles in the graph P(n,m). This proves the first case
of the proposition. Using Propositions and the remaining cases of the proposition can be proved.
This concludes the proof of the proposition. O

Proposition 2.10. E(T,, 2, woha,...cnrn)) € $(P(n,m)) when wy), = wye, Vn if and only if

S(T(wl)q,wg/\g,...,wn/\n)) = 5<P(n7 m)) \ {ewl/\l7ew2)\27 CRRE) ewn)\n}

where {€u; 71 Cwgas - - - » €wnr, + Will carry exactly one edge from the unshared edges of the cycle C, 1 except
the shared edges e, 1.

Proof. To get a spanning tree of the subdivided prism graph P(n,m) using cutting down method when all
edges ey, 2 from the cycle Cy are deleted, we have to delete exactly one edge from the unshared edges of the
cycle C 41 except the shared edges to keep the graph connected. This completes the proof. O

Remark 2. Let the different classes of the subsets of the edge set £(P(n, m)) of the subdivided prism graph
P(n,m) discussed in the Propositions to be denoted by Qpq, Qpa, Qpa, Qpsg, Qpsp, Qps. and Qpy
respectively. Then the spanning set s(P(n, m)) of the subdivided prism graph P(n,m) can be represented
as:

s(P(n,m)) = Qp1 UQpy UQp3, UQpsy U Qps. U Qpy.
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3. The Hilbert series of SR-ring K [A (P (n,m))]

In this section, the formulation of the f—vector associated to the SSC Ag(P(n,m)) of the subdivided
prism graph P(n,m) is presented which is further used to compute the Hilbert series of the SR-ring
K[AS(P(n, m))]

Theorem 3.1. Let Ag(P(n,m)) be a SSC of the subdivided prism graph P(n,m) with m subdivisions. Then
the dimension of SSC Ag(P(n,m)) is

D = dim(As(P(n,1)) =n(m+2) — 1.
The f—vector (As(P(n,m)) = (fo, fis-- -, fp) of the SSC Ag(P(n,m)) can be determined as follows:
k
nm+3) = ¥ pj,+ X [0, NG

n(m+ 3 i _wl ipday i}z
fj:< (j+1))+2(_1)k 5 . {Ipda} S{ar}iy
k=1 {41,250k }ECE JH1=3 pj, + > 1G5, N Ty, |
w=1 {ipriayC{ir}e_,

where 0 < j <D. J={j1jo...jn}, wherej; € {1,2,....,n} with ji+1 = j; + 1 when j; #n, jiy1 =1 when
ji =n and ji+1 =1 when j; =0, wherel € {1,2,...,n} and Cf} are the subsets of J having order k.

Proof. Let the edge set of the subdivided prism graph P(n,m) be £(P(n,m)) as defined in Eq. (L.).
The different classes of the spanning trees according to the Propositions [2.7] to and the Remark [2]
are Qp1, Qpo, Ap3g, Up3p,2p3. and Qpy. Therefore, the SSC Ag(P(n,m)) of the subdivided prism graph
P(n,m) by the Definition [1|is

Ay(P(n,m)) = <QP1 Upa Up3, UQpsy UQp3. U QP4>.

Since the Propositions to explain that the facets é(W1A17W2>\27~-~7wn>\n) = E(T(w a1 worasewomAn)) ATE
formed by the deletion of the n + 1 edges from the edge set £(P(n,m)) of the subdivided prism graph
P(n,m). Therefore, the cardinality of all the facets is same and equals to n(m + 2) which shows that all
facets have same dimension equal to n(m + 2) — 1. Hence,

dim(Ag(P(n,m)) =n(m+2) —1

The definition of the SSC As(P(n,m)) shows that it has only those subsets of the edge set £(P(n, m)) which
do not carry any cycles in them. The Lemma gives the total number of cycles in P(n,m) which is equal
to . Let F be a subset of the edge set £(P(n, m)) such that it has no cycle in it and its cardinatlity j + 1.
Infact the total count of these subsets is f;, where 0 < j < n(m + 2) — 1. This number can be found by
the inclusion exclusion principle. Hence, f; = Total count of subsets of £(P(n,m)) having cardinality j + 1
not carrying any of the cycles Cj, i, ..;, ~where i; € {1,2,...,n} and 0 < k < n, with i;41 = i; + 1 when
ij #n, 41 =1 when i; =n and i;41 =1 when i; =0, wherel € {1,2,...,n}.

By Inclusion Exclusion Principle and above notations we get f; = ( Total count of the subsets of
E(P(n,m)) having cardinaltiy j + 1) - > ( Total count of the subset of £(P(n,m)) carrying C;, for

{n}yed}

w = 1 and cardinality j + 1) + > ( Total count of the subset of £(P(n,m)) carrying both Cj,,V
{j1,42}€C?

1 < w < 2 and cardinality j + 1) — o (=17 > (Total count of the subset of £(P(n,m))
{j1.42,--,d~ YEC]

carrying each Cj;, together for all 1 < w <« and cardinality j + 1).
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This implies that

5= < n(;‘n 2 > | ey ( n(ﬂm Y o > |

2
n(m+3)— > pj, + 2 ’ijﬂqu}
N = 2w:1 {prdaClir 2,
{j1.52}€C? J+1=3% pj.+ 2 ‘ij n qu\
w=1 {jpvjq}g{jv“}zzl
_ Y
n(m+3)_21pjw+ .. Z ¥ |ijﬂch‘
— (1) > ) o
{j17j27"~7j’Y}EC} j + ]- - Z p]w + Z ‘C]p m C]q|
i w=1 {dpodayS{ar iy

k
§ n(m+3) = > pj, + > |Cj, NGy
f= < n(m + 3) ) b (e 3 w=1 {Gpria}SLir Yo,y
;= . k
k=1 {J1.20--dk yECE JH1=2 pj, + > G5, N C, |
w=1 {jp»jq}g{jr}]i:l

In the following example, the above theorem is applied on the subdivided prism graph P(3,1).

Example 1. Let Ag(P(3,1)) be a SSC of the subdivided prism graph with m = 1 subdivisions , then
the dim(As(P(3,1,1)) = 8 and v = 32 4+ 3 + 2 = 14. Therefore, f—vector As(P(3,1,1)) = (fy, fi,---,f3)

and
12 12_pj1 >
ch_<j+1>_[{jl}zejc}<j+l_pj1 }

2
2= 3 piut 2 [G, NG
w= {Jp-dg}C{ir}ie
n | Z 2 ) psJq 1
{71.j2}€C3 j+1-— Z Pjw + Z ‘ij n qu‘
w=1 {pdaySliry2y
12
2= % piut 3]G, NG
w= {7}2{7' r=
_".+(_1)14 Z o Jpsdq J 1
{j1,425-14}€CH J+1- Z Piw t E ‘ij n qu‘
w=1 {ipdayC{ir i,

where 0 < 7 < 8.

In the following theorem, the Hilbert series of the SR-ring K [A;(P(n,m))] associated to the SSC of the
subdivided prism graph P(n,m) is computed using Theorem .

Theorem 3.2. Let Ag(P(n,m)) be the SSC of the subdivided prism graph P(n,m). Then the Hilbert series
hy(A) of the SR-ring K [A (P(n m))] is given as follows:

X!

h(K[As(P(TL,m))] ) =1+ Z (]1+

X J+1
t
D A n(m + 3) Z ]w { }ZE }t ‘C]p n CJ‘J‘
= i o
+ 3 (-1 > = T
7=0t=1 i< | ja1- Y gt X |C5, N Ciia|

w=1 {jpvjq}g{jT}i-:1
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Proof. Let A be a SC with f—vector f(A) = (fo, fi,-- -, fp) and dimension D . Then by [3], the Hilbert series
of the SR-ring K[A] is given as follows:

The required result is obtained by substituting the values of f—vector from Theorem in above expression.
O

4. The facet ideal Ix(As(P(n,m))) and its associated primes

In this section, all the associated primes of the facet ideal Ir(As(P(n,m))) associated to the SSC
As(P(m,n,1)) of the subdivided prism graph P(n,m) are computed.

Lemma 4.1. If A;(P(n,m)) be the SSC of the subdivided prism graph P(n,m), then

Ir(As(P(n,m))) = ({@11, 221,231, -, Tn1}) ﬂ ﬂ (TALTAZT(A—1)(m+3))
1<A<n

ﬂ m (%1%23?()\71)2) ﬂ ﬂ (l‘Az‘x)\(iﬂ'))

M ({zx i\ o Haaw e nonsn 1) -

Proof. Let us consider the SSC Ag(P(m,n,1)) of subdivided prism graph P(n,m) having n successive
cycles. Let Ir(As(P(n,m))) be the facet ideal associated to the SSC Ag(P(n,m)). It is well known
from [10] that the mvc (minimal vertex cover) of the SSC Ay and mp (minimal prime ideal) of A have
1 — 1 correspondence. Hence the mvc of the Ag(P(n,m)) will provide the primary decomposition of the
facet ideal Ir(As(P(n,m))). Using the definition of Ag4(P(n,m)) and Propositions to we get
{ea} for all A € {1,2,3,...,n} as mve of As(P(n,m)) with {exi} ¢ C;, Vi € {1,2,...,n} as {en} €
Elwr w2 da,wndn) fOr any wy € {1,2,...,n} and A\, € {1,2,3,...,(m + 3)}. Also, {ex1,exs; er—1)m+3)}
and {ex1, exz; e(a—1)2} with A € {0,1,2,...,n — 1} are mvc of Ag(P(n,m)) as at least one of the member of
the sets {ex1, €x3, e(a—1)(m+3)} and {ex1, ex2, e—1)2} belongs t0 Eqya; wore,...wnrn)- Moreover, {exi, e+ }
where 1 <A <nand3 <i < (m+3)—jand {ex1}_; \ {eaU{eis, ei—1)m+3)} are also minimal vertex
covers of Ag(P(n,m)) because they have non empty intersection with é(wl Aw2Az,ewnn)-  Lhis completes
the proof. m

5. The Cohen-Macaulay Characterization of the SR-ring K[A (P(m,m,1))]

The following section describes the Cohen-Macaulay characterization of the SR-ring K[Ag(P(n,m))].
The definition in [11] will be helpful in sequel.

Definition 2. [11] Let I be a monomial ideal such that G(I) = {g1,92,...,9:} is an ordered system of
generators. Then [ is said to have linear residuals if Res(I,) = {wi,wa,...,w,—1} such that it is minimally
generated by linear monomials, V 1 < v <t when

My

wy = —————.
ged (my, my)

The authors in [I1] presented a criteria for a pure SC A to be Cohen Macaulay.
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Theorem 5.1. [11] Let A be a pure SC A of dimension D over a finite set [n]. If its facet ideal Ir(A) has
linear residuals, then the Stanley-Reisner ring k[A] is Cohen Macaulay.

Theorem 5.2. The SR-ring K[As(P(n,m))| associated to the SSC As(P(n,m)) of the subdivided prism
graph P(n,m) is Cohen-Macaulay.

Proof. To prove that SR-ring K [A(P(n, m))] is Cohen-Macaulay, we will prove that the facet ideal I (A,(P(n,m))

has linear residuals in S = k[y11, Y12, Y13, - - - s Y1(m+3)s Y21, Y22, Y235 - -+ Y2(m+3)» - - - » Ynds Yn2s Yn3s - - - » Yn(m+3)]
using Theorem Since the spanning tress of the subdivided prism graph P(n,m) are given by:

s(P(n,m)) = Qp1 UQpy UQp3, ULps, UQps. UQpy.

Therefore, the SSC of P(n,m) is
AS(P(TL,’I’)’L)) = <£(w1)\1,w2)\2,...,wn)\n)>

g(w1>\1,wz)\2,...,wn>m) € s(P(n,m))}. Hence,

Where’ é(w1)\1,w2>\2 ..... wnAn) — {5(P(n, m))\{ew1>\1 y €wodgy+ v oy ewnAn}
)

LE(APrm)) = (v, it € s(Pm))).

The facet ideal Ix(A4(P(n,m))) is a monomial ideal with degree of each monomial equal to n(m+2)—1.
The product of all variables in .S other than yuw, x,, Ywsrss - - - » Yewn A, gives the monomials in Ir(As(P(n,m))).
Now we will prove that the facet ideal Ix(As(P(n,m))) has linear residuals according to the orders of its
monomials given as follows:

Vs s o €= EPOLM)\ {arnss Cazras -+ €ann,} U{ews} | (5.1)
where a1, ..., an, w1 € {1,2,...,n} and A, Ag, ..., A\, € {3,4,...,(m+3)}.
{yA ’ ’ é' = E(P(mm)) \ {651<17€a1>\17 . '7ean)\n} U {€W1276w22}}7

where g, ..., ap,wi,wy € {1,2,...,n}, f1 € {1,...,wy} and ¢, A1, A2, ..., A € {3,4,...,(m+3)}.

: ] £ = E(P(n,m)) \ {eayr } U{€w; 2, w2, - - ,ewng}},

where a1, wi,ws,...,wy, € {1,2,...,n} and \; € {3,4,...,(m+3)}.

| € =E(P(n,m)) \ {€s1e1s €arrrs- - - €anrn } U {ew1} Ufew2}}

where a1, ..., an, w1 € {1,2,...,n}, 81 € {1,2,...,wp—1,wn} and ¢1, A1, Ao, ..., A\ € {3,4,...,(m + 3)}.
| € =E(P(n,m)) \ {81015 Carrss- - - » Cannrn } U { w1, Cant } U {€w2, €ws2} )

where aq, ..., qn, w1, we € {1,2,...,n}, f1 €{1,2,...,wh—1,wn} and ¢1, A1, Ao, ..., A\ € {3,4,...,(m+3)}.

€ = E(P(n,m))\ {eunts- €11} U feunzs €0y 12} U feann } s

where a1, wi,ws,...,wy, € {1,2,...,n} and \; € {3,4,...,(m+3)}.
In Eq. (b.1), the monomials | € =E(P(n,m)) \ {ea;nys---»€anr, t U {ew 2}, where
aty .., om,w; € {1,2,...,n} and A1, A, .., A € {3,4,...,(m+ 3)}} have the following pattern:
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y5(11,21,...,n1,12,22,...,(n71)2,wn/\n)’ U ’y€(11,21,...,n1,12,w2)\2,32,4.4,(n71)2,n2,wn/\n) ’ yg(ll,Ql,m,nl,wl/\1,22,.<.,(n71)2,n2,wn)\n)

where \; € {3,4,...,(m +3)} and 1 < w; < n. Similarly, the other monomials in Now substituting

Res(yA yg(wl)\l,w2)\2,...,wn)\n)
g(wlz\l,wz)\g,“.,wnkn) ng(mt,

y/\
E(wi A1 wa A2, wn An)

where my; proceeds Y with respect to the order in Eq (5.1). In Res(
w1l

,wWoAQ,..,WnAn) g(wl)\l,w2kg,.“,wn/\n)

substituting A = n gives,

R o yé(u 21,...,n1,12,22...,(n—1)2,wn An)
(yé‘(ll,Ql,“,,nl,12,22“A,(n—l)Q,wnkn)) - gcd(mt Ys
P E(11,21,...,n1,12,22...,(n—1)2,wn An)
Here m; are all the monomials having the form y, in S, where \t # n & w, = 3,4,...,(m+3).
. g(.wlkl,wgkg,m,wnkn) . .
Since yz and my have difference at only one point. Therefore, there are only lin-

E11,21,...,n1,12,22...,(n—1)2,0nAn)
ear terms in Res(y‘g
(11,21,...,n1,12,22...,(n—1)2,wn An)

Res (yg 11 21 """ 112,290 1)20m ) minimally. Following the similar procedure, the order of all the monomials
in Eq. of the facet 1deal I]:(A (P(n,m))) ensures that Res(yg(wAl’wﬂgwwnkn)
. Mn)n) € Ir(As(P(n,m))). Hence, the facet Ir(As(P(n,m))) has linear residuals,
and by Theoremﬁ P(n,m)) is Cohen-Macaulay. O

). This shows that only the linear monomials generate the

) has only linear mono-

mials for all Ye,

6. Conclusions

The current paper debates on combinatorial properties related to spanning trees of a subdivided prism
graph P(n,m) and explores certain algebraic attributes of spanning simplicial complex associated to the
prism graph P(n,m). Here, we conclude the article with some future perspectives for study and related
limits.

e The work done here can be discussed for some other classes of simple, finite and connected graphs.

e The computation of spanning trees of an arbitrary graph G is an NP-hard problem, and therefore,
exploring the current work for a general class of simple, finite and connected graph is a hard problem
to work on.
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