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Abstract

We extend some inequalities of Hardy-type on time scales for functions depending on more than one param-
eter. The results are proved by using induction principle, properties of integrals on time scales, chain rules
for composition of two functions, Holder’s inequality and Fubini’s theorem in time scales settings.
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1. Introduction and Preliminaries

The discrete Hardy inequality was given in 1920 by Hardy [6] to find Hilbert double series sum. He
[7] (see also [§]) proved an inequality by using the calculus of variations which is continuous version of his
inequality given in [6]. Afterward these inequalities have been studied in more general settings. New proofs,
extensions and generalizations of these inequalities have taken place in many papers. For example Chan
[4] proved some extensions of Hardy-type inequality in 1979. Pachpatte [10] considered generalizations of
inequalities established by chan [4] in 1992. In 2005, P. Rehak proved Hardy’s inequality via time scales in
[11]. In 2015, S. H. Saker and D. O’Regan [12] extended results of Pachpatte’s inequalities [10] in time scales
settings. For some other extensions of Hardy inequalities on time scales for function of several variables, the
readers are referred to [5l 9] 13, [14].

Let us start to discuss the basic concepts used in the paper from [2, B]. A time scale T is nonempty
as well as close set in R. So R, N and Z are some examples of time scales. In present paper assume that
supT = oo and a time scale interval is denoted by [tg, 0o)T := [tg, 00) N'T for ¢y € T.

The operators o,p : T — T defined by

o(w):=1inf{y € T;y > w} and p(w) :=sup{y € T;y < w}
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are forward as well as backward jump operators respectively for w € T. The point w satisfying o(w) > w
is called right-scattered and left-scattered when p(w) < w. The points which are left and right-scattered
simultaneously are isolated. Also the point w is right-dense if w < sup T and o(w) = w and is left-dense
when w > inf T and p(w) = w. The points which are left and right-dense simultaneously are dense points.

Notation: ¢7(w) = g(o(w)) for any function g =T — R.

A function p : T — [0,00) for a time scale T is called the graininess function if u(w) := o(w) — w for
weT.

Assume hq, hy : T — R are differentiable at w € T. Then

(i) Derivative for product of two functions at w € T is,
(hlhg)A(w) = hlA(w)hg(w) + hlg(w)th(w) =h (w)hQA(w) + hlA(w)hgg(w). (1.1)
(ii ) Quotient rule to find derivative is,

(fn)A () = T2 @)aw) — hi(w)hs® @)
h2 - hg(w)hg"(w) )

Chain Rules

(i) Let u: R — R be differentiable and v : T — R is delta differentiable, then
1
[u(v(w))]> = / W + (1 — B)oldho® (w). (1.2)
0
(ii) The fact that v7(w) = v(w) + p(w)v>(w) and u : T — R is delta differentiable, gives
1
@) = [ o+ ()o@ ). (1.3)
0

(iii) Assume that u : R — R is continuously differentiable and v is continuous from R — R and v : T — R
is delta differentiable. Then a real number ¢ € [w, o(w)] exists such that

A
[u(v(@))]™ = u'(v(e))v® (). (1.4)
If &1,& : T — R are delta integrable and m,n € T, then integration by parts formula for delta integrals is
/ §(w)&% (W) Aw = [§(w / &% (W) (w) Aw. (1.5)
From chain rule ({1.3)),

a_ ! 1 _ L e (W)
toge® = [w+hu<w>]dh‘u<w>lg< " >

when p(w) # 0. Therefore,

which gives,
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As the generalization of (1.6)), we find

_1 62 (w) w
(log O(w))2 = Z(w) := g&") log(1+u() o ) p(w) # 0,
e w) =0,

provided that 02 (w) € R. Therefore,

7w)
/w Z(s)As = log < O(w) > for weT.

wo

Holder’s inequality
Let wy,ws € T, for rd-continuous functions ¢, : [w, ws] — R, we have

P1

/ 16 (@) ¥ ()|Aw < / 6 ()P Aw 27|¢<w>%w , (L.7)

where p; > 1 and pa = p1/(p1 — 1).

Fubini’s Theorem [1]

Let (I'y M, aa) and (X, £, Ba) be two finite dimensional time scale measure spaces.
We consider the measure space (I' x ¥, M x L, an X fa), where M x L is o-algebra product generated
by the family {E x F: E € M,F € L} and

(aa X a)(E x F) = aa(E)pa(F),

then Fubini’s theorem holds, more precisely if ¢(m fr v, ™)Av and (v fz v, ™)Am for almost
everywhere m € X and v € I respectively, also if & : F XY = Risaaa X Ba- mtegrable functlon, then ¢ is
Ba- integrable on Y and 1 is aa- integrable on I', and

/Afy/f('y,ﬂ)Aﬂ— /AW/§(7, T)AY. (1.8)
r b b r

Aim of the paper is to extend the work done in [12] for functions of several variables.

2. Main results
We assume throughout that all the functions are non-negative and the integrals considered exist.

Theorem 2.1. Let T; denote time scales and hi(t;) be non-decreasing functions for t; € Ty, where | =
1,...,n. DeﬁneV(tl,...,tﬁ) €Ty x---x Ty,

. ha(
Aﬁ(tl,..., Hh /tl /t H l .,Sﬁ)ASﬁ"‘ASl. (21)

=1 =1

l
Suppose p1/p2 > 1,p1,p2 > 0, and for t; € [1,00),

| pilogai(ty) g, (t2)

p2 Wy ()= (t)

> M;, VM; > 0. (2.2)
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Then the following inequality holds

e Pl
/ / Hzl ) [An (1, ... t3)]P2 Aty - Aty
1 1

Proof._We use mathematical induction. For f = 1, the statement is true by [12, Theorem 2.1]. Consider
that 1) holds for 1 <n < k.
To prove the result for n = k + 1, we write the left hand side of 1' as follows:

/ / sz (t {/ Zkﬂ(t;;ﬂ)[f\,;ﬂ(tl,...,t,gﬂ)} pQAtk+1}At,;-~-At1. (2.4)

Denote,

oo
P
Tina :/1 Zl%+1(tl%+1)[A1%+1(t17--~7t1%+1)} 2Atk+1

Pl
By using |D with & = [A,;H(tl, ... 7t1%+1)] 2 and &2 = 21 (t;, 1), we have
Py |00

I,y = |log(ti, ) [A,;H(tl, . ,tkﬂ)] o 1

k+1 —

00 o p1
+ / log o (t, ) (-8# Aga (st p?)m,m. (2.5)
1 k+1

p1
Use chain rule 1D with v = tr2 and v = Akﬂ(tl, .-+, tp ) to obtain

o [ P1 ) 1
- A (t17 ’ t; )i| = /
Bt;;ﬂ k+1 k+1 2 Jo

p1_

0 b2
AE+1(t1, ... ,t];Jrl) + hu(tk+1)ﬂ‘/&l§+l(tl’ .. ’tk+1)] dh

0
X < ot Al%+1(t1""’tfc+1)> > 0. (26)

k+1

Use 1) for 7 = k + 1 and differentiate with respect to ¢;  , with the help of 1) to get

A-

9 hl%+1 (tl%+1) h/;.ﬁl (tl%+1)
ET AkJrl(tl, ,thJrl) = — Thvi gy A’Aﬂ(tl"”’tl@rl)—i_ih”k-&-l n A,;+1(t1,...,t];+1) <0,
k+1 k+19k+1 ( k+1) i1 ( k+1)
(2.7)
where for fix ;| € Ty
b1 © E a(s)
A (th, ... t; = / / ——f(s , S, As; -+ Asy. 2.8
k( 1 k+1) ll_Ilgl(tl) . G ll_Il s f( 1, k k+1) k 1 ( )
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Combine ([2.6)) and (2.7]), then substitute in (2.5) to obtain

A

et hy ()
P o hk+1(tk+1) k+1 k+1
Ik+1 S}g . loga,%+1(tl;+1) n k+1(tA )Ak(tl,...,t’;Jrl)—i- hgi@*l(p ) l}+1(t17""t1%+1)
19501 Yk fa1 k1
1 a %_
X /O Al;:—&—l(tl""’tfc—l—l)+h#(tl;+1)WAk+l(tl""’tlAc—i—l) dhAtk+1
+
Since ata Ak+1(t1’ -y tyq) <0, therefore
log 7y ()0, () = A
I P10 98 %419 i b / logoj 1 (th 1) Ghr Gy )AL (s st )
k+1 Tk11 - P1—P2
P2z (t)g () P21 o v
k+1\Vk+1/9 40 VRt tk+1gk++11 (tiiq) [z,;ﬂ(t,;ﬂ)} !

P1—P2 P1—P2
. [(z’ﬂl(tkﬂ)) s [Ak+1(tlv---vtic+1)] P2 Atfc—‘rl'

Apply Holder’s inequality on right hand side with indices p;/p2 and p1/(p1 — p2) and use 1) forl=k+1
to get

p1
D 21
1 P2

D1 e logoy y (t )91 ()AL (B Ty y)
S( ) /1 Zp1 (i) At;

R Oft1
M, 1p2 b9 44 (1) 21 ()

Ifc+1

e (29)

Put (2.9) in (2.4)) and exchange integrals k£ times by using Fubini’s theorem on right hand side to find

oo k41
P2
/ /Hzltl Hltl,...,tkﬂ)} Aty Aty

L L
D1 e logoy i (t 4 1) 9541 (Hr) "2
< Zpp1 (Bpyr) W i1
Mj_1p2 1 tl%+1 frt o () 2 ()
/ / H 2 tl tl, .. k+1)]p2 At - Aty Atk—H (2.10)

By using induction hypothesis for Aj(t1,. .. ’tl%+1) (instead of Aj(t1,...,t;)) for fix thyq In , we have

p1
k+1 P Gty (g1 P2

P2 b1 P2
/ / H z tl k+1 (t1, ... ’tl%+1>} " At12:+1 Aty < <P2> H M,
fe+1 »
> logo;(t)gi(t) \ 7z | .2
t1,....,t; At At
/ / 1131 alt (tlgl (t)z(t) fro(te, .oty )AL 1
O

Corollary 2.2. Let Rfr be time scales, hi(r;) be non-negative, non-decreasing functions on ]R;r where | =
1,...,7. Define for any (r1,...,7m3) € R x -+ XR%_,

An(ry, ..o ra f[ / / th 1) ey Sp)dSp - dsy.

Ta =1
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and suppose p1,p2 > 0 such that p1/pa > 1 and for r; € [1, oo)Rf,

| pimhi'(n)
hy

» log(r) = M; 11 € [1,00)p+, VM; > 0.
2

Then the following inequality holds

oo oo 1 pL
sy m.__p[Aﬁm,...,m]mdm---dm
<> (HM)Q/ /{Ujlog” }f()dd

Proof. Use T = Rf V 1€ (1,---,n) in Theorem to get the above result. O

Corollary 2.3. Forl € (1,---.,n),q > 1 if we fix T; = qFO i Theorem and for (q ml,...,q%”ﬁ) €
qll\IO X+ X qgo, define

An(g™, .., q0™) Hgl Z Z Hgl qll,...,ql’;ﬁ)(ql—l).

=1 kl =m ks —mn

Also for p1,p2 > 0 such that pi/p2 > 1. suppose that,

~ prlog(g" ) Augi(g™)

> M, VM, > 0
P2 gi(q" Halg™)

Then,

[e.9]

> o 3 (T v (5

(i)

P1

} [Aﬁ(q71n17 s 7(12%)]”2

=)
5 5 M (1))

mi=1 ma=1

Pl

P1

P2

log(q" ") gi(g]™)

1 l+1
oo (%

by ma ma
) f (QI 7"-7Qﬁ )

Proof. Use T; = ql q>1,1€(1,---,n) in Theorem to get the result. O
Corollary 2.4. Let p1,p2 > 0 be such that p1/p2 > 1 and for 1 € (1,---,n) and oy > 0, g;(aymy) are
non-negative, non-decreasing sequences, where m; € N. Then for (arymq,...,azmp) € aiN x -+ x apN,
define
n oo n A . .
Aﬁ(oqml,. . .,Oéﬁmn H Z Z gl Ozlkl,.. . ,aﬁkﬁ).
=1 gl Oélml kr=m, kp=my =1

Also suppose that,
p1 log(aymy + 1) Aygi (aumy)

1 _
p2 gilagmy + 1)z (agmy)

> Mla
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for some constant My > 0, where l =1,...,n. Then,
o0 o0
oymy + 1 P1
> o 3% [ (2 )}mﬁmlmh...,%mﬁnm
apmy

mi1=1 mp=1
a1 g
p1\ Pz 1 am;+1
()7 () £ 5 (o (22))

mi1=1 map=1
p1
P2
1 1 PL
" og(aymy + 1)gi(cymy) 1 £55 (cma, - ).
aymugi(oumy + 1) log (%)
Proof. Use Ty =N a; >0, 1€ (1,---,7) in Theoremto get the result. O
Corollary 2.5. Let p1,p2 > 0 be such that p1/ps > 1. Assume that hi(t;) are non-decreasing functions on
A
time scales Ty and 0;(t;) are non-negative functions such that egl(lt(lt)l) € Ry wherel =1,...,1. Aj(t1,...,tn)
is defined in and assume for t; € [1,00)r,,
th™ (1)) log 07 (¢

Cp2 W) Z(h)

Then

/ / Hthl tl,...,t)}%AtﬁmAtl
1 1

LI b2 A - i
P11\ P2 1 ? /oo /oo <hl(tl> log 91 l(tl)> p2 Pl

< (P21 [T~ [T 2 L P2 (b1, ... t3) Aty - - Aty

= <p2> (l:l Ml> 1 1o l( l) tlhll(tl)Zl(tl) f ( 1 ) 1

Proof. To obtain the result, use the functions Z;(¢;) instead of z;(¢;) in Theorem and proceed similarly. O

To prove some further results, apply chain rule ([1.2)) and the inequality.

a1’ + as’ < (a1 + az)5 < 25_1(a15 + (IQE); if a1,a5>0 and ¢§>1. (2.11)

Theorem 2.6. Let T; be time scales and hi(t;) are non-decreasing functions on T; where | = 1,... 7.
Ap(t1, ..., t) is defined in (2.1). Suppose p1,pa > 0 such that p1/p2 > 2, also for t; € [1,00)7,,

PL_q A
2p 1 t)hy " (t
- 2 ggaz(l)z(l)zMZ,VMz>0
b (k) z(t)

Then the following inequality holds
oo Py Apy (o1 -p2) [ 1\
/1 /1 Hzl tl tl,...,tﬁ)]PaAtﬁ---AtISQ p2? HM[
I=1
log oy (t) hu(ty) \ 7
ogoy(t)hi(t) r2 2

(t;) Hy oo ) Aty - AL
/ / {Hzl l ( thcrl t)z(t) ) }fpz( 15 ) ) 1
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Proof. Use mathematical induction method and proceed as in the proof of Theorem for i = k+1 to
get,

P1 |00

Ty = og(tiy ) [ gy (b tyy)] 1

E+1 —

o0 o Pl
+/1 10g01%+1(t1%+1)<_8t1%1{Al%+1(t17"'7tl%+1)] p2>Atic+1' (2.12)
_l’_

p1
Use chain rule formula 1' with u = tr2 and v = A,;H(tl, . ’tl%+1)’

9 » D1 ! 7 731
_8t];+1 |:AI%+1(t17 s 7t];+1)} 2 :172 0 |:hAfc++11 (t17 e 7t];+1) + (1 - h)A’;+1(t1, ce ’tlAerl)] 2 dh
0
X —WHAE+1(t1,...,tk+l) > 0.
Apply (2.11),
) P1
- Wﬂ |:A’;+1(t]_, oo ,t];+1)j| b2
29 0 Tk+1 %_1 %
<2 | g A () A7 bt D] (A (i) L (213)
+
Also from ([2.7)) of Theorem
A1%-5-1
0 i1 (i) hfcﬂ (t41)
WAE—FI(tl""’tk—Fl) - — ha-fc+1 Aif(tl”t];:—‘,—l) hO-TA];_i_l(tl,...,té_’_l) 5 (214)
k+1 b Bl (tk+1) i1 (tfc+1)

where Ag(t1,. .. ’tl%+1) is defined in || Since %A(tl,tg) < 0 and o9 (t2) > to, therefore li can be

written as,

0 % P1_q 0 %*1
_%[A/Ac—l—l(tl""’tl;:—&—l)} < 2p2 —W—HA];_Fl(tl,...,tk_’_l) |:Af€+1(t17"'7t]}+1):| (215)

Combine (2.14) and (2.15)) in (2.12) and proceed similar as Theorem [2.1| to reach the proof. O

Consider the case when % < 2. Also

26_1(&1E + CLQE) < (a1 + CLQ)E < (CL1E + CLQE), (2.16)
where aq1,a2 > 0and 0 < e < 1.

Theorem 2.7. Let p1,p2 > 0 such that % < 2. Assume that hi(t;) are non-decreasing functions on time
scales Ty where [ = 1,...,n. Let Ap(t1,...,ta) and Ap(t1,...,ts) as defined in and @) respectively

and assume that for each t; € [1,00)T,

_ 2logay(t)h™ (t) M

YTl am
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hold for some constants M; > 0. Then

/"'/Hzl(tlﬂf\ﬁ(tz,...,tﬁ)ﬂémﬁ...Atl
1 1 =1
n 2 % S o 5 1 (t)h (t) L 5
ogoy(ty)hy(ty) \r2 2L
< — zi(t = 7 7 th,---,tﬁAtﬁ"’At,
> (lljll Ml> 1/ 1/11:[1 l( l)<tlhlal(tl)2’l(tl)> f (1 ) .

Proof. Apply 1’ When — 1 < 1 instead of inequality (|2 , to see

1
(2) [+ @ maomtan < oyl q)oiet
0

b2
< 20)P/PTL pyfpy <2, (2.17)
Use and proceed as in Theorem to obtain the required inequality. O
In next results, for any (¢1,...,t3) € Tq x - -+ x T4, use the following operator:

7 " ty M
Qalty,. ..ty th f(s1,...,80)Asp - Asy. (2.18)

I=1 I=1
Theorem 2.8. Let T; be time scales and hi(t;) are non-increasing functions on T; where l = 1,...,n and

hold for any (t1,...,t;) € Ty x -+ x Tj. Suppose p1,p2 > 0 such that p1/p2 > 2, and

L1 [log(t) At (t) (01 (1), - -y o1 (bi1) by - - 5 )
A () (o1 (th), -y o1 (tie1), s - ta) zi(t)

Then the following inequality holds,

1420 > M, VM, > 0. (2.19)

P

! Pl np1(p1 p3) n 1 P2
/ / Hzl tl t17...,tﬁ)]p2Atﬁ...At1§2 a2 <H >
0 0

=1 1 M

/ /{Hz (tk;ﬁ.ltt’l))’hl((tt;)> } P2 (ty, .. ty) Aty - Aty (2.20)

Proof. To prove the required result, we use mathematical inductiop method. For n = 1, the statement is
true by [12, Theorem 2.9]. Let statement (2.20)) holds for 1 < i < k
Now to prove the result for n = k + 1, write the left hand side of 1 as:

1 o
/0 /0 ll_Ilzz t {/ zj o (tgy) [Qk“(tl’ . ’tl%+1)] P2 Atk+1}Atk AL (221)
Denote,
! p1
/0 Zk+1 k—i—l k+1(t1’ .. ’tl%+1)] P2 Atl?;-&-l
! p1
:/0 Zk:+1 k+1 Qk;ll( 1(t1)""’al%(tl§:)’t1;+1)] P2 Atl%+1'
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o p
Integrate by using parts formula 1' with &2 = i1 () and §7 = [QZ’jfll(al (t1),. .. ,a,;(tl%),tfgﬂ)}é

and use chain rule formula (|1.2)), to obtain
b1
I =2
k+1 P2

1
X /’log(t’;Jrl |/ hQ k+1 0-1 t1) Ul%(tl%)’tl%Jrl)+(1_h)QI%H(Ul(tl)?'”701%“1})775,;“)} P2 dh
0 0

0
X {%Qk—"_l(a—l(tl)”O—’%(tk) k‘-i-l)}Atk—‘rl (222)
k+1

Use product rule of derivative (1.1)), to obtain

0 h1%+1(tfg+1)
787? Q]%Jrl(al(tl),...,Uk(t];),t];Jrl) = . thH_l . Q]}(Ul(tl)aw-70'];(t];)7tf€+1)
k+1 k4+1"E11 ( k+1)
A
e )

™ Qg (oi(tr), . o(t)s ) 20, (2.23)
hl%+1 (t’5+1)

where for fixed ¢; ,, € T

i1 € Lo

o1 t1 (o4 (tk

k
91(s
Q’%<O'1(t1),...70' k’+1 H t / / H 81,.. Sk’ k+1)A3k --Asl.
gi(ou(tr) J

=1 =1

Apply inequality (2.11]) on the term
yan 1

[hQij:il (Ul(tl), .. ,J’;<t];),t]%+1) + (1 — h)Q]jH_l(Jl(tl), R ,U];(t];),t];+l):| P2

of (2.22]) also note that

8t Q];+1(O'1(7fl),...,Ué(tk),tfﬂ_l) > 0, write

i

1
p %
o RO (@1t 03 0) ) + (1= W) (01 (), oy (t) iy )| b

P1_

< 21122 [Q k+1(0.1(t1) Uk(tl%)7tl%+1)] pp 1 . (2.24)

k+1
Substltute and (| into (| and use ) for [ = k+ 1, to obtain
Pl _ 1
I < 2 p2 1 ‘IOg(tlAc-i—l)’hl%—i-l(tl;:—&—l)gl%(o-l(tl)’""Jk(tk)’tl%+1)
k —
+1 Mchrl ' h%ﬂ (tA )[z (tA )]P1p1p2
0 41" k1) Fh+1\ k41

P1—P2 P1—P2

P1 [Qkﬁl(m(tl)a---7‘71%(751;)7t/%+1)] " )Atlﬂl'

(Tt
Apply Hélder’s inequality on right hand side with indices p;/p2 and p1/(p1 — p2),

P1
p2

P11
p1(P1—P2) P2 log(t; h; t; Q; t1),...,0:(t;:),t;
I §2p1 P ( 1 ) /Zic+1 i) [og () (B ) (01 (B1), - -5 03 () ) At
0

k+1 X % k1
Mty t}%+1h;;++11 (1) 21 (Fsr)

(2.25)
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Put |’ in i and exchange integrals k times by using Fubini’s theorem on right hand side,
1 1
o P
/ / Zl )[Q]}+1(tl,...’tk+1)]?2 At];;+1Atl
0 0

P
o (L ] Lot
= M EEEE b ()2 (t )

] 101 W1 P41 e

p1

1 1 i
/.../Hz,;(t,;)[n,;(al(tl),...,ak(tk) oAl | AL, (2.26)
0 0

Therefore use 1D for Qg (¢, ... 7ti€+1) instead of Q;(t;,...,t;) for fix thyq I , to get

P1

1 k4 p2 (b+1)p1 (p1—po) [ KL 1 P2
(et 1)p1 (21 —p2)
/ /0 lel t)| 97, ( tl,...,tkﬂ)} Atp, - Aty <2 lHMz
1 =1

A log (t;)|h ﬂ P1
[ [ () o

O

Theorem 2.9. Let T; be time scales and hi(t;) are non-increasing functions on T; where l = 1,...,n and
holds for any (t1,...,ts) € Tix---xTys. Suppose p1,q1 > 0 such that p1/ps > 2, also fort; € [1,00)7,,

p1 [log(t) R (t) (o1 (t), - o1 (fim1) t, - - )
D2 hlUl (tl)QlUl (0'1 (751), ... 70l—1(tl—1)7 7T tﬁ)Z[(tl)

Then the following inequality holds

1 L
/ / Hzl tl tl,...,tﬁ)]p2Atﬁ"'At1
0

( >p2 (HM1> / /{Hz <W)m}f:g(t17---,tﬁ)Atﬁ~--At1. (2.28)

Proof. To prove the required result, we use mathematical induction method. For nn = 1, the statement is

true by [12, Theorem 2.10]. Let (2.28) holds for 1 < 7 < k.
To prove the result for 7 = k + 1, consider (as in the proof of Theorem )

1+ > M;, YM; >0 (2.27)

1
Ti :/0 G (t k+1)[Qk++1 (01(t1)7‘"’Ol%(tfc)’tl%-i-l)] z Atp g

Integrate by using parts formula (1.5 with

A g7, P1
51 = zk+1(tk+l)7 620 = [Q];jjrll (01 (t1)7 e 70-];(t]%)7 t];+1)} P2,

to obtain

0 P1
Ik—i—l < / ‘lOg(t,;_’_l)‘ (atkﬂ[ﬁfﬁ_l(dl(tl),.. . ’U/Af(tfc%tlfc—i-l)]m) Atl%—i—l' (229)
0
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Apply the chain rule formula (1.4), see that there exists ¢ | € [t;,, 07, (¢;,,)] such that

0 P
a0 Qapa(onte),. o o3 (8), B )l P2
1
— () ¢ TP [l ELCAON ; £t 2.30
=0 Q1 (01(t1), .- - 03 (tg) cpy)] 9, ppon(tn), o (ty) thyy) |- (2.30)
Use the fact that %Qkﬂ(m(tl),...,cr,;(t];),tkﬂ) > 0 from (2.23), also o;_(¢;,,) > cj,, implies
Qkf:ll(a'l(tl) ’Gl%(tk) k+1) > QkJrl( ( 1)7"'7‘71%('51%)701%“) in (2.30)), to get
0 P1
g S (01(tn), - 03 (8) 8y )]
fe+1

b1 Okt1 %_ 0
< <p2> [Q]}:-Fl (Ul(tl)a cee 70']}(t]})7 t]}Jrl)} ? <%Qfg+1 (Ul(tl)u cee 70']}(t]%)7 t]}Jrl)) . (231)

Put (2.23) of Theorem [2.8 and (2.31)) in (2.29),

1

p1
b b3 L
T <2 [ (ogti) [0 @100 oyt t.)]
0
he o (te )
k+1\"k+1
ts hUI;Jrl (tA )Qk(()’l (tl)’ o ’O—l;:(tl;‘)’ t];:-f—l) At/:u‘-i-l
k1" Ykt
4 / 1
D
(ogt 1) [ (01 (t), ot )] ™
0
As
hA k+1(tA )
k+1 VE+1
7};’5*1 Ql%+1(01(t1)?‘"’Ul%(tlé)7tl%+1) Atfc—&-l'
it (i)

Proceed similar to the proof of Theorem and use (2.27) , to get

1 L1
/ / zi( )[Qk+1(tl,.. k+1)] 2Atk+1 - Aty
0 0o =1
pl 1 %
< ( ) . [og(t; )My (tyy)
= fr1 (Bgr) Cr
Mii1p2 0 tiprhiy (i) % (Ggy)
1 1
/ /Zk Ul tl) ’Ulfc(tk> k+1)]p2 Aty At];_H. (2.32)
0 0
Use - ) for Q (1, .. k:+1) instead of Q;(t;,...,t;) for fix tpyq in (2.32), to obtain
Lkt Gtim (f1 s
pl p2
21(t) (t1,. .. t; }”Mt At < | = —
/ /0 H !(t) k+1 1 i) k+1” 1= <p2> H M,

=1

k“ Hog (1)) \ 5 | 21
/ / <tlhlal(tl)2l(tl)) Fra (bt )AL, - Ay,
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O

Theorem 2.10. Let p1,q1 > 0 be such that p1/p2 < 2. Assume that hi(t;) are non-increasing function on
time scales Ty where I = 1,...,n. Let Qu(t;, ..., ts) be defined in and assume that holds for

some constants M; > 0. Then

1 pL
/ / Hzl tl tl,...,tﬁ))pQAtﬁ"'Atl
0 0

< (2}% f[ 1 2/1 /1ﬁ (t)<“0g(tl)’hl(tl>)£éfz;(t f) AL At
n R z — RO 73 PR .
- 1 M 0 0 13 U G ()2 (t) ! !

Proof. Apply the inequality 1) on the term [AQ7 + (1 — h)Q]%_l when p1 /p2 < 2, to have

1
! [hQ" 1—nQr tan < 2L [ e oy f (1 pye tae Ydn
p2 P2
P1_1q P1_1q P1_1q
- [(QU)m QO } < 2(Q7)r . (2.33)
Proceed as in prove of Theorem and further use (2.33]) to complete the result. O

3. Conclusion

In this paper several Hardy type inequalities involving several variables are proved by using time scales
calculus, The obtained inequalities are also discussed in quantum calculus, differential calculus and « discrete
calculus where a > 0.

Moreover, similar to inequalities given in Corollary 2.2}-Corollary which we get by choosing special
time scales in Theorem we can obtain inequalities by choosing special time scales in Theorem
Theorem

It is also possible to establish inequalities in more general settings by using the functions Z;(¢;) instead
of 2(t;) in Theorem [2.6-Theorem as we have done in Corollary
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