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Abstract

It is known that in mathematical literature one of important questions of spectral theory of operators is to
describe spectrum of diagonal block matrices in the direct sum of Banach spaces with the spectrums of their
coordinate operators. This problem has been investigated in works [1] and [2]. Also for the singular numbers
similar investigation has been made in [3]. In this paper the analogous question is researched. Namely, the
relationships between ε-determinat spectrums of the diagonal block matrices and their block matrices are
investigated. Later on, some applications are given.
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1. Introduction

It is known that the determine of place of spectrum set of any linear densely defined closed operator
in any linear normed space is one of central questions of spectral theory of operators. There are several
generalizations of spectrum concept in mathematical literature. Knowing of these generalizations are pseu-
dospectrum [4], condition spectrum [5], Ransford spectrum [6] and determinant spectrum [7]. Note that the
determination of spectrum or resolvent sets have special and important place in Operator Theory. Unfor-
tunately, in most cases the presence of these sets imposes great technical and tactical imperatives. In such
cases the aim is at least the approximate location of spectrum sets in complex plane is of great importance.

The same difficulties arise the calculation of eigenvalues of large size square matrices. In this reason with
the help of the determinant spectrum set it is possible to have an information.

In addition, the article of Krishna [7] has been a great motivation in the creation of the subject of this
article.
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2. Determinant Spectrum

Definition 2.1. [7] Let A ∈ Cn×n and ε > 0. The ε-determinant spectrum of A is defined as

dε(A) = {z ∈ C : |det(zI −A)| ≤ ε}

The set dε(A) contains the all eigenvalues, i.e., σ(A) ⊆ dε(A) and σ(A) = d0(A) for any n× n matrix.
For example, ε-determinant spectrum of matrix

A =

(
0 α
β 0

)
∈ C2×2, α, β ∈ C

is in form
dε(A) = {z ∈ C : |z2 − αβ| ≤ ε}.

At the same time the eigenvalues of A are in form

λ± = ±
√
αβ.

Now let mj be a natural number for any j = 1, 2, ..., n and Aj ∈ Cmj×mj . And also A =
n
⊕
j=1

Aj , X =

n
⊕
j=1

Cmj , A : X→ X . Here A is
(∑n

j=1mj

)
×
(∑n

j=1mj

)
square block matrix.

Theorem 2.2. For any ε1 > 0, ..., εn > 0 it is clear that

n⋂
j=1

dεj (Aj) ⊂ dε(A) ⊂
n⋃
j=1

dεj (Aj)

where ε = ε1· ε2 · · · εn.

Proof. In this case when z ∈ dεj (Aj), j = 1, 2, ..., n, then for each εj > 0, j = 1, 2, ..., n we have

|det(zI −A)| = |det (zI1 −A1) | · · · |det (zIn −An) | ≤ ε1· ε2 · · · εn.

From this it is obtained that
z ∈ dε(A) , ε = ε1· ε2 · · · εn.

Now assume that z ∈
n⋂
j=1

dcεj (Aj) for each εj > 0, j = 1, 2, ..., n. Then

|det(zI −A)| = |det (zI1 −A1) | · · · |det (zIn −An) | > ε1· ε2 · · · εn.

That is z ∈ dcε(A) , ε = ε1· ε2 · · · εn. Consequently

n⋂
j=1

dcεj (Aj) ⊂ d
c
ε(A).

So

dε(A) ⊂
n⋃
j=1

dεj (Aj).
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Theorem 2.3. Under assumptions for each ε > 0 it is true that

dε(A) =
⋃

ε1>0,....,εn>0
ε = ε1·ε2···εn

 n⋂
j=1

dεj (Aj)


Proof. In this case when z ∈ dεj (Aj), j = 1, 2, ..., n for any ε1 > 0, ...., εn > 0, then it is easy to see that

|det(zI −A)| =
n∏
j=1

|det (zIj −Aj) | ≤ ε1· ε2 · · · εn.

So z ∈ dε(A) , ε = ε1· ε2 · · · εn. In this situation it implies that

⋃
ε1>0,....,εn>0
ε = ε1·ε2···εn

 n⋂
j=1

dεj (Aj)

 ⊂ dε(A).

Let prove the contrary part of last inclusion in case when n = 2. That is assumed that

Aj ∈ Cmj×mj , j = 1, 2, X = Cm1×m1 ⊕Cm2×m2 , A = A1⊕A2, A : X→ X.

Let us z0 ∈ dε(A) for any ε > 0. Then
|det (z0I −A) | ≤ ε.

This means that
|det (z0I1 −A1) |· |det (z0I2 −A2) | ≤ ε.

If it is denoted by ε1 > 0 number satisfying inequality

|det (z0I1 −A1) | ≤ ε1,

then from last relation it is obtained that

|det (z0I2 −A2) | ≤ ε/ε1.

Consequently, if z0 ∈ dε1(A1), then z0 ∈ dε2(A2), ε2 = ε/ε1. This means that with condition ε = ε1· ε2

dε(A) ⊂ ( dε1(A1) ∩ dε2(A2) ) .

Therefore in case when n = 2
dε(A) =

⋃
ε1>0,ε2>0
ε = ε1·ε2

( dε1(A1) ∩ dε2(A2) ) .

The general case could be proved similarly.

The following proposition is true from the definition of determinant spectrum.

Theorem 2.4. Let f : {1, ..., n} → {1, ..., n} is a one-to-one onto function. Then for each ε > 0

dε

(
Af(1) ⊕ · · · ⊕Af(n)

)
= dε(A).

Theorem 2.5. Let us fj : Cmj → Cmj , j = 1, 2, ..., n be a linear, unital and determinant preserving function

and f =
n
⊕
j=1

fj : X→ X. Then f preserves ε-determinant for each ε > 0.
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Proof. In this case by Theorem 3.3 [7] for any 1 ≤ j ≤ n, fj preserves ε-determinant spectrum for all ε > 0.
Then for any A : X→ X we have

|detf(zI −A)| =
n∏
j=1

|det (zf(Ij)− f(A)) | =
n∏
j=1

|det (zIj − f(A)) |.

From this it is obtained that for each ε > 0

dε(f(A)) = dε(A).

3. Applications

Example 3.1. Let us

A1, A2 ∈ C2×2, A1 =

(
1 α1

0 1

)
, A2 =

(
2 α2

0 2

)
, α1, α2 ∈ C

Then for each ε > 0

dε(A1) = { z ∈ C : |det (zI1 −A1) | ≤ ε } = { z ∈ C : |z − 1| ≤
√
ε },

dε(A2) = { z ∈ C : |det (zI2 −A2) | ≤ ε } = { z ∈ C : |z − 2| ≤
√
ε }.

In this case by Theorem 2.5, we have for each ε > 0

dε (A1⊕A2) =
⋃

ε1>0,ε2>0
ε = ε1·ε2

( dε1(A1) ∩ dε2(A2) )

=
⋃

ε1>0,ε2>0
ε = ε1·ε2

{ z ∈ C : |z − 1| ≤
√
ε1 and |z − 2| ≤

√
ε2 }

Example 3.2. Let us

A1, A2 ∈ C3×3, A1 =

 α 0 1
0 α 0
1 0 α

 , A2 =

 β 0 1
0 β 0
1 0 β

 , α, β ∈ C, A = A1⊕A2, A ∈ C6×6

In this case for each ε > 0

dε(A1) = { z ∈ C : |det (zI1 −A1) | ≤ ε } = { z ∈ C : |(z − α)3 − (z − α)| ≤ ε }

dε(A2) = { z ∈ C : |det (zI2 −A2) | ≤ ε } = { z ∈ C : |(z − β)3 − (z − β)| ≤ ε }

Therefore by Theorem 2.5, we have for each ε > 0

dε (A1⊕A2) =
⋃

ε1>0,ε2>0
ε = ε1·ε2

( dε1(A1) ∩ dε2(A2) )

=
⋃

ε1>0,ε2>0
ε = ε1·ε2

{ z ∈ C : |(z − α)3 − (z − α)| ≤ ε1 and |(z − β)3 − (z − β)| ≤ ε2 }.
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4. Conclusion

In this paper, connections between ε-determinant spectrums of the diagonal block matrices and their
block matrices have been determined. Then, obtained results have been supported by some applications.
On the other hand, these results will provide of the localization of the spectrum in cases where it is difficult
to find eigenvalues of the large sizes block diagonal matrices. Also, it is predicted that these results will be
used in linear algebra and matrices theory.
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