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İbrahim Yalçınkayaa,∗, Nur Atakb, Durhasan Turgut Tollua

aNecmettin Erbakan University, Faculty of Science, Department of Mathematics and Computer Sciences, Konya, Turkey.
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Abstract

In this paper, we investigate the qualitative behavior of the fuzzy difference equation

zn+1 =
zn−2

C + zn−2zn−1zn

where n ∈ N0 = N∪{0}, (zn) is a sequence of positive fuzzy numbers, C and initial conditions z−2, z−1, z0 are
positive fuzzy numbers.
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1. Introduction

Difference equations appear naturally as discrete analogs and as numerical solutions of differential equa-
tions and delay differential equations having many applications in population statistics and analysis, eco-
nomics, biology, computer sciences, engineering, etc ([1, 6, 9, 13] and the references therein). Fuzzy difference
equation is a difference equation that initial conditions and parameters are fuzzy numbers and its solutions
are sequence of fuzzy numbers. Recently, there has been a lot of work concerning the fuzzy difference equa-
tions because many real life problems are modeled by these equations naturally. For example, in [5], Deeba
and Korvin studied the second order fuzzy difference equation

xn+1 = xn − abxn−1 + c, n ∈ N0 (1.1)

where (xn) is a sequence of fuzzy numbers and a, b, c, x−1, x0 are fuzzy numbers. This equation is a linearized
model of a nonlinear model which determines the carbondioxide (CO2) level in the blood.
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In [11], Papaschinopoulos and Papadopoulos studied the existence, the boundedness and the asymptotic
behavior of the positive solutions of the fuzzy difference equation

xn+1 = A+
B

xn
, n ∈ N0 (1.2)

where (xn) is a sequence of fuzzy numbers and A,B, x0 are fuzzy numbers.
In [2], Bajo and Liz investigated the global behavior of the difference equation

xn+1 =
xn−1

a+ bxn−1xn
, n ∈ N0 (1.3)

where the parameters a, b and initial conditions x−1, x0 are real numbers.
Moreover, in [14], Rahman et al. investigated the qualitative behavior of the second-order rational fuzzy

difference equation

xn+1 =
xn−1

A+Bxn−1xn
, n ∈ N0 (1.4)

where A,B and initial conditions x−1, x0 are positive fuzzy numbers.
For more works on fuzzy difference equations, see [4, 7, 16] and the references cited therein.
In [15], Shojaei et al. investigated the stability and periodic character of the rational third-order difference

equation

xn+1 =
αxn−2

β + γxn−2xn−1xn
, n ∈ N0 (1.5)

where the parameters α, β, γ and initial conditions x−2, x−1, x0 are real numbers.
Moreover, in [18], Zhang et al. investigated the dynamical behavior of positive solutions of the system

of difference equations

xn+1 =
xn−2

B + yn−2yn−1yn
, yn+1 =

yn−2
A+ xn−2xn−1xn

, n ∈ N0 (1.6)

where A,B and initial conditions x−2, x−1, x0, y−2, y−1, y0 are positive real numbers. If A < 1, B < 1, then
system (1.6) has equilibrium (0, 0) and ( 3

√
1−A, 3

√
1−B). In addition, if A < 1, B = 1, then system (1.6)

has an equilibrium ( 3
√

1−A, 0) and if A = 1, B < 1, then system (1.6) has an equilibrium (0, 3
√

1−B).
Finally, if A > 1, B > 1, then system (1.6) has an equilibrium (0, 0).

In this paper, we investigate the qualitative behavior of the fuzzy difference equation

zn+1 =
zn−2

C + zn−2zn−1zn
, n ∈ N0 (1.7)

where (zn) is a sequence of positive fuzzy numbers, C and initial conditions z−2, z−1, z0 are positive fuzzy
numbers.

2. Preliminaries

In this section, we give some definitions which will be used in this paper [12]. For more details see
[3, 8, 10, 17].

Definition 2.1. Let A be any set.

(a) The set A is said to be fuzzy if A is a function from R+ into the interval [0, 1].

(b) The set A is said to be convex if for every t ∈ [0, 1] and x1, x2 ∈ R+ we have A(tx1 + (1 − t)x2) ≥
min {A(x1), A(x2)} .
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(c) The set A is said to be normal if there exists x ∈ R+ such that A(x) = 1.

(d) An α-cut for fuzzy set A, α ∈ (0, 1], is the set [A]α = {x ∈ R+, A(x) ≥ α}.

(e) For a set H we denote by H the closure of H. We say that A is a fuzzy number if the following
conditions hold:

(i) A is a normal set,

(ii) A is a convex fuzzy set,

(iii) A is upper semicontinuous,

(iv) A is compactly supported i.e., {x ∈ R : A(x) > 0} is compact.

(f) We say that a fuzzy number A is a positive if suppA ⊂ (0,∞).

Definition 2.2. (a) Let A, B be any fuzzy numbers with [A]α = [Al,α, Ar,α] and [B]α = [Bl,α, Br,α] for
α ∈ (0, 1]. We define a norm on the fuzzy numbers space as follow;

||A|| = sup max {|Al,α| , |Ar,α|}

where sup is taken for all a ∈ (0, 1]. Then from the above norm we take the following metric

D(A,B) = sup {max {|Al,α −Bl,α| , |Ar,α −Br,α|}}

where sup is taken for all a ∈ (0, 1].

(b) Let (xn) be a sequence of positive fuzzy numbers and x is a fuzzy number. Then we say that

lim
n→∞

xn = x if lim
n→∞

D(xn, x) = 0.

The fuzzy analog of concept of boundedness and persistence are given in [11] as follows:

Definition 2.3. (a) We say that a sequence of positive fuzzy numbers (xn) is bounded and persists if
there exist n0 ∈ N and positive fuzzy numbers C, D such that min {xn, C} = C and min {xn, D} = D
for n ≥ n0.

(b) We say that (xn) for n ∈ N0 is an unbounded sequence if the norm ||xn|| for n ∈ N0 is an unbounded
sequence.

3. Main Results

In this section, we prove our main results. Firstly, we will study the existence of the positive solutions of
Eq.(1.7). We say (zn) is a positive solution of Eq.(1.7) if (zn) is a sequence of positive fuzzy numbers which
satisfies Eq.(1.7).

We need the following lemma which is a generalization of Lemma 2.1 of [12].

Lemma 3.1. Let f : R+×R+× ...×R+ → R+ be a continuous function and A1, A2, ..., Ak be fuzzy numbers.
Then,

[f (A1, A2, ..., Ak)]α = f ([A1]α, [A2]α, ..., [Ak]α)

for all α ∈ (0, 1].
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Proof. It is sufficient to prove that for every w ∈ R+ the

sup
x∈f−1(w)

{min {A1(x1), A2(x2), ..., Ak(xk)}} ,

where x = (x1, x2, ..., xk), is attained. We define the function h : R+ × R+ × ...× R+ → R+ such that

h (x1, x2, ..., xk) = min {A1(x1), A2(x2), ..., Ak(xk)} .

It is clear that if (x1, x2, ..., xk) 6= SA1 × SA2 × ... × SAk
where SA1 (resp. SAi for i = 2, 3, . . . , k) is the

support of A1 (resp. Ai for i = 2, 3, . . . , k), then h (x1, x2, ..., xk) = 0. Therefore,

sup
x∈f−1(w)

h (x1, x2, ..., xk) = sup
x∈f−1(w)∩(SA1

×SA2
×...×SAk

)

h (x1, x2, ..., xk) .

From the condition (iv) of the definition of fuzzy numbers we have that SA1×SA2× ...×SAk
is compact.

Moreover since f is a continuous function we have that f−1(w) is a closed set. Therefore the set f−1(w) ∩
(SA1 × SA2 × ...× SAk

) is compact.
In addition since from the condition (iii) of the definition of fuzzy numbers, the fuzzy numbersA1, A2, ..., Ak

are upper semicontinuous it is clear that the function h is also upper semicontinuous. Therefore, there exist
x1, x2, ..., xk, (x1, x2, ..., xk) ∈ f−1(w) ∩ (SA1 × SA2 × ...× SAk

) such that

sup
x∈f−1(w)

h (x1, x2, ..., xk) = sup
x∈f−1(w)∩(SA1

×SA2
×...×SAk

)

h (x1, x2, ..., xk)

= h (x1, x2, ..., xk) .

This completes the proof.

Theorem 3.2. Consider Eq.(1.7) where C is a positive fuzzy number. Then for any positive fuzzy numbers
z−2, z−1, z0 there exists a unique positive solution (zn) of Eq.(1.7) with the initial conditions z−2, z−1, z0.

Proof. Suppose that there exists a sequence of positive fuzzy numbers (zn) satisfying Eq.(1.7) with the
initial conditions z−2, z−1, z0. Consider the α-cuts{

[zn]α = [Ln,α, Rn,α], n = −2,−1, ...,

[C]α = [Cl,α, Cr,α]
(3.1)

for α ∈ (0, 1]. Then from (1.7), (3.1) and Lemma 3.1 it follows that

[zn+1]α =

[
zn−2

C + zn−2zn−1zn

]
α

=
[zn−2]α

[C]α + [zn−2]α[zn−1]α[zn]α

=
[Ln−2,α, Rn−2,α]

[Cl,α, Cr,α] + [Ln−2,α, Rn−2,α][Ln−1,α, Rn−1,α][Ln,α, Rn,α]

=

[
Ln−2,α

Cr,α +Rn−2,αRn−1,αRn,α
,

Rn−2,α
Cl,α + Ln−2,αLn−1,αLn,α

]
from which we get

Ln+1,α =
Ln−2,α

Cr,α +Rn−2,αRn−1,αRn,α
, Rn+1,α =

Rn−2,α
Cl,α + Ln−2,αLn−1,αLn,α

(3.2)

for α ∈ (0, 1] and n ∈ N0. Then it is clear that for any (Lj,α, Rj,α), j = −2,−1, 0 there exists a unique
solution (Ln,α, Rn,α) with the initial conditions (Lj,α, Rj,α), j = −2,−1, 0 for α ∈ (0, 1].
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Now, we prove that [Ln,α, Rn,α] for α ∈ (0, 1] where (Ln,α, Rn,α) is the solution of the system (3.2) with
the initial conditions (Lj,α, Rj,α), j = −2,−1, 0 determines the solution (zn) of Eq.(1.7) with the initial
conditions z−2, z−1, z0 such that

[zn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = −2,−1, .... (3.3)

Since C and z−2, z−1, z0 are positive fuzzy numbers for any α1, α2 ∈ (0, 1] and α1 ≤ α2, we get{
0 < Cl,α1 ≤ Cl,α2 ≤ Cr,α2 ≤ Cr,α1

0 < Lj,α1 ≤ Lj,α2 ≤ Rj,α2 ≤ Rj,α1

(3.4)

for j = −2,−1, 0. We prove by the induction that

Ln,α1 ≤ Ln,α2 ≤ Rn,α2 ≤ Rn,α1 (3.5)

for n ∈ N0. From (3.4) we have that (3.5) hold for n = −2,−1, 0. Suppose that (3.5) are true for n ≤ k,
k ∈ {1, 2, ...} . Then from (3.2), (3.4) and (3.5) for n ≤ k it follows that

Lk+1,α1 =
Lk−2,α1

Cr,α1 +Rk−2,α1Rk−1,α1Rk,α1

≤
Lk−2,α2

Cr,α2 +Rk−2,α2Rk−1,α2Rk,α2

= Lk+1,α2 ,

Lk+1,α2 =
Lk−2,α2

Cr,α2 +Rk−2,α2Rk−1,α2Rk,α2

≤
Rk−2,α2

Cl,α2 + Lk−2,α2Lk−1,α2Lk,α2

= Rk+1,α2

Rk+1,α2 =
Rk−2,α2

Cl,α2 + Lk−2,α2Lk−1,α2Lk,α2

≤
Rk−2,α1

Cl,α1 + Lk−2,α1Lk−1,α1Lk,α1

= Rk+1,α1 .

Therefore (3.5) are satisfied. Moreover from (3.2) we get

L1,α =
L−2,α

Cr,α +R−2,αR−1,αR0,α
, R1,α =

R−2,α
Cl,α + L−2,αL−1,αL0,α

(3.6)

for α ∈ (0, 1]. Then, since C and z−2, z−1, z0 are positive fuzzy numbers, we have that Cl,α, Cr,α, L−2,α,
R−2,α, L−1,α, R−1,α, L0,α and R0,α are left continuous. So, from (3.6) we have that L1,α and R1,α are also
left continuous. Working inductively we can easily prove that Ln,α and Rn,α are left continuous for n ∈ N.

Now, we prove that ∪α∈(0,1][Ln,α, Rn,α] is compact. It is sufficient to prove that ∪α∈(0,1][Ln,α, Rn,α] is
bounded. Let n = 1, since C and z−2, z−1, z0 are positive fuzzy numbers there exist constantsMC , NC ,Mj , Nj >
0 for j = −2,−1, 0 such that

[Cl,α, Cr,α] ⊂ [MC , NC ], [Lj,α, Rj,α] ⊂ [Mj , Nj ], j = −2,−1, 0. (3.7)

Therefore, from (3.6) and (3.7) we can easily obtain that

[L1,α, R1,α] ⊂
[

M−2
NC +N−2N−1N0

,
N−2

MC +M−2M−1M0

]
from which it is clear that

∪α∈(0,1] [L1,α, R1,α] ⊂
[

M−2
NC +N−2N−1N0

,
N−2

MC +M−2M−1M0

]
(3.8)

for α ∈ (0, 1]. (3.8) implies that ∪α∈(0,1][L1,α, R1,α] is compact and

∪α∈(0,1][L1,α, R1,α] ⊂ (0,∞).

Working inductively we can easily obtain that

∪α∈(0,1][Ln,α, Rn,α] is compact, ∪α∈(0,1][Ln,α, Rn,α] ⊂ (0,∞) (3.9)
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for n ∈ N. Therefore, (3.5), (3.9) and since Ln,α, Rn,α are left continuous we get that [Ln,α, Rn,α] determines
a sequence of positive fuzzy numbers (zn) such that (3.3) holds.

We prove now that (zn) is the solution of Eq.(1.7) with the initial conditions z−2, z−1, z0. Since

[zn+1]α = [Ln+1,α, Rn+1,α]

=

[
Ln−2,α

Cr,α +Rn−2,αRn−1,αRn,α
,

Rn−2,α
Cl,α + Ln−2,αLn−1,αLn,α

]
=

[
zn−2

C + zn−2zn−1zn

]
α

for all α ∈ (0, 1], we have that (zn) is the solution of Eq.(1.7) with the initial conditions z−2, z−1, z0.
Suppose that there exists another solution (z̃n) of Eq.(1.7) with the initial conditions z−2, z−1, z0. Then

arguing as above we can easily prove that

[z̃n]α = [Ln,α, Rn,α] (3.10)

for α ∈ (0, 1] and n ∈ N0. Then from (3.3) and (3.10) we have that [zn]α = [z̃n]α for α ∈ (0, 1] and
n = −2,−1, 0, ... from which it holds zn = z̃n for n = −2,−1, 0, .... Thus, the proof is completed.

To study the dynamics of the fuzzy difference Eq.(1.7), we need the following theorem concerning the
behavior of the solutions of the system (1.6) which has been proved in [18]:

Theorem 3.3. Let (xn, yn) be any positive solution of system (1.6), then the following statements are true:

(1) For all k ≥ 0, the following results hold:

0 ≤ xn ≤


(
1
B

)k+1
x−2, n = 3k + 1,(

1
B

)k+1
x−1, n = 3k + 2,(

1
B

)k+1
x0, n = 3k + 3,

(3.11)

and

0 ≤ yn ≤


(
1
A

)k+1
y−2, n = 3k + 1,(

1
A

)k+1
y−1, n = 3k + 2,(

1
A

)k+1
y0, n = 3k + 3.

(3.12)

(2) If A > 1 and B > 1, then every solution of system (1.6) is bounded.

(3) For the equilibriums of system (1.6), the following statements are true:

(i) If A > 1 and B > 1, then (xn, yn) converges exponentially to the equilibrium (0, 0) and the
equilibrium (0, 0) is locally asymptotically stable.

(ii) If A < 1 and B < 1, then the equilibriums (0, 0) and ( 3
√

1−A, 3
√

1−B) are locally unstable.

(4) If A < 1 and B < 1, then the following statements are true for j = −2,−1, 0:

(i) If (xj , yj) ∈ (0, 3
√

1−A)× ( 3
√

1−B,∞), then (xn, yn) ∈ (0, 3
√

1−A)× ( 3
√

1−B,∞).
(ii) If (xj , yj) ∈ ( 3

√
1−A,∞)× (0, 3

√
1−B), then (xn, yn) ∈ ( 3

√
1−A,∞)× (0, 3

√
1−B).

The following corollary is obtained from (4) of Theorem 3.3:

Corollary 3.4. Assume that A < 1, B < 1 and (xn, yn) is a positive solution of system (1.6). Then, the
following statements are true:

(i) If x−2, x−1, x0 <
3
√

1−A and y−2, y−1, y0 >
3
√

1−B, then lim
n→∞

xn = 0 and lim
n→∞

yn =∞.

(ii) If x−2, x−1, x0 >
3
√

1−A and y−2, y−1, y0 <
3
√

1−B, then lim
n→∞

xn =∞ and lim
n→∞

yn = 0.

Theorem 3.5. Consider the Eq.(1.7). Then the following statements are true:
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(i) If Cl,α > 1 for all α ∈ (0, 1], then every positive solution (zn) of Eq.(1.7) is bounded and persists.

(ii) If there exists an α ∈ (0, 1] such that Cr,α < 1, then the Eq.(1.7) has unbounded solutions.

Proof. (i) Consider the system (1.6) where

[C]α = [Cl,α, Cr,α] ⊂ ∪α∈(0,1][Cl,α, Cr,α] ⊂ [A,B].

Let (xn, yn) be a solution of system (1.6) with the initial conditions xj = Aj , yj = Bj where Aj , Bj
are given

[Lj,α, Rj,α] ⊂ ∪α∈(0,1][Lj,α, Rj,α] ⊂ [Aj , Bj ], j = −2,−1, 0 (3.13)

then, it folows that

x1 =
x−2

B + y−2y−1y0
=

A−2
B +B−2B−1B0

≤ L−2,α
Cr,α +R−2,αR−1,αR0,α

= L1,α (3.14)

and

y1 =
y−2

A+ x−2x−1x0
=

B−2
A+A−2A−1A0

≥ R−2,α
Cl,α + L−2,αL−1,αL0,α

= R1,α. (3.15)

Hence by induction one can obtain xn ≤ Ln,α and Rn,α ≤ yn for n ∈ N. Assume that Cl,α > 1 for all
α ∈ (0, 1], then it follows that A > 1 and B > 1. From (2) of Theorem 3.3, the solution (xn, yn) of
system (1.6) is bounded and persists, which is the solution (zn) of Eq.(1.7). This completes the proof
of (i).

(ii) Suppose that there exists an α ∈ (0, 1] such that Cr,α < 1. If Cl,α = A, Cr,α = B, Ln,α = xn and
Rn,α = yn for n = −2,−1, ..., then we can apply (i) of Corollary 3.4 to system (3.2). If there exists
an α ∈ (0, 1] such that A ≤ B = Cr,α < 1 and x−2, x−1, x0 <

3
√

1−A and y−2, y−1, y0 >
3
√

1−B,
then there exist solutions (xn, yn) of system (3.2) where α = α with initial conditions (x−j , y−j) for
j = 0, 1, 2 such that

lim
n→∞

xn = 0 and lim
n→∞

yn =∞. (3.16)

Moreover, if x−j < y−j ( j = 0, 1, 2), we can find positive fuzzy numbers z−j (j = 0, 1, 2) such that

[zj ]α = [Lj,α, Rj,α] (3.17)

for α ∈ (0, 1] and
[zj ]α = [Lj,α, Rj,α] = [xj , yj ], j = −2,−1, 0. (3.18)

Let (zn) be a positive solution of Eq.(1.7) with the initial conditions z−j (j = 0, 1, 2) and [zn]α =
[Ln,α, Rn,α] for α ∈ (0, 1]. Since (3.17) and (3.18) hold and (Ln,α, Rn,α) satisfies system (3.2) we have

[zn]α = [Ln,α, Rn,α] = [xn, yn]. (3.19)

Therefore, from (3.16), (3.19) and since

||zn|| = sup
α∈(0,1]

max {|Ln,α| , |Rn,α|} ≥ max {|Ln,α| , |Rn,α|} = Rn,α

where sup is taken for all α ∈ (0, 1], it is clear that solution (zn) is unbounded. This completes the
proof of (ii). Similarly, one can prove by applying (ii) of Corollary 3.4.

Theorem 3.6. If Cl,α > 1 for all α ∈ (0, 1], then every positive solution (zn) of Eq.(1.7) converges to 0 as
n→∞.
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Proof. Let (zn) be a positive solution of Eq.(1.7) such that (3.1) holds with Cl,α > 1 for all α ∈ (0, 1]. Then,
we can apply (i) of 3 of Theorem 3.3 to system (3.2). So, we get

lim
n→∞

Ln,α = lim
n→∞

Rn,α = 0. (3.20)

Therefore, from (3.18) we get

lim
n→∞

D(zn, 0) = lim
n→∞

(
sup

α∈(0,1]
{max {|Ln,α − 0| , |Rn,α − 0|}}

)
= 0.

This completes the proof.

4. Numerical Examples

In this section, to verify our theatrical results, we give some numerical examples for the solutions of
Eq.(1.7) regard to the different values of C with the initial conditions z−2, z−1, z0 are satisfied

z−2(x) =

{
5x−0.50

2 , 0.10 ≤ x ≤ 0.50,
4.50−5x

2 , 0.50 ≤ x ≤ 0.90,

z−1(x) =

{
20x− 10, 0.50 ≤ x ≤ 0.55,

12− 20x, 0.55 ≤ x ≤ 0.60,

z0(x) =

{
20x− 4, 0.20 ≤ x ≤ 0.25,

6− 20x, 0.25 ≤ x ≤ 0.30.

(4.1)

From (4.1), we get 
[z−2]α =

[
2α+0.50

5 , 4.50−2α5

]
,

[z−1]α =
[
α+10
20 , 12−α20

]
,

[z0]α =
[
α+4
20 ,

6−α
20

] (4.2)

for α ∈ (0, 1]. Therefore, it follows that
∪α∈(0,1][z−2]α = [0.10, 0.90] ,

∪α∈(0,1][z−1]α = [0.50, 0.60] ,

∪α∈(0,1][z0]α = [0.20, 0.30] .

(4.3)

Example 4.1. Consider Eq.(1.7) where (zn) is a sequence of positive fuzzy numbers, the initial conditions
z−2, z−1, z0 are satisfied (4.1) and C is satisfied

C =

{
4x− 1, 0.25 ≤ x ≤ 0.50,
3− 4x, 0.50 ≤ x ≤ 0.75.

(4.4)

From (4.4), we get [C]α =
[
α+1
4 , 3−α4

]
. Therefore, it follows that ∪α∈(0,1][C]α = [0.25, 0.75] .
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Figure 1: α = 0.1. Figure 2: α = 0.9.

Example 4.2. Consider Eq.(1.7) where (zn) is a sequence of positive fuzzy numbers, the initial conditions
z−2, z−1, z0 are satisfied (4.1) and C is satisfied

C =

{
x− 1, 1 ≤ x ≤ 2,
3− x, 2 ≤ x ≤ 3.

(4.5)

From (4.5), we get [C]α = [α+ 1, 3− α] . Therefore, it follows that ∪α∈(0,1][C]α = [1, 3] .

Figure 3: The solution of (1.7) in α = 0.1. Figure 4: Dynamics of (1.7) in α = 0.1.
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Figure 5: The solution of (1.7) in α = 0.5. Figure 6: Dynamics of (1.7) in α = 0.5.

Figure 7: The solution of (1.7) in α = 0.9. Figure 8: Dynamics of (1.7) in α = 0.9.
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5. Conclusion

In this paper we analyzed the positive solutions of the fuzzy difference equation given in the abstract in
the fuzzy environment. We have shown that the positive solutions of the fuzzy difference equation converge
under certain conditions to the only positive equilibrium point of the equation. We have also evaluated
the case where the solutions are unbounded. Finally, we have supported our theoretical results via some
numerical examples and their drawings.
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