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Abstract

The distance of a connected, simple graph P is denoted by d(α1, α2), which is the length of a shortest path
between the vertices α1, α2 ∈ V (P), where V (P) is the vertex set of P. The l-ordered partition of V (P) is
K = {K1,K2, . . . ,Kl}. A vertex α ∈ V (P), and r(α|K) = {d(α,K1), d(α,K2), . . . , d(α,Kl)} be a l-tuple
distances, where r(α|K) is the representation of a vertex α with respect to set K. If r(α|K) of α is unique,
for every pair of vertices, then K is the resolving partition set of V (P). The minimum number l in the
resolving partition set K is known as partition dimension (pd(P)). In this paper, we studied the generalized
families of Peterson graph, Pλ,χ and proved that these families have bounded partition dimension.

Keywords: Generalized Peterson graph, Harary Graph, partition dimension, partition resolving set, sharp
bounds of partition dimension.
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1. Introduction

Let G = (Pk)k≥1 be a family with connected graphs Pk depending on the number of graphs in the family
which is denoted by k as follows: |V (Pk)| = O(k) is the order with condition lim

k→∞
O(k) =∞. If ∃ a constant

number α ≥ 0 such that pd(Pk) ≤ α for each possible value k ≥ 1, then we can deduce the result that
G has bounded partition dimension and the upper bound is the constant number α, otherwise the G does
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not have bounded partition dimension. If every graph in the family G have the equal partition dimension
(which mean that the partition dimension do not depends on the number k), G is said to be a family with
constant partition dimension [16].

In 1975 the idea delivered by Slater had a background in networking, usually referred to as locating set
or beacons set. The entire network or a graph is controlled by specifically chosen vertices from the vertex
set in this concept. These vertices have to choose with a specific condition that each vertex of a graph has
a unique position in terms of representations, we refer to the Definition 1.2 for this concept. Later Melter
and Harary rename this concept as resolving set [12]. In the graph’s theoretical study, this concept is called
a metric basis or basis set of a graph. The count of vertices in a resolving set or metric basis is referred as
the metric dimension of a graph [27]. Instead of choosing particular nodes into a subset with the defined
condition, it is possible to arrange the entire vertex set into subsets keeping the defined condition of r(γ|F ),
which is actually came from the idea of the unique position of each vertex in a graph. This concept is called
as the partition resolving set, and the least number of subsets is called the partition dimension, introduced
by Chartrand et al. in 2000 [5]. To better understand this concept, we refer to the mathematical Definition
1.3 and 1.4 and for the latest ideas related to this concept, see [10].

Representing a graph with each of its vertex has unique position is falling in different real-world applica-
tions, such as for the strategies, coding, and decoding of mastermind games brief in [9], the popular relation
which is named as Djokovic-Winkler linked to this concept [4], the piloting or the guidance of a robot also
associated with this unique idea [17], the procedure of verifying and discovering a network related to this
concept [3]. There are many applications to explore those, we refer to see [12, 21]. Finding of a resolving
set is NP-hard problem [13, 18] and the partition resolving set is the generalization of resolving set it also
falls in the category of NP-hard [5].

The concept of resolving partition set and partition dimension extensively appeared in the literature.
For example, the graph with partition dimension |V | − 3 discussed [2], the graph obtained by few graph
operations and its corresponding partition dimension studied in [28], bounds on the partition dimension for
convex polytopes in [6, 8, 14], bounds of partition on the circulant and multipartite discussed in [11, 19],
chemical structure partitioning discussed in [20], on the bounded partition dimension of the Cartesian
product of graphs are studied in [30], [1] gave bounds for the subdivision of different graphs, [25] provide the
bounds on tree graph, [26] discussed bounds of unicyclic graphs in the form of subgraphs. For the resolving
set and metric dimension of Peterson and generalized Peterson graph, we refer to the articles [23, 15]. For
more recent literature and results, we refer to see [25, 22, 24].

Following are basic mathematical definitions of the concepts used in this research work.

Definition 1.1. Suppose P be an undirected, simple graph with the set of vertices named as V (P ) and
edge set E(P ), the distance which also known as geodesics, between α1, α2 ∈ V (P ) two vertices is the count
of minimum edges between α1 − α2 path. It is denoted by d(α1, α2).

Definition 1.2. Suppose an ordered set of vertices from V (P ) labeled as R = {α1, α2, . . . , αs} and α ∈
V (P ). The representations r(α|R) of α-vertex with respect to an ordered subset R is the s−tuple distances
(d(α, α1), d(α, α2), . . . , d(α, αs)). If each vertex from V (P ) have unique representations according to R, then
R is called a resolving set of graph P, and minimum count of the elements in R is called the metric dimension
of graph P and it is represented by dim(P ).

Definition 1.3. Let χ is the s-ordered partition set and r(α|χ) = {d(α, χ1), d(α, χ2), . . . , d(α, χs)}, is
the s-tuple distance representations of a vertex α with respect to χ. If the representations of α with respect
to χ are unique, then B is the partition resolving set of the vertex set of a graph P.

Definition 1.4. The minimum count of subsets in the partition resolving set of V (P ) is defined as the
partition dimension (pd(P )) of P .

Following theorems are very helpful in finding the partition dimension of a graph.

Theorem 1.5. [5] Let χ be a partition resolving set of V (P ) and α1, α2 ∈ V (P ). If d(α1, α) = d(α2, α) for
all vertices α ∈ V (P )\(α1, α2), then α1, α2 belongs to different subsets of χ.
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r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

a0 1 4 3 0 a1 2 5 4 0

a2 3 5 5 0 a3 4 4 5 0

a4 5 3 4 0 a5 5 2 3 0

a6 4 1 2 0 a7 3 2 1 0

a9 2 4 1 0 a10 3 5 2 0

a11 4 5 3 0 a12 4 2 5 0

a13 5 3 5 0 a14 4 2 5 0

a15 3 2 4 0 a16 2 3 3 0

Table 1: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

b1 2 6 3 0 b2 4 6 4 0

b3 5 5 5 0 b4 6 4 5 0

b5 6 2 4 0 b7 3 2 2 0

b8 1 4 1 0 b9 1 5 2 0

b10 3 6 3 0 b11 5 6 4 0

b12 6 5 5 0 b13 6 3 5 0

b14 5 1 4 0 b15 4 1 3 0

b16 2 3 2 0

Table 2: Representations of inner vertices

2. Generalized Peterson Graph Pα,β

For each odd integer α = 2β+ 1 ≥ 3, the generalized Petersen graph Pα,β is a graph with vertex set a∪ b
where {aη, bη : η = 0, 1, . . . , α− 1} and edge set E = {aηaη+1, bηbη+β, aηbη : η = 0, 1, . . . , α− 1}. For our
purpose, we call the vertices a0, a1, . . . , aα−1 outer vertices and b0, b1, . . . , bα−1 inner vertices. Here and
throughout the paper, the subscripts are to be taken as integers modulo α. Following are some bounds on
the partition dimension of generalized Peterson graph Pα,β.

Theorem 2.1. Let Pα,β be generalized Petersen graphs with α = 2β+1 and β ≡ 0(mod 4), then pd (Pα,β) ≤
4.

Proof. For β = 4, it is easy to see that χ = {χ1, χ2, χ3, χ4} where χ1 = {b0}, χ2 = {b4}, χ3 = {a5},
χ4 = V (Pα,β) \{b0, b4, a5} is a resolving partitioning for V (P9,4) .

For β ≥ 8, β ≡ 0(mod 4) and for the chosen index η such that 0 ≤ η ≤ α − 1, we shall show that
χ = {χ1, χ2, χ3, χ4} where χ1 = {bη}, χ2 = {bη+2ξ+2}, χ3 = {aη+β}, χ4 = V (Pα,β) \{bη, bη+2ξ+2, aη+β} is a

resolving partitioning for V (Pα,β) , where ξ = β
4 .

For β = 8, the representations of the vertices of V (P17,8) , are in the Tables 1 and 2.
It can be seen that all the vertices in V (P17,8) , have distinct representations with respect to χ. Now

for β ≥ 8 the representations of the vertices of V (Pα,β) , are: r (bη+1|χ) = (2, 2ξ + 2, 3, 0), r (bη+2β|χ) =
(2, 2ξ, 2, 0), and remaining in Tables 3 and 4.

From these tables, one can see that all the vertices of Pα,β lying in column 1 of Table 3 and Table 4
have distinct representations with respect to χ. Thus χ is resolving partitioning for Pα,β. Hence, for all
α = 2β + 1, β ≥ 8 and β ≡ 0(mod 4), pd (Pα,β) ≤ 4.

Theorem 2.2. Let Pα,β be generalized Petersen graphs with α = 2β + 1 ≥ 5 and β ≡ 1(mod 4), then
pd (Pα,β) ≤ 4.
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r(.|χ) χ1 χ2 χ3 χ4

aη+ζ ζ + 1 2ξ + ζ ζ + 3 0 0 ≤ ζ ≤ 1

aη+ζ+2 ζ + 3 2ξ − ζ + 1 ζ + 5 0 0 ≤ ζ ≤ 2ξ − 4

aη+2ξ+ζ−1 2ξ + ζ 4− ζ 2ξ − ζ + 1 0 0 ≤ ζ ≤ 1

aη+2ξ+ζ+1 2ξ − ζ + 1 2− ζ 2ξ − ζ − 1 0 0 ≤ ζ ≤ 1

aη+β−ζ−1 ζ + 3 2ξ − ζ − 2 ζ + 1 0 0 ≤ ζ ≤ 2ξ − 4

aη+β+ζ+1 ζ + 2 2ξ + ζ ζ + 1 0 0 ≤ ζ ≤ 1

aη+β+ζ+3 ζ + 4 2ξ − ζ + 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 3

aη+2ξ+ζ+β+1 2ξ − ζ + 1 3− ζ 2ξ + 1 0 0 ≤ ζ ≤ 1

aη+2β−ζ ζ + 2 2ξ − ζ − 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 3

Table 3: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4

bη+ζ+2 ζ + 4 2ξ − ζ + 2 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 3

bη+ζ+2ξ 2ξ + 2 4− 2ζ 2ξ − ζ + 1 0 0 ≤ ζ ≤ 1

bη+2ξ+ζ+3 2ξ − ζ 2ζ + 2 2ξ − ζ − 2 0 0 ≤ ζ ≤ 1

bη+2ξ+ζ+5 2ξ − ζ − 2 ζ + 5 2ξ − ζ − 4 0 0 ≤ ζ ≤ 2ξ − 7

bη+β−ζ 2ζ + 1 2ξ + ζ + 1 ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+ζ+1 2ζ + 1 2ξ + ζ + 1 ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+ζ+3 ζ + 5 2ξ − ζ + 2 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 3

bη+2ξ+ζ+β+1 2ξ − ζ + 2 3− 2ζ 2ξ − ζ + 1 0 0 ≤ ζ ≤ 1

bη+2ξ+ζ+β+3 2ξ − ζ 2ζ + 1 2ξ − ζ − 1 0 0 ≤ ζ ≤ 1

bη+2β−ζ−1 ζ + 4 2ξ − ζ − 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 6

Table 4: Representations of inner vertices
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r(.|χ) χ1 χ2 χ3 χ4

aη+ζ ζ + 3 2ξ + ζ + 1 ζ + 3 0 0 ≤ ζ ≤ 1

aη+ζ+2 ζ + 1 2ξ − ζ + 1 ζ + 5 0 0 ≤ ζ ≤ 2ξ − 3

aη+2ξ+ζ 2ξ + ζ − 1 3− ζ 2ξ − ζ + 1 0 0 ≤ ζ ≤ 2

aη+β−ζ−1 ζ + 5 2ξ − ζ − 1 ζ + 1 0 0 ≤ ζ ≤ 2ξ − 3

aη+β+ζ+1 3− ζ 2ξ + ζ + 1 ζ + 1 0 0 ≤ ζ ≤ 1

aη+β+ζ+3 ζ + 2 2ξ − ζ + 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 1

aη+2β−ζ ζ + 4 2ξ − ζ ζ + 3 0 0 ≤ ζ ≤ 2ξ − 2

Table 5: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4

bη+ζ 4− 2ζ 2ξ + ζ + 2 ζ + 2 0 0 ≤ ζ ≤ 1

bη+ζ+4 ζ + 4 2ξ − ζ ζ + 6 0 0 ≤ ζ ≤ 2ξ − 4

bη−β+ζ ζ + 5 2ξ − ζ + 1 ζ + 1 0 0 ≤ ζ ≤ 2ξ − 3

bη+β+ζ+1 3− 2ζ 2ξ + ζ + 2 ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+ζ+3 2ζ + 1 2ξ − ζ + 2 ζ + 4 0 0 ≤ ζ ≤ 1

bη+β+ζ+5 ζ + 5 2ξ − ζ ζ + 6 0 0 ≤ ζ ≤ 2ξ − 5

bη+β+2ξ+ζ+1 2ξ + ζ + 1 3− 2ζ 2ξ − ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+2ξ+ζ+3 2ξ − ζ + 3 2ζ + 1 2ξ − ζ 0 0 ≤ ζ ≤ 1

bη+2β−ζ ζ + 5 2ξ + ζ + 1 ζ + 2 0 0 ≤ ζ ≤ 2ξ − 4

Table 6: Representations of inner vertices

Proof. For β = 5, it is easy to see that χ = {χ1, χ2, χ3, χ4} where χ1 = {b2}, χ2 = {b4}, χ3 = {a5},
χ4 = V (Pα,β) \{b2, b4, a5} is a resolving partitioning for V (P11,5) .

For β ≥ 5, β ≡ 1(mod 4) and for the chosen index η such that 0 ≤ η ≤ α − 1, we shall show that
χ = {χ1, χ2, χ3, χ4}, where χ1 = {bη+2}, χ2 = {bη+2ξ+2}, χ3 = {aη+β}, χ4 = V (Pα,β) \{bη+2, bη+2ξ+2, aη+β}
is a resolving partitioning for V (Pα,β) .

The representations of V (Pα,β) , are: r (bη+3|χ) = (2, 2ξ+1, 5, 0), r (bη+2ξ+1|χ) = (2ξ+1, 2, 2ξ+1, 0),
r (bη+2ξ+3|χ) = (2ξ + 3, 2, 2ξ − 1, 0) and in the Tables 5 and 6.

From these tables, one can see that all the vertices of Pα,β lying in column 1 of Table 5 and Table 6
have distinct representations with respect to χ. Thus χ is resolving partitioning for Pα,β. Hence, for all
α = 2β + 1, β ≥ 5 and β ≡ 1(mod 4), pd (Pα,β) ≤ 4.

Theorem 2.3. Let Pα,β be generalized Petersen graphs with α = 2β + 1 ≥ 2 and β ≡ 2(mod 4), then
pd (Pα,β) ≤ 4.

Proof. For β = 6, it is easy to see from the Tables 7 and 7 that χ = {χ1, χ2, χ3, χ4} where χ1 = {b3},
χ2 = {b4}, χ3 = {a7}, χ4 = V (Pα,β) \{b3, b4, a7} is a resolving partitioning for V (P13,6) .

For β = 10, it is easy to see from the Tables 9 and 10 that χ = {χ1, χ2, χ3, χ4} where χ1 = {b3},
χ2 = {b6}, χ3 = {a11}, χ4 = V (Pα,β) \{b3, b6, a11} is a resolving partitioning for V (P21,10) .

For β ≥ 10, β ≡ 2(mod 4) and for the chosen index η such that 0 ≤ η ≤ α− 1, we shall show that χ =
{χ1, χ2, χ3, χ4} where χ1 = {bη+3}, χ2 = {bη+2ξ+2}, χ3 = {aη+β+1}, χ4 = V (Pα,β) \{bη+3, bη+2ξ+2, aη+β+1}
is a resolving partitioning for V (Pα,β) , where ξ = β−2

4 .
For β ≥ 11, β ≡ 2(mod 4) the representations of the vertices of V (Pα,β) , are: r (aη|χ) = (4, 2ξ+2, 3, 0),

r (bη|χ) = (5, 2ξ + 3, 2, 0), r (bη+4|χ) = (2, 2ξ, 5, 0) r (bη+2ξ+1|χ) = (2ξ, 2, 2ξ + 2, 0) r (bη+2ξ+3|χ) =
(2ξ + 2, 2, 2ξ + 1, 0) and in the Tables 11 and 12.

From these tables, one can see that all the vertices of Pα,β lying in column 1 of Table 1 and Table 12
have distinct representations with respect to χ. Thus χ is resolving partitioning for Pα,β. Hence, for all
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r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

a0 4 4 3 0 a1 3 4 3 0 a2 2 3 4 0

a3 1 2 4 0 a4 2 1 3 0 a5 3 2 2 0

a6 4 3 1 0 a8 3 4 1 0 a9 2 3 2 0

a10 2 2 3 0 a11 3 2 4 0 a12 4 3 4 0

Table 7: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

b0 5 5 2 0 b1 4 5 2 0 b2 2 4 3 0

b5 4 2 3 0 b6 5 4 2 0 b7 5 5 1 0

b8 3 5 2 0 b9 1 3 3 0 b10 1 1 4 0

b11 3 1 4 0 b12 5 3 3 0

Table 8: Representations of inner vertices

r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

a0 4 6 3 0 a1 3 6 3 0

a2 2 5 4 0 a3 1 4 5 0

a4 2 3 6 0 a5 3 2 6 0

a6 4 1 5 0 a7 5 2 4 0

a8 6 3 3 0 a9 6 4 2 0

a10 5 5 1 0 a12 3 6 1 0

a13 2 5 2 0 a14 2 4 3 0

a15 3 3 4 0 a16 4 2 5 0

a17 5 2 6 0 a18 6 3 6 0

a19 6 4 5 0 a20 5 5 4 0

Table 9: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

b0 5 7 2 0 b1 4 7 2 0

b2 2 6 3 0 b4 2 4 5 0

b5 4 2 6 0 b7 6 2 5 0

b8 7 4 4 0 b9 7 5 3 0

b10 6 6 2 0 b11 5 7 1 0

b12 3 7 2 0 b13 1 6 3 0

b14 1 5 4 0 b15 3 3 5 0

b16 5 1 6 0 b17 6 1 6 0

b18 7 3 5 0 b19 7 5 4 0

b20 6 6 3 0

Table 10: Representations of inner vertices
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r(.|χ) χ1 χ2 χ3 χ4

aη+ζ+1 ζ + 3 2ξ − ζ + 2 ζ + 3 0 0 ≤ ζ ≤ 1

aη+ζ+3 ζ + 1 2ξ − ζ ζ + 5 0 0 ≤ ζ ≤ 2ξ − 3

aη+2ξ+ζ+1 2ξ + ζ − 1 2− ζ 2ξ − ζ + 2 0 0 ≤ ζ ≤ 1

aη+2ξ+ζ+3 2ξ + ζ + 1 ζ + 2 2ξ − ζ 0 0 ≤ ζ ≤ 1

aη+β−ζ ζ + 5 2ξ − ζ + 1 ζ + 1 0 0 ≤ ζ ≤ 2ξ − 3

aη+β+ζ+2 3− ζ 2ξ − ζ + 2 ζ + 1 0 0 ≤ ζ ≤ 1

aη+β+ζ+4 ζ + 2 2ξ − ζ ζ + 3 0 0 ≤ ζ ≤ 2ξ − 2

aη+β+ζ+2ξ+3 2ξ + ζ + 1 ζ + 2 2ξ + 2 0 0 ≤ ζ ≤ 1

aη+2β−ζ ζ + 5 2ξ − ζ + 1 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 3

Table 11: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4

bη+ζ+1 4− 2ζ 2ξ − ζ + 3 ζ + 2 0 0 ≤ ζ ≤ 1

bη+ζ+5 ζ + 4 2ξ − ζ − 1 ζ + 6 0 0 ≤ ζ ≤ 2ξ − 5

bη+2ξ+ζ+4 2ξ + 3 ζ + 4 2ξ − ζ 0 0 ≤ ζ ≤ 1

bη+β−ζ+1 ζ + 5 2ξ − ζ + 3 ζ + 1 0 0 ≤ ζ ≤ 2ξ − 3

bη+β+ζ+2 3− 2ζ 2ξ − ζ + 3 ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+ζ+4 2ζ + 15 2ξ − ζ + 1 ζ + 4 0 0 ≤ ζ ≤ 1

bη+β+6 ζ + 5 2ξ − ζ − 1 ζ + 6 0 0 ≤ ζ ≤ 2ξ − 6

bη+β+ζ+1+2ξ 2ξ + ζ 3− 2ζ 2ξ + ζ + 1 0 0 ≤ ζ ≤ 1

bη+β+ζ+3+2ξ 2ξ + ζ + 2 2ζ + 1 2ξ − ζ + 2 0 0 ≤ ζ ≤ 1

bη+2β−ζ ζ + 6 2ξ − ζ + 2 2ξ − ζ + 3 0 0 ≤ ζ ≤ 2ξ − 3

Table 12: Representations of inner vertices
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r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

a0 2 5 4 0 a1 3 4 5 0 a2 4 3 4 0

a3 5 2 3 0 a4 4 1 2 0 a5 3 2 1 0

a7 2 4 1 0 a8 3 5 2 0 a9 4 1 3 0

a10 5 3 4 0 a11 4 2 5 0 a12 3 2 4 0

a13 2 3 3 0 a14 1 4 3 0

Table 13: Representations of outer vertices

r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4 r(.|χ) χ1 χ2 χ3 χ4

b0 2 6 3 0 b1 4 5 4 0 b2 5 4 5 0

b3 6 2 4 0 b5 3 2 2 0 b6 1 4 1 0

b7 1 5 2 0 b8 3 6 3 0 b9 5 5 4 0

b10 6 3 5 0 b11 5 1 4 0 b12 4 1 3 0

b13 2 3 4 0

Table 14: Representations of inner vertices

α = 2β + 1, β ≥ 2 and β ≡ 2(mod 4), pd (Pα,β) ≤ 4.

Theorem 2.4. Let Pα,β be generalized Petersen graphs with α = 2β + 1 ≥ 3 and β ≡ 3(mod 4), then
pd (Pα,β) ≤ 4.

Proof. For β = 6, it is easy to see that χ = {χ1, χ2, χ3, χ4} where χ1 = {b2}, χ2 = {b6}, χ3 = {a2},
χ4 = V (Pα,β) \{b2, b6, a2} is a resolving partitioning for V (P7,3) .

For β ≥ 7, β ≡ 3(mod 4) and for the chosen index η such that 0 ≤ η ≤ α − 1, we shall show that χ =
{χ1, χ2, χ3, χ4} where χ1 = {bη+2β}, χ2 = {bη+2ξ+2}, χ3 = {aη+β−1}, χ4 = V (Pα,β) \{bη+2β, bη+2ξ+2, aη+β−1}
is a resolving partitioning for V (Pα,β) , where ξ = β−3

4 .
For β = 7 the representations of the vertices of V (P15,7) , are in the Tables 13 and 14. For β > 7, β ≡

3(mod 4) the representations of the vertices of V (Pα,β) , are: r (aη+β+2ξ+2|χ) = (2ξ + 2, 2, 2ξ + 3, 0),
r (aη+2β|χ) = (1, 2ξ + 2, 3, 0), r (bη|χ) = (2, 2ξ + 4, 3, 0) r (bη+2ξ+1|χ) = (2ξ + 4, 2, 2ξ + 2, 0)
r (bη+2ξ+3|χ) = (2ξ + 2, 2, 2ξ, 0), r (bη+2β−1|χ) = (2, 2ξ + 2, 2, 0) and in the Tables 15 and 16.

From these tables, one can see that all the vertices of Pα,β lying in column 1 of Table 15 and Table
16 have distinct representations with respect to χ. Thus χ is resolving partitioning for Pα,β. Hence, for all
α = 2β + 1, β ≥ 7 and β ≡ 3(mod 4), pd (Pα,β) ≤ 4.

r(.|χ) χ1 χ2 χ3 χ4

aη+ζ ζ + 2 2ξ − ζ + 3 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 1

aη+2ξ+ζ 2ξ + ζ + 2 3− ζ 2ξ − ζ + 4 0 0 ≤ ζ ≤ 1

aη+2ξ+ζ+2 2ξ − ζ + 2 ζ + 1 2ξ − ζ 0 0 ≤ ζ ≤ 2ξ − 1

aη+β+ζ ζ + 2 2ξ + ζ + 2 ζ + 1 0 0 ≤ ζ ≤ 1

aη+β+ζ+2 ζ + 4 2ξ − ζ + 2 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 1

aη+2β−ζ−1 ζ + 2 2ξ − ζ + 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 1

Table 15: Representations of outer vertices
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r(.|χ) χ1 χ2 χ3 χ4

bη+ζ+1 ζ + 1 2ξ − ζ + 3 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 1

bη+2ξ+ζ+4 2ξ − ζ + 1 ζ + 4 2ξ − ζ − 1 0 0 ≤ ζ ≤ 2ξ − 4

bη+β−ζ−1 2ζ + 1 2ξ − ζ + 2 ζ + 1 0 0 ≤ ζ ≤ 1

bη+β+ζ 2ζ + 1 2ξ + ζ + 3 ζ + 2 0 0 ≤ ζ ≤ 1

bη+β+ζ+2 ζ + 5 2ξ − ζ + 3 ζ + 4 0 0 ≤ ζ ≤ 2ξ − 2

bη+2ξ+β+ζ+1 2ξ − ζ + 4 3− 2ζ 2ξ − ζ + 3 0 0 ≤ ζ ≤ 1

bη+2ξ+β+ζ+3 2ξ − ζ + 2 2ζ + 1 2ξ − ζ + 1 0 0 ≤ ζ ≤ 1

bη+2β−ζ−2 ζ + 4 2ξ − ζ + 1 ζ + 3 0 0 ≤ ζ ≤ 2ξ − 4

Table 16: Representations of inner vertices

3. Harary Graph Hψ,λ

Harary Hψ,λ, is an ψ-regular graph with order λ the vertex set V (Hψ,λ) = {βε : ε = 1, 2, . . . , λ}, if ψ is
even then ψ = 2ξ ≤ λ−1 for some integer ξ ≤ λ−1

2 . For each ε (1 ≤ ε ≤ λ) , we join βε to βε+1, βε+2, . . . , βε+ξ
and to βε−1, βε−2. . . . , βε−ξ. If we think of arranging of the vertices β1, β2, . . . , βλ cyclically then each
vertex βε is adjacent to the ξ vertices that immediately follow βε and the ξ vertices that immediately proceed
βε. Following are some bounds on the partition dimension of Harary graph Hψ,λ.

Theorem 3.1. Let Hψ,λ is a Harary graph with λ ≥ 5, λ ≡ 0, 2, 3(mod ψ) and ψ = 4. Then the partition
dimension of Hψ,λ is ≤ 4.

Proof. To prove pd (Hψ,λ) ≤ 4 we split the proof into following cases;
Case 1: λ ≡ 0(mod 4), λ = 4ξ, ξ(≥ 2) ∈ Z+.

Assume the partition resolving set χ = {χ1, χ2, χ3, χ4} where χ1 = {β1}, χ2 = {β3}, χ3 = {βλ−2},
χ4 = V (Hψ,λ) \{β1, β3, βλ−2} following are the representations of the entire vertex set of Hψ,λ with respect
to χ.

r (β2ε|χ) =


(ε, ε− 1, ε− 1, 0) if ε = 2, 3, . . . , ξ;

(ξ, ξ, ξ, 0) if ε = ξ + 1;

(2ξ − ε+ 1, 2ξ − ε+ 1, 2ξ − ε+ 1, 0) if ε = ξ + 2, . . . , 2ξ.

r (β2ε+1|χ) =

 (ε, ε, ε− 1, 0) if ε = 2, 3, . . . , ξ;

(2ξ − ε, 2ξ − ε+ 1, 2ξ − ε+ 1, 0) if ε = ξ + 1, . . . , 2ξ − 1.

Case 2: λ ≡ 2(mod 4), λ = 4ξ + 2, ξ ∈ Z+.
Assume the partition resolving set χ = {χ1, χ2, χ3, χ4} where χ1 = {β1}, χ2 = {β2}, χ3 = {β3},

χ4 = V (Hψ,λ) \{β1, β2, β3} following are the representations of the entire vertex set of Hψ,λ with respect to
χ.

r (β2ε|χ) =

 (ε, ε− 1, ε− 1, 0) if ε = 2, 3, . . . , ξ + 1;

(2ξ − ε+ 2, 2ξ − ε+ 2, 2ξ − ε+ 3, 0) if ε = ξ + 2, . . . , 2ξ + 1.

r (β2ε+1|χ) =


(ε, ε, ε− 1, 0) if ε = 2, 3, . . . , ξ;

(ξ, ξ + 1, ξ, 0) if ε = ξ + 1;

(2ξ − ε+ 1, 2ξ − ε+ 2, 2ξ − ε+ 2, 0) if ε = ξ + 2, . . . , 2ξ.
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Case 3: λ ≡ 3(mod 4), λ = 4ξ + 3, ξ ∈ Z+.
Assume the partition resolving set χ = {χ1, χ2, χ3, χ4} where χ1 = {β1}, χ2 = {β2}, χ3 = {β3},

χ4 = V (Hψ,λ) \{β1, β2, β3} following are the representations of the entire vertex set of Hψ,λ with respect to
χ.

r (β2ε|χ) =

 (ε, ε− 1, ε− 1, 0) if ε = 2, 3, . . . , ξ + 1;

(2ξ − ε+ 2, 2ξ − ε+ 3, 2ξ − ε+ 3, 0) if ε = ξ + 2, . . . , 2ξ + 1.

r (β2ε+1|χ) =

 (ε, ε, ε− 1, 0) if ε = 2, 3, . . . , ξ + 1;

(2ξ − ε+ 2, 2ξ − ε+ 2, 2ξ − ε+ 3, 0) if ε = ξ + 2, . . . , 2ξ + 1.

The entire vertex set of Hψ,λ w.r.t. to the partition resolving set χ have distinct representations hence,
pd (Hψ,λ) ≤ 4.

4. Conclusion

In this paper provide the sharp bounds of the partition dimension for the generalized Peterson graph
Pα,β, and we also studied the partition dimension of Harary graph Hψ,λ, and we concluded that

pd (Pα,β) = pd (Hψ,λ) ≤ 4.

Theorem 2.1 to 2.4 discussed the partition dimension of the generalized Peterson graph when β ≡ 0, 1, 2, 3(mod 4),
respectively and the partitioning of Harary graph studied in the Theorem 3.1.
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