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Abstract

In this article, a new trigonometric cubic B-spline collocation method based on the Hermite formula is pre-
sented for the numerical solution of the heat equation with classical and non-classical boundary conditions.
This scheme depends on the standard finite difference scheme to discretize the time derivative while cubic
trigonometric B-splines are utilized to discretize the derivatives in space. The scheme is further refined
utilizing the Hermite formula. The stability analysis of the scheme is established by standard Von-Neumann
method. The numerical solution is obtained as a piecewise smooth function empowering us to find approx-
imations at any location in the domain. The relevance of the method is checked by some test problems.
The suitability and exactness of the proposed method are shown by computing the error norms. Numerical
results are compared with some current numerical procedures to show the effectiveness of the proposed
scheme.
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1. Introduction

The heat equation is of central significance in various scientific fields and it is responsible to govern the
temperature distribution across some domain and some dimension. The heat equation is given as

∂v

∂t
= ν2

∂2v

∂s2
+ g(s, t), c ≤ s ≤ d, t > 0, (1.1)
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where ν is the diffusivity of the rod and is dependent on the thermal conductivity, density and the specific
heat of the rod. The Eq. (1.1) is subject to the following initial condition:

v(s, 0) = φ(s), c ≤ s ≤ d (1.2)

and the following classical and non classical boundary conditions:{
v(c, t) = α(t),
v(d, t) = β(t),

t > 0 (1.3)

{
v(c, t) =

∫ d
c ψ1(s)v(s, t)ds,

v(d, t) =
∫ d
c ψ2(s)v(s, t)ds,

t > 0 (1.4)

respectively. Here, α, β are assumed to be smooth functions of t.
Numerous physical processes are modeled by non-classical boundary conditions. Researchers have shown

great interest in partial differential equations with non-classical boundary conditions. Cahlon, Kulkarni and
Shi [6] discussed stability analysis of a difference scheme for the heat equation with an integral constraint.
Parabolic problems with non-classical boundary conditions in reproducing kernel space were solved by Zhou,
Cui and Lin [23]. Dehghan [7] presented several difference schemes for the heat equation subject to nonlocal
specifications. Further Dehghan [8] applied three new implicit difference schemes to the heat equation with
boundary integral specifications. Golbabai and Javidi [12] introduced a numerical procedure dependent on
local interpolating functions and Chebyshev polynomials for the heat equation with non-classical boundary
conditions. Caglar [5] used cubic B-Splines to approximate the solution of the heat equation. Sun and Zhang
[20] soled the heat equation using a compact high order boundary value method. Tatari and Dehghan [21]
solved the heat equation via radial basis function. A comparison between the traditional separation of
variables and Adomian decomposition method for the heat equation was presented by Gorguis and Benny
Chan [13]. A one-dimensional heat equation was solved by Khabir [16] using a cubic B-spline collocation
approach. Mohebbi and Dehghan [19] presented a fourth-order compact finite difference approximation
and cubic C1-spline collocation method for the numerical solution of the heat equation with fourth-order
accuracy in both space and time variables. In literature, Kumar [18] concluded that the spline approach is
much more efficient than the finite difference schemes applied to boundary value problems. Consequently,
this approach had been of preference to many authors [3, 14, 24, 25].

In this study, the Hermite formula is applied in a cubic trigonometric B-spline col- location scheme in
order to derive the approximate solution of the heat equation. Von Neumann method is utilized to affirm
that the given scheme is stable unconditionally. Various numerical results are being derived out and the
results are compared with those results presented in [9, 10, 11, 22, 2].

The remaining portion of the paper is arranged in the following sequence. The Section 2 of this paper
comprises of the proposed scheme which is derived out for the numerical treatment of heat equation. Later on
in Section ??, the stability of the scheme is talked about. The comparison of numerical results is manifested
in Section ??. Section ?? presents the conclusion of this study.

2. Derivation of the Scheme

Let t = T
k and h = b−a

M be the time and space step sizes respectively. Let tn = nk, n = 0, 1, 2, ..., N ,
sj = jh, j = 0, 1, 2...M . The solution domain c ≤ s ≤ d is equally divided by knots sj into M equal
subintervals [sj , sj+1], j = 0, 1, 2, ...,M − 1, where c = s0 < s1 < ... < sn−1 < sM = d. The scheme requires
approximate solution V (s, t) to the exact solution v(s, t) in the form [1]:

V (s, t) =
M−1∑
j=−3

Dj(t)TB
4
j (s), (2.1)
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where Dj(t) are unknowns to be found and the cubic trigonometric B-splines, TB4
j (s) are given by [1]:

TB4
j (s) =

1

p


l3(sj), s ∈ [sj , sj+1],

l(sj)(l(sj)m(sj+2) +m(sj+3)l(sj+1)) +m(sj+4)l
2(sj+1), s ∈ [sj+1, sj+2],

m(sj+4)(l(sj+1)m(sj+3) +m(sj+4)l(sj+2)) + l(sj)m
2(sj+3), s ∈ [sj+2, sj+3],

m3(sj+4), s ∈ [sj+3, sj+4],

(2.2)

where l(sj) = sin

(
s− sj

2

)
,m(sj) = sin

(
sj − s

2

)
, p = sin

(
h

2

)
sin(h) sin

(
3h

2

)
.Here, TB4

j−3(s), TB
4
j−2(s)

and TB4
j−1(s) are survived due to local support characteristic of the cubic B-splines so that the approxima-

tion vnj at the grid point (sj , tn) at nth time level is given as

v(sj , t
n) = vnj =

j−1∑
w=j−3

Dn
j (t)TB4

j (s). (2.3)

Initial and boundary conditions of the given equation and the collocation conditions on B3
j (s) are utilized to

find the time dependent unknowns cnj (t). Consequently, the approximations vnj and its necessary derivatives
are found as: 

vnj = ζ1D
n
j−3 + ζ2D

n
j−2 + ζ1D

n
j−1,

(vs)
n
j = −ζ3Dn

j−3 + ζ3D
n
j−1,

(vss)
n
j = ζ5D

n
j−3 + ζ6D

n
j−2 + ζ5D

n
j−1,

(2.4)

where ζ1 = csc (h) csc

(
3h

2

)
sin2

(
h

2

)
, ζ2 =

2

1 + 2 cos (h)
, ζ3 =

3

4
csc

(
3h

2

)
, ζ5 =

3 + 9 cos (h)

4 cos
(
h
2

)
− 4 cos

(
5h
2

) ,
ζ6 = −

3 cot2
(
h
2

)
2 + 4 cos (h)

. The Hermite formula [17] is given as:

∂2v(sj−1, tn)

∂s2
+ 10

∂2v(sj , tn)

∂s2
+
∂2v(sj+1, tn)

∂s2
− 12

h2
(v(sj−1, tn) − 2v(sj , tn) + v(sj+1, tn)) = 0. (2.5)

Substituting (2.4) in (2.5) and denoting v(sj , tn) by vnj , we obtain

(vss)
n
j = − 1

10
(vss)

n
j−1 −

1

10
(vss)

n
j+1 +

6

5h2
(vnj−1 − 2vnj + vnj+1). (2.6)

Substituting (2.4) in (2.6), we obtain

(vss)
n
j = ω1D

n
j−4 + ω2D

n
j−3 + ω3D

n
j−2 + ω2D

n
j−1 + ω1D

n
j , (2.7)

where ω1 =
−ζ5
10

+
6ζ1
5h2

, ω2 =
−ζ6
10
− 12ζ1

5h2
+

6ζ2
5h2

, ω3 =
−ζ5

5
+

12ζ1
5h2

− 12ζ2
5h2

. The weighted θ-scheme is

applied to the problem (2.1) to acquire

(vt)
n
j = θhn+1

j + (1− θ)hnj + g(sj , tn+1), (2.8)

where hnj = ν2(vss)
n
j and n = 0, 1, 2, 3, .... Now using the discretization (vt)

n
j =

vn+1
j −vnj
k in (2.8) and

simplifying, we obtain

vn+1
j − kν2θ(vss)n+1

j = vnj + kν2(1− θ)(vss)nj + kg(sj , tn+1). (2.9)
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Observe that the system (2.9) reduces to an explicit scheme, Crank-Nicolson scheme and a fully implicit
scheme when θ = 0, θ = 1

2 and θ = 1 respectively. Here, the Crank-Nicolson approach is utilized so that
(2.9) takes the form:

vn+1
j − kν2

2
(vss)

n+1
j = vnj +

kν2

2
(vss)

n
j + kg(sj , tn+1). (2.10)

Substituting (2.4) in (2.10) and replacing j with j − 1 yields:(
ζ1 −

kν2ζ5
2

)
Dn+1
j−4 +

(
ζ2 −

kν2ζ6
2

)
Dn+1
j−3 +

(
ζ1 −

kν2ζ5
2

)
Dn+1
j−2

=

(
ζ1 +

kν2ζ5
2

)
Dn
j−4 +

(
ζ2 +

kν2ζ6
2

)
Dn
j−3 +

(
ζ1 +

kν2ζ5
2

)
Dn
j−2 + kg (sj , tn+1) , j = 0,M, (2.11)

Insert (2.4) and (2.7) in (2.10) to obtain

−
(
kν2ω1

2

)
Dn+1
j−4 +

(
ζ1 −

kν2ω2

2

)
Dn+1
j−3 +

(
ζ2 −

kν2ω3

2

)
Dn+1
j−2 +

(
ζ1 −

kν2ω2

2

)
Dn+1
j−1 −

(
kν2ω1

2

)
Dn+1
j

=

(
kν2ω1

2

)
Dn
j−4 +

(
ζ1 +

kν2ω2

2

)
Dn
j−3 +

(
ζ2 +

kν2ω3

2

)
Dn
j−2 +

(
ζ1 +

kν2ω2

2

)
Dn
j−1 +

(
kν2ω1

2

)
Dn
j

+ kg (sj , tn+1) , j = 1, 2, ....,M − 1, (2.12)

Note that from (2.11) and (2.12), we obtain a system of (M + 1) equations in (M + 3) unknowns. To solve
the system two additional equations are required which can be obtained using the given boundary conditions
as: 

vn+1
0 = α(tn+1), vn+1

M = β(tn+1)

or

vn+1
0 =

∫ d

c
ψ1(sj)v(sj , tn+1)ds, vn+1

M =

∫ d

c
ψ2(sj)v(sj , tn+1)ds.

(2.13)

Consequently from (2.11), (2.12) and (2.13) a system of dimension (M + 3) × (M + 3) is found which can
be numerically solved by using any numerical scheme based on Gaussian elimination.
Initial State: The initial condition and the derivatives of initial condition are used to find initial vector
D0 as given below 

(vs)
0
j = φ′(sj), j = 0,

v0j = φ(sj), j = 0, 1, 2, ...,M,

(vs)
0
j = φ′(sj), j = M.

(2.14)

The system (2.14) produces an (M + 3)× (M + 3) matrix system of the form

HD0 = b, (2.15)

where

H =



−ζ3 ζ4 ζ3 0 ... 0 0
ζ1 ζ2 ζ1 0 ... 0 0
0 ζ1 ζ2 ζ1 0 ... 0

..

..

..

. ...
...

...
...

...
...

. ...
...

...
...

...
...

. ...
...

...
...

...
...

0 0 . . . . . . ζ1 ζ2 ζ1
0 0 . . . . . . −ζ3 ζ4 ζ3


,

D0 = [D0
−4, D

0
−2, D

0
−1, ..., D

0
M−2] and b = [φ′(s0), φ(s0), ..., φ(sM ), φ′(sM )].
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3. Stability analysis

The Von Neumann stability technique is applied in this section to explore the stability of the given
scheme. Consider the growth of error in a single Fourier mode Cnj = δneiηhj , where η is the mode number,

h is the step size and i =
√
−1. Inserting the Fourier mode into equation (2.10) yields:

− ρ1δn+1eiηh(j−4) + ρ2δ
n+1eiηh(j−3) + ρ3δ

n+1eiηh(j−2) + ρ2δ
n+1eiηh(j−1) − ρ1δn+1eiηh(j)

= ρ1δ
neiηh(j−4) + ρ4δ

neiηh(j−3) + ρ5δ
neiηh(j−2) + ρ4δ

neiηh(j−1) + ρ1δ
neiηh(j), (3.1)

where, ρ1 =
kν2ω1

2
, ρ2 = ζ1 −

kν2ω2

2
, ρ3 = ζ2 −

kν2ω3

2
, ρ4 = ζ1 +

kν2ω2

2
, ρ5 = ζ2 +

kν2ω3

2
. Dividing

Eq. (3.1) by δneiη(j−2)h and rearranging the equation, we obtain

δ =
ρ1e
−2iηh + ρ4e

−iηh + ρ5 + ρ4e
iηh + ρ1e

2iηh

−ρ1e−2iηh + ρ2e−iηh + ρ3 + ρ2eiηh − ρ1e2iηh
. (3.2)

Using cos(ηh) = eiηh+e−iηh

2 in Eq. (3.2) and simplifying, we obtain

δ =
2ρ1cos(2ηh) + 2ρ4cos(ηh) + ρ5
−2ρ1cos(2ηh) + 2ρ2cos(ηh) + ρ3

, (3.3)

Note that η ∈ [−π, π]. Without loss of generality, we can assume that η = 0, so that Eq. (3.3) takes the
form:

δ =
2ρ1 + 2ρ4 + ρ5
−2ρ1 + 2ρ2 + ρ3

,

=
kν2ω1 + 2ζ1 + kν2ω2 + ζ2 + 1

2kν
2ω3

−kν2ω1 + 2ζ1 − kν2ω2 + ζ2 − 1
2kν

2ω3
,

=
2ζ1 + ζ2 + kν2(ω1 + ω2 + 1

2ω3)

2ζ1 + ζ2 − kν2(ω1 + ω2 + 1
2ω3)

.

From (2) we have ω1 + ω2 + 1
2ω3 = −1

5ζ5 −
1
10ζ6, so

δ =
2ζ1 + ζ2 − 1

5kν
2ζ5 − 1

10kν
2ζ6

2ζ1 + ζ2 + 1
5kν

2ζ5 + 1
10kν

2ζ6
≤ 1, (3.4)

which proves that the present computational scheme is stable unconditionally.

4. Convergence analysis

In this section, we present the convergence analysis of the proposed scheme. For this purpose, we need
to recall the following theorem [15, 4]:

Theorem 4.1. Let v(s) ∈ C4[c, d] and c = s0 < s1 < ... < sn−1 < sM = d be the partition of [c, d] and V ∗(s)
be the unique B-spline function that interpolates v. Then there exist constants γi independent of h, such that

‖(v − V ∗)‖∞ ≤ γih4−i, i = 0, 1, 2, 3.

First, we assume the computed B-spline approximation to (2.1) as

V ∗(s, t) =
M−1∑
j=−3

D∗j (t)TB
4
j (s).
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To estimate the error, ‖v(s, t)− V (s, t)‖∞ we must estimate the errors ‖v(s, t)− V ∗(s, t)‖∞ and ‖V ∗(s, t)−
V (s, t)‖∞ separately. For this purpose, we rewrite the Eq. (2.10) as:

v∗ − kν2

2
(vss)

∗ = r(s), (4.1)

where, v∗ = vnj , (vss)
∗ = (vss)

n+1
j and r(s) = vnj + kν2

2 (vss)
n
j + kg(sj , tn+1). Eq. (4.1) can be written in

matrix form as:
AD = R, (4.2)

where, R = NDn + h and

A =



ζ1 ζ2 ζ1 0 ... 0 0
q1 q2 q1 0 0 ... 0
−ρ1 ρ2 ρ3 ρ2 −ρ1 ... 0

.

.

.

.

..

. ...
...

...
...

...
...

. ...
...

...
...

...
...

. ...
...

...
...

...
...

0

... −ρ1 ρ2 ρ3 ρ2 −ρ1
0 0 . . . . . . q1 q2 q1
0 0 . . . . . . ζ1 ζ2 ζ1


,

N =



0 0 0 0 ... 0 0
q3 q4 q3 0 0 ... 0
ρ1 ρ4 ρ5 ρ4 ρ1 ... 0

.

.

.

.

..

. ...
...

...
...

...
...

. ...
...

...
...

...
...

. ...
...

...
...

...
...

0

... ρ1 ρ4 ρ5 ρ4 ρ1
0 0 . . . . . . q3 q4 q3
0 0 . . . . . . 0 0 0


,

h = [α(tn+1), kg(sj , tn+1), ..., kg(sj , tn+1), β(tn+1)]
T , Dn = [Dn

−4, D
n
−2, D

n
−1, ..., D

n
M−2]

T ,

q1 = ζ1 −
kν2ζ5

2
, q2 = ζ2 −

kν2ζ6
2

, q3 = ζ1 +
kν2ζ5

2
, q4 = ζ2 +

kν2ζ6
2

.

If we replace v∗ by V ∗ in the equation (4.1), then the resulting equation in matrix form becomes

AD∗ = R∗ (4.3)

Subtracting (4.3) from (4.2), we obtain

A(D∗ −D) = (R∗ −R). (4.4)

Now using (4.1), we have

|r∗(sj)− r(sj)| = |(v∗(sj)− v(sj))−
kν2

s
(v∗ss(sj)− vss(sj))| (4.5)

≤ |(v∗(sj)− v(sj))|+ |
kν2

2
(v∗ss(sj)− vss(sj))|
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From (4.5) and theorem (4.1), we have

‖R∗ −R‖ ≤ γ0h4 + ‖kν
2

2
‖γ2h2

= (γ0h
2 +

kν2

2
γ2)h

2

= M1h
2, (4.6)

where M1 = γ0h
2 + ‖kν22 ‖γ2. It is obvious that the matrix A is diagonally dominant and thus nonsingular,

so that
(D∗ −D) = A−1(R∗ −R). (4.7)

Now using (4.6), we obtain

‖D∗ −D‖ ≤ ‖A−1‖‖R∗ −R‖ ≤ ‖A−1‖(M1h
2). (4.8)

Let aj,i denote the entries of A and ηj , 0 ≤ j ≤ M + 2 is the summation of jth row of the matrix A, then
we have

η0 =

M+2∑
i=0

a0,i = 2ζ1 + ζ2,

η1 =

M+2∑
i=0

a1,i = 2ζ1 + ζ2 − kν2ζ5 −
kν2ζ6

2
,

ηj =
M+2∑
i=0

aj,i = 2ζ1 + ζ2 − kν2ω1 −
kν2ω2

2
− kν2ω3

2
, 2 ≤ j ≤M

ηM+1 =

M+2∑
i=0

aM+1,i = 2ζ1 + ζ2 − kν2ζ5 −
kν2ζ6

2
,

ηM+2 =

M+2∑
i=0

aM+2,i = 2ζ1 + ζ2.

From the theory of matrices we have,

M+2∑
j=0

a−1k,jηj = 1, k = 0, 1, ...,M + 2, (4.9)

where a−1k,j are the elements of A−1. Therefore

‖A−1‖ =

M+2∑
j=0

|a−1k,j | ≤
1

min ηk
=

1

ξl
≤ 1

|ξl|
, 0 ≤ k, l ≤M + 2. (4.10)

Substituting (4.10) into (4.8) we see that

‖D∗ −D‖ ≤ M1h
2

|ξl|
= M2h

2, (4.11)

where M2 = M1
|ξl| is some finite constant.
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Theorem 4.2. The cubic trigonometric B-splines {TB−4, TB−3, ....TBM} defined in relation (2.2) satisfy
the inequality

M−1∑
j=−3

|TB4
j (s)| ≤ 1.66667, 0 ≤ s ≤ 1.

Proof. Consider,

|
M−1∑
j=−3

TB4
j (s)| ≤

M−1

j=−3
|TB4

j (s)|
∑

= |TB4
j−3(s)|+ |TB4

j−2(s)|+ |TB4
j−1(s)|

= csc (h) csc

(
3h

2

)
sin2

(
h

2

)
+

2

1 + 2 cos (h)
+ csc (h) csc

(
3h

2

)
sin2

(
h

2

)
≤ 1 for all h > 0.

Now for s ∈ [sj+1, sj+2], we have

|TB4
j−2(s)| ≤ csc (h) csc

(
3h

2

)
sin2

(
h

2

)
,

|TB4
j−1(s)| ≤ csc (h) csc

(
3h

2

)
sin2

(
h

2

)
,

|TB4
j−3(s)| ≤

2

1 + 2 cos (h)
,

|TB4
j−4(s)| ≤

2

1 + 2 cos (h)
.

Then, we have

M−1∑
j=−3

|TB4
j (s)| = |TB4

j−3(s)|+ |TB4
j−2(s)|+ |TB4

j−1(s)|+ |TB4
j−4(s)| ≤ 1.66667

as required.

Now, consider

V ∗(s)− V (s) =
M−1∑
j=−3

(D∗j −Dj)TB
4
j (s). (4.12)

Using (4.11) and theorem 4.2, we obtain

‖V ∗(s)− V (s)‖ =

∥∥∥∥∥∥∥∥∥M−1∑
j=−3

(D∗j −Dj)TB
4
j (s)

∥∥∥∥∥∥∥∥∥ ≤ | M−1∑
j=−3

TB4
j (s)| ‖(D∗j −Dj)‖ ≤ 1.66667M2h

2. (4.13)

Theorem 4.3. Let v(s) be the exact solution and let V (s) be the cubic trigonometric collocation approxi-
mation to v(s) then the provided scheme has second order convergence in space and

‖v(s)− V (s)‖ ≤ ωh2, where ω = γ0h
2 + 1.66667M2h

2.

Proof. From theorem 4.1, we have
‖v(s)− V (s)‖ ≤ γ0h4. (4.14)

From (4.13) and (4.14), we obtain

‖v(s)− V (s)‖ ≤ ‖v(s)− V ∗(s)‖+ ‖V ∗(s)− V (s)‖ ≤ γ0h4 + 1.66667M2h
2 = ωh2. (4.15)

where ω = γ0h
2 + 1.66667M2.
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5. Numerical experiments and discussion

In this section, some numerical calculations are performed to test the accuracy of the offered scheme. In
all examples, we use the following error norm

L∞ = maxj |Vnum(sj , t)− vexact(sj , t)|. (5.1)

The numerical order of convergence p is obtained by using the following formula:

p =
Log(L∞(n)/L∞(2n))

Log(L∞(2n)/L∞(n))
, (5.2)

where L∞(n) and L∞(2n) are the errors at number of partition n and 2n respectively.

Example 1. Consider the heat equation,

∂v

∂t
=

1

π2
∂2v

∂s2
, 0 ≤ s ≤ 1, t > 0 (5.3)

with initial constraint:
v(s, 0) = sin(πs) (5.4)

and the boundary constraints:
v(0, t) = 0, v(1, t) = 0. (5.5)

The analytic solution of the given problem is v(s, t) = exp(−t) sin(πs). In Table 1, the comparative analysis
of absolute errors are given with those of [9]. Figure 1 demonstrates the behavior of exact and numerical
solutions at various time stages. On the other hand Figure 2 illustrates the graphical representation of
absolute errors in 2D and 3D. Figure 3 shows the rattling accuracy that exists between the exact and
approximate solutions.
The approximate solution when t = 1, k = 0.01 and M = 20 is given by

V (s, 1) =



−0.000277763 cos( s2) + 0.000277763 cos3( s2)−
3.69641 sin3( s2) + sin( s2)(−8.77708− 0.000416645 sin(s))+

2.77231 csc( s2) sin2(s), s ∈ [0, 1
20 ]

−0.00510497 cos( s2) + 0.00510095 cos3( s2)−
3.63222 sin3( s2) + sin( s2)(−8.58403− 0.00765142 sin(s))+

2.72417 csc( s2) sin2(s), s ∈ [ 1
20 ,

1
10 ]

−0.0261732 cos( s2) + 0.026099 cos3( s2)− 3.49329 sin3( s2)+

sin( s2)(−8.16302− 0.0391486 sin(s)) + 2.61997 csc( s2) sin2(s), s ∈ [ 1
10 ,

3
20 ]

..

.

...

−3.93653 cos( s2) + 3.48638 cos3( s2) + 0.221072 sin3( s2)+

sin( s2)(7.15117− 5.22958 sin(s))− 0.165804 csc( s2) sin2(s), s ∈ [1720 ,
9
10 ]

−4.11988 cos( s2) + 3.62349 cos3( s2) + 0.251845 sin3( s2)+

sin( s2)(7.53075− 5.43523 sin(s))− 0.188884 csc( s2) sin2(s), s ∈ [ 9
10 ,

19
20 ]

−4.2082 cos( s2) + 3.68717 cos3( s2) + 0.261197 sin3( s2)+

sin( s2)(7.70248− 5.53076 sin(s))− 0.195898 csc( s2) sin2(s), s ∈ [1920 , 1].
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Table 1: Comparison of absolute errors when k = 0.01 at T = 2 for example 1.

s M = 16 M = 20

Present scheme CuBS[9] Present scheme CuBS[9]
0.1 3.95199 ×10−5 2.69092 ×10−4 2.51528 ×10−5 1.72467 ×10−4

0.2 7.53284 ×10−5 5.11635 ×10−4 4.78434 ×10−5 3.28052 ×10−4

0.3 1.03726 ×10−4 7.04146 ×10−4 6.58508 ×10−5 4.51526 ×10−4

0.4 1.21722 ×10−4 8.28057 ×10−4 7.74123 ×10−5 5.30800 ×10−4

0.5 1.28357 ×10−4 8.70181 ×10−4 8.13961 ×10−5 5.58116 ×10−4

0.6 1.21722 ×10−4 8.28057 ×10−4 7.74123 ×10−5 5.30800 ×10−4

0.7 1.03726 ×10−4 7.04146 ×10−4 6.58508 ×10−5 4.51526 ×10−4

0.8 7.53284 ×10−5 5.11635 ×10−4 4.78434 ×10−5 3.28052 ×10−4

0.9 3.95199 ×10−5 2.69092 ×10−4 2.51528 ×10−5 1.72467 ×10−4

Figure 1: The approximate (stars, circles, triangles) and exact (solid lines) solutions for various time stages when M = 80, k =
0.01 for example 1.

Figure 2: 2D and 3D error profiles when M = 80, k = 0.01, T = 1 for example 1.
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Figure 3: Comparison of exact and approximate solutions with T = 1,M = 80, k = 0.01 for example 1.

Example 2. Consider the heat equation,

∂v

∂t
=
∂2v

∂s2
, 0 ≤ s ≤ 1 , t > 0 (5.6)

with initial constraint:
v(s, 0) = sin(πs) (5.7)

and the boundary constraints:
v(0, t) = 0, v(1, t) = 0. (5.8)

The analytic solution is v(s, t) = exp(−π2t) sin(πs). By employing the present scheme on example 2 the
values of absolute errors are derived out in Table 2. The comparison sheds light on the fact that presented
scheme gives much accuracy. In Figure 4, the exact and approximate solutions are shown at various time
stages. Figure 5 depicts the 2D and 3D absolute error profiles at T = 1. A 3D contrast between exact
and numerical solutions is shown in Figure 6 and the results are very well. The approximate solution when
t = 1, k = 0.01 and M = 20 is given by

V (s, 1) =



−0.0002778 cos( s2) + 0.0002778 cos3( s2) + 0.0041726 sin3( s2)+

sin( s2)(0.0128571− 0.0004166 sin(s))− 0.0031294 csc( s2) sin2(s), s ∈ [0, 1
20 ]

0.0001681 cos( s2)− 0.0001677 cos3( s2)− 0.0017559 sin3( s2)+

sin( s2)(−0.0049729 + 0.0002516 sin(s)) + 0.0013169 csc( s2) sin2(s), s ∈ [ 1
20 ,

1
10 ]

−0.0000742 cos( s2) + 0.0000737 cos3( s2)− 0.0001584 sin3( s2)+

sin( s2)(−0.0001320− 0.0001106 sin(s)) + 0.0001188 csc( s2) sin2(s), s ∈ [ 1
10 ,

3
20 ]

..

.

...

−0.0001284 cos( s2) + 0.0001632 cos( s2)3 − 0.0000623 sin3( s2)+

sin( s2)(0.0000802− 0.0002448 sin(s)) + 0.0000468 csc( s2) sin2(s), s ∈ [1720 ,
9
10 ]

−0.0022366 cos( s2) + 0.0017396 cos3( s2) + 0.0002915 sin3( s2)+

sin( s2)(0.0044447− 0.0026095 sin(s))− 0.0002186 csc( s2) sin2(s), s ∈ [ 9
10 ,

19
20 ]

0.00592028 cos( s2)− 0.0041425 cos3( s2)− 0.0005722 sin3( s2)+

sin( s2)(−0.0114164 + 0.0062137 sin(s)) + 0.0004292 csc( s2) sin2(s), s ∈ [1920 , 1].
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Table 2: Comparison of absolute errors for example 2 at T = 1.

h = k CuBS[10] Present scheme p
1
5 1.4145 ×10−1 4.9192 ×10−5 0.65401
1
10 3.7195 ×10−2 3.1262 ×10−5 1.70720
1
20 8.4588 ×10−3 9.5741 ×10−6 1.93105
1
40 2.0698 ×10−3 2.5107 ×10−6 1.98299
1
80 5.1473 ×10−4 6.3512 ×10−7

Figure 4: The approximate (stars, circles, triangles) and exact (solid lines) solutions for various time stages when M = 50, k =
0.01 for example 2.

Figure 5: 2D and 3D error profiles when M = 50, k = 0.01, T = 1 for example 2.
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Figure 6: Comparison of exact and approximate solutions with T = 1,M = 50, k = 0.01 for example 2.

Example 3. Consider the heat equation,

∂v

∂t
=
∂2v

∂s2
, 0 ≤ s ≤ 1, t > 0 (5.9)

with initial constraint:
v(s, 0) = cos(

πs

2
) (5.10)

and the boundary constraints:

v(0, t) = exp(
π2t

4
), v(1, t) = 0. (5.11)

The analytic solution is v(s, t) = exp(−π
2t

4 ) cos(πs2 ). To achieve numerical results on the above-mentioned
problem the presented scheme is utilized. Table 3 discusses the comparison that exists between the absolute
errors that are derived out by the present method and by the method of [11]. Figure 7 deals with the behavior
of exact and approximate solutions at various time stages. All the graphs are in excellent affirmation. 2D
and 3D error profiles are shown in Figure 8 at T = 1. A 3D contrast between the exact and numerical
solutions is figured out in Figure 9. The approximate solution when t = 1, k = 0.01 and M = 20 is given by

V (s, 1) =



−0.00932586 cos( s2) + 0.0941308 cos3( s2) + 0.00217188 sin3( s2)+

sin( s2)(0.00651287− 0.141196 sin(s))− 0.00162891 csc( s2) sin2(s), s ∈ [0, 1
20 ]

−0.0095084 cos( s2) + 0.094312 cos3( s2) + 0.00229618 sin3( s2)+

sin( s2)(0.00694553− 0.141468 sin(s))− 0.00172214 csc( s2) sin2(s), s ∈ [ 1
20 ,

1
10 ]

−0.00971627 cos( s2) + 0.0945171 cos3( s2) + 0.00295925 sin3( s2)+

sin( s2)(0.00901732− 0.141776 sin(s))− 0.00221944 csc( s2) sin2(s), s ∈ [ 1
10 ,

3
20 ]

...

−0.0136572 cos( s2) + 0.0980453 cos3( s2) + 0.00693266 sin3( s2)+

sin( s2)(0.0249572− 0.147068 sin(s))− 0.0051995 csc( s2) sin2(s), s ∈ [1720 ,
9
10 ]

−0.0138031 cos( s2) + 0.0981544 cos3( s2) + 0.00695714 sin3( s2)+

sin( s2)(0.0252591− 0.147232 sin(s))− 0.00521786 csc( s2) sin2(s), s ∈ [ 9
10 ,

19
20 ]

−0.0138496 cos( s2) + 0.0981879 cos3( s2) + 0.00696207 sin3( s2)+

sin( s2)(0.0253495− 0.147282 sin(s))− 0.00522155 csc( s2) sin2(s), s ∈ [1920 , 1].
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Table 3: Absolute errors and numerical results for h = k = 0.05 for example 3 at T = 1.

s Exact Present scheme CuBS[11] Present Scheme CuBS[11]
0.1 0.0837609 0.0837490 0.0827029 1.188 ×10−5 1.058 ×10−3

0.2 0.0806543 0.0806336 0.0795990 2.072 ×10−5 1.055 ×10−3

0.3 0.0755618 0.0755352 0.0745108 2.658 ×10−5 1.051 ×10−3

0.4 0.0686087 0.0685791 0.0675632 2.956 ×10−5 1.045 ×10−3

0.5 0.0599662 0.0599366 0.0589270 2.957 ×10−5 1.039 ×10−3

0.6 0.0498471 0.0498200 0.0488146 2.711 ×10−5 1.033 ×10−3

0.7 0.0385007 0.0384783 0.0374744 2.235 ×10−5 1.026 ×10−3

0.8 0.0262062 0.0261903 0.0251852 1.588 ×10−5 1.021 ×10−3

0.9 0.0132664 0.0132582 0.0122492 8.220 ×10−6 1.017 ×10−3

Figure 7: The approximate (stars, circles, triangles) and exact (solid lines) solutions for various time stages when M = 50, k =
0.01 for example 3.

Figure 8: 2D and 3D error profiles when M = 20, k = 0.05, T = 1 for example 3.
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Figure 9: Comparison of exact and approximate solutions with T = 1,M = 20, k = 0.05 for example 3.

Example 4. Consider the heat equation,

∂v

∂t
=
∂2v

∂s2
− exp(− sin t− s)(cos t+ 1), 0 ≤ s ≤ 1, t > 0 (5.12)

with initial constraint:
v(s, 0) = exp(−s) (5.13)

and the non-classical boundary constraints:{
v(0, t) =

∫ 1
0

e
e−2s v(s, t)ds,

v(1, t) =
∫ 1
0

2
e+sin 1−cos 1 cos sv(s, t)ds,

t > 0. (5.14)

The analytic solution of the given problem is v(s, t) = exp(−s− sint). By utilizing the proposed scheme the
numerical results are acquired. An excellent comparison between absolute errors computed by our scheme
and the scheme of [22] is discussed in Table 4. At different time stages a close comparison between the exact
and numerical solutions is depicted in Figure 10. Figure 11 plots 2D and 3D absolute errors at T = 1. Figure
12 deals with the 3D comparison that occurs between the exact and numerical solutions. The approximate
solution when t = 1, k = 0.01 and M = 20 is given by

V (s, 1) =



0.703278 cos( s2)− 0.272202 cos3( s2)− 0.245111 sin3( s2)+

sin( s2)(−1.59479 + 0.408303 sin(s)) + 0.183834 csc( s2) sin2(s), s ∈ [0, 1
20 ]

0.693563 cos( s2)− 0.262495 cos3( s2)− 0.115922 sin3( s2)+

sin( s2)(−1.20625 + 0.393742 sin(s)) + 0.0869418 csc( s2) sin2(s), s ∈ [ 1
20 ,

1
10 ]

0.69364 cos( s2)− 0.262572 cos3( s2)− 0.116433 sin3( s2)+

sin( s2)(−1.2078 + 0.393858 sin(s)) + 0.087325 csc( s2) sin2(s), s ∈ [ 1
10 ,

3
20 ]

...

0.508474 cos( s2)− 0.0980879 cos3( s2) + 0.0894798 sin3( s2)+

sin( s2)(−0.399339 + 0.147132 sin(s))− 0.0671099 csc( s2) sin2(s), s ∈ [1720 ,
9
10 ]

0.505903 cos( s2)− 0.0961654 cos3( s2) + 0.0899113 sin3( s2)+

sin( s2)(−0.394017 + 0.144248 sin(s))− 0.0674335 csc( s2) sin2(s), s ∈ [ 9
10 ,

19
20 ]

0.439152 cos( s2)− 0.04803 cos3( s2) + 0.0969795 sin3( s2)+

sin( s2)(−0.26422 + 0.0720451 sin(s))− 0.0727346 csc( s2) sin2(s), s ∈ [1920 , 1].
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Table 4: Comparison of absolute errors when h = 0.05 at varied time stages for example 4.

t k = 0.01 k = 0.005

TMOL[22] Present scheme TMOL[22] Present scheme
0.1 4.50 ×10−4 4.77 ×10−4 4.00 ×10−5 2.42 ×10−4

0.3 1.40 ×10−3 6.49 ×10−4 1.40 ×10−4 3.30 ×10−4

0.5 2.50 ×10−3 5.74 ×10−4 2.50 ×10−4 2.91 ×10−4

0.7 4.00 ×10−3 4.68 ×10−4 4.00 ×10−4 2.38 ×10−4

0.9 5.50 ×10−3 3.71 ×10−4 5.50 ×10−4 1.89 ×10−4

1.0 6.00 ×10−4 3.28 ×10−4 6.00 ×10−4 1.67 ×10−4

Figure 10: The approximate (stars, circles, triangles) and exact (solid lines) solutions for various time stages when M = 20, k =
0.01 for example 4.

Figure 11: 2D and 3D error profiles when M = 20, k = 0.01, T = 1 for example 4.
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Figure 12: Comparison of exact and numerical solutions with T = 1,M = 20, k = 0.01 for example 4.

Example 5. Consider the heat equation,

∂v

∂t
=
∂2v

∂s2
+ (π2 − 1) exp(−t)(sinπs+ cosπs), 0 ≤ s ≤ 1, t > 0 (5.15)

with initial constraint:
v(s, 0) = (sinπs+ cosπs) (5.16)

and the non-classical boundary constraints:{
v(0, t) =

∫ 1
0 2 sin(πs)v(s, t)ds,

v(1, t) =
∫ 1
0 −2 cos(πs)v(s, t)ds,

t > 0. (5.17)

The analytic solution of the given problem is v(s, t) = exp(−t)(sinπs + cosπs). To achieve the desired
numerical results the presented scheme is applied in example 5. The absolute errors are being compared
with those of obtained in [2] at various time stages in Table 5. On the other hand, Figure 13 clearly
demonstrates the comparison that exist between exact and numerical solutions at various time stages. All
the graphs are also agree with the said data. Figure 14 depicts the 2D and 3D error profiles at T = 1. A 3D
comparison between the exact and numerical solutions is presented to exhibit the exactness of the scheme
in Figure 15.

The approximate solution when t = 1, k = 0.01 and M = 20 is given by

V (s, 1) =



−1.42349 cos( s2) + 1.79137 cos3( s2)− 3.00046 sin3( s2)+

sin( s2)(−6.70549− 2.68705 sin(s)) + 2.25034 csc( s2) sin2(s), s ∈ [0, 1
20 ]

−1.5271 cos( s2) + 1.89462 cos3( s2)− 2.35572 sin3( s2)+

sin( s2)(−4.75− 2.84193 sin(s)) + 1.76679 csc( s2) sin2(s), s ∈ [ 1
20 ,

1
10 ]

−1.65212 cos( s2) + 2.01871 cos3( s2)− 1.81356 sin3( s2)+

sin( s2)(−3.08615− 3.02806 sin(s)) + 1.36017 csc( s2) sin2(s), s ∈ [ 1
10 ,

3
20 ]

...

−4.40323 cos( s2) + 4.59869 cos3( s2) + 2.20717 sin3( s2)+

sin( s2)(11.2074− 6.89803 sin(s))− 1.65538 csc( s2) sin2(s), s ∈ [1720 ,
9
10 ]

−4.2166 cos( s2) + 4.45436 cos3( s2) + 2.16319 sin3( s2)+

sin( s2)(10.7951− 6.68155 sin(s))− 1.62239 csc( s2) sin2(s), s ∈ [ 9
10 ,

19
20 ]

−3.9106 cos( s2) + 4.21808 cos3( s2) + 2.09443 sin3( s2)+

sin( s2)(10.1263− 6.32713 sin(s))− 1.57082 csc( s2) sin2(s), s ∈ [1920 , 1].
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Table 5: Comparison of absolute errors when h = 0.01 at various time stages for example 5.

t k = 0.01 k = 0.001

CuTBS[2] Present scheme CuTBS[2] Present scheme
0.1 3.05 ×10−3 2.99 ×10−3 3.42 ×10−4 2.92 ×10−4

0.3 3.70 ×10−3 3.64 ×10−3 4.15 ×10−4 3.55 ×10−4

0.5 3.20 ×10−3 3.15 ×10−3 3.59 ×10−4 3.07 ×10−4

0.7 2.64 ×10−3 2.60 ×10−3 2.97 ×10−4 2.54 ×10−4

0.9 2.17 ×10−3 2.13 ×10−3 2.43 ×10−4 2.08 ×10−4

1.0 1.96 ×10−3 1.93 ×10−3 2.20 ×10−4 1.88 ×10−4

Figure 13: The approximate (stars, circles, triangles) and exact (solid lines) solutions for various time stages when M = 100, k =
0.01 for example 5.

Figure 14: 2D and 3D error profile when M = 100, k = 0.01, T = 1 for example 5.
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Figure 15: Comparison of exact and numerical solutions with T = 1,M = 100, k = 0.01 for example 5.

6. Concluding Remarks

In this study Hermite formula is used for the approximation of second-order derivatives in cubic trigono-
metric B-spline collocation method to obtain the approximate solution of the heat equation. The smooth
piecewise cubic trigonometric B-splines have been used to approximate derivatives in space whereas a stan-
dard finite difference has been used to discretize the time derivative. The Hermite formula has been utilized
in this technique to refine the scheme. A stability analysis of the scheme is additionally given to confirm
that the errors do not expatiate. The numerical solution is obtained as a piecewise smooth function enabling
one to find approximation at any desired location in the domain. The scheme’s precision is illustrated by
comparing the numerical results with those published in literature. Numerical and graphical comparisons
show that the given scheme is better and very proficient in computational terms.
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