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Abstract

In QSPR/QSAR study, the molecular structure indices are now standard methods for studying structure-
property relations. Due to the chemical significance of these indices, the number of proposed molecular
descriptors is quickly rising in the last few years. A topological index is a transformation of a chemical
structure into a real number. In mathematics, honeycomb networks are widely used because of their ex-
treme importance in computer graphics, image processing, cellular phone base stations, and in chemistry
to represent benzenoid hydrocarbons. They are formed by recursively using hexagonal tiling in a particular
pattern. HC'(n) represents the honeycomb network of dimension n, where n is the number of hexagons
between boundary and central hexagon. An atomic-scale honeycomb structure composed of carbon atoms
is known as graphene. Professor Andre Geim and Professor Kostya Novoselov separated it from graphite
in 2004. It is the first 2D material that is one million times thinner than human hair, two hundred times
stronger than steel, and the world’s most conductive material. The graph 2D graphene is expressed as
G(r, s) where “r” means the number of rows, and “s” is the number of hexagons in a row. This paper uses
the inner dual graph of honeycomb networks and 2D graphene network, which are named as HcID(n) and
GID(r,s) respectively. We derive some results related to topological indices for these graphs. We compute
degree-based indices, first general Zagreb index, general Randi¢ connectivity index, general sum-connectivity
index, first Zagreb index, Second Zagreb index, Randi¢ index, Atom-bond Connectivity (ABC) index, and
Geometric-Arithmetic (GA) index of inner dual graphs of honeycomb networks and graphene network
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1. Introduction

A numerical value mathematically derived from the graph structure is known as the topological index. It
helps to establish correlations between a molecular compound’s structure and its physicochemical properties
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or biological activity. Topological indices are also used to foretell physicochemical properties like boiling
point, the heat of combustion, enthalpy of vaporization, stability, etc. In 1947, the first topological index was
founded by Harold Wiener while he was working on the boiling point of paraffin. He defined this index as a
path number, and later it was renamed as Wiener index [I7]. There are several types of topological indices
such as degree-based, distance-based, counting-related topological indices, etc. The most essential and
crucial indices in degree-based topological indices are the Atom-bond connectivity, Geometric—arithmetic.
The Atom-Bond Connectivity (ABC) index gives a great model for the stability of the linear and branched
alkanes and cycloalkanes’ strain energy. Randi¢ index is closely related to various chemical properties and
is observed parallel to the boiling point and Kovats constants. In chemical graph theory, a graph is used
to express a molecule by viewing the atoms as the vertices of the graph and the molecular bonds as the
edges. Let G be a simple, undirected, and connected graph with V(G) vertices and E(G) edges throughout
this paper. If edges share a typical end vertex, they are called adjacent edges, and if they share a common
vertex, they are incident to each other.

Table 1: Some Degree-based Topological indices in which the degree of vertices p and ¢ is denoted by d,
and d, respectively and « is a real number.

Topological index Formulation
First Zagreb index [11] Mi(G) =) pgere) (dp + dg)
Second Zagreb index [§] Ms(G) = 3 peer(c) (dp * dg)
First general Zagreb index [18] My (G) = qu(G)(dq)a
Randi¢ index [15] R(G) = > pep(c)(dpd gt
General Randi¢ index [6] Ra(G) =3 ppepc) (dpdg)”
General Sum-connectivity index [4] Xa(G) =2 peerc) (dp + dg)®

Atom-Bond Connectivity index [I0] | ABC(G) =} .cp \/%

(
. . . . 2\/(dp*dq)
Geometric-Arithmetic (GA) index [9] GA(G) = perc T

2. Honeycomb Networks

For the construction of the honeycomb network of dimension n expressed as HC(n), we use HC'(n — 1)
and add a layer of hexagons around the boundary of HC'(n — 1). The number of vertices in the honeycomb
network HC'(n) is 6n2 and the total number of edges 9n? — 3n [I, [5]. Some other networks with interesting
topological properties are studied in [I3},[14]. The n-dimensional inner dual graph of the honeycomb network
is expressed as HcID(n), where n is the number of hexagons between the central and boundary hexagon.
The Inner dual graph of honeycomb network HcIN(n) is formed by using HeID(n — 1), we add a layer
of hexagons around the boundary of HelD(n — 1), and its inner dual graph is made by putting a vertex
in the center of all hexagons and connecting those vertices that are in adjacent hexagons. The number of
vertices in the inner dual graph of honeycomb networks HcID(n) is 3n? — 3n + 1 and the number of edges
9n? — 15n + 6. Honeycomb network of dimension 3 and its inner dual graph is shown in Figure .

(dp,dq) where pq € E(G) | No. of Edges
(3.4) 12
(3,6) 6
(4,4) 6(n—3)
(4,6) 12(n — 2)
(6,6) 9n% — 33n + 30

Table 2: Edge partition of HeID(n), n > 3 based on end points vertices degree of all edges
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Figure 1: figure

(a) Honeycomb network of dimension 3 (b) Inner dual graph of 3-dimensional honeycomb network

3. Graphene Network

(A998}

The graph 2D graphene is expressed as G(r,s) where “r” means the number of rows, and “s” is the
number of hexagons in a row. Some topological indices of graphene, subdivision graph of graphene, and
its line graph are calculated in [I], [12]. The Inner dual graph of the 2D graphene is denoted as GID(r, s)
where “r” expresses the number of rows and “s” is the number of hexagons in a row. Its inner dual graph
is made by putting a vertex in the center of all hexagons and connecting those vertices that are in adjacent
hexagons. The number of vertices in the inner dual graph of graphene network GID(r, s) is rs and number
of edges 3rs — 2r — 2s + 1. Graphene network with four rows and four hexgons in each row and its inner
dual graph is shown in Figure [2| For inner dual graph of graphene network, we have eleven types of edges
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Figure 2: (a) Graphene network, G(4,4) (b) Inner dual graph of G(4, 4)

given in the Table

4. Main results

We calculated the general Randié¢ connectivity index, general sum connectivity index, first general Zagreb
index, Atom-bond Connectivity (ABC) index, Geometric-arithmetic (GA) index, Randi¢ index, first Zagreb
index, and second Zagreb index of the inner dual graphs of honeycomb networks and 2D graphene network.
In the following theorem, we calculate the Zagreb index for the inner dual graph of the n-dimensional

honeycomb network.

Theorem 4.1. Let HcID(n) be the inner dual graph of honeycomb network of dimension n > 3, then

a) first Zagreb index is equal to

My (HeID(n)) = 108n? — 288n + 144
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(dp,dq) where pq € E(G) No. of Edges

(3,6) r

(4,5) 2

(3,5) % —6
(4,4) 25— 6
(2,5) 2

(3,4) 2

(3,3) 2

(2,4) 2

(6,6) (3r —8)s — (8r —21)
(5.,6) 3r— 8
(4,6) s — 10

Table 3: Edge partition of GID(r,s), r > 3 and s > 3 based on end points vertices degree of all edges

b) second Zagreb index is equal to

My(HeID(n)) = 324n° — 804n + 468

c) The first general Zagreb index is equal to
My (HcID(n)) = 6 % 3% 4+ (6n — 12)22* + (3n? — 9n + 7)6%

where o is a real number.

Proof. (a) As we know that M;(G) is the first Zagreb index, from Table [1| for HeID(n), we get

M (HeID(n)) = S (dp+dy)
pg€E(HcelID(n))

Using edge types and the total number of edges in each type from the Table [2] we get
My(HeID(n)) =12(3+4) +6(3+6) +6(n — 3)(4 +4) + 12(n — 2)(4 4+ 6) + (9n? — 33n + 30)(6 + 6)
So first Zagreb index for n > 3 is
My (HcID(n)) = 108n* — 288n + 144

(c) The graph HelD(n) have total 3n? — 3n + 1 vertices among which 6, 6n — 12 and 3n? — 9n + 7 number
of vertices are of degree 3, 4 and 6, respectively. Using these values, we get

My (HeID(n)) = 6 % 3% 4+ (6n — 12)22% + (3n? — 9n 4 7)6°
O

From Table [1| and Table |2 the part @ can be proved easily. In the next theorem, we calculate the
general Randi¢ index for the inner dual graph of the n-dimensional honeycomb network.

Theorem 4.2. Let HelD(n) be the inner dual graph of honeycomb network of dimension n > 3, then

a) Randié¢ index is equal to

R_yj5(HelD(n)) = 37;2 + (V6 —4n+ (2V3+ V2 + % —2V6)
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b) The general Randié¢ index is equal to

Ro(HceID(n)) = 12 % 12% + 6 % 18 + 6(n — 3) * 4%% 4 12(n — 2) * 24% + (9n? — 33n + 30)62*

where o 18 a real number.

Proof. b) As we know that R_5(() is the Randi¢ index, from Table[l|for HelD(n), we get

R_yp(HeID(n) = > (dp*dy) ™'/
pgeE(HcID(n))

Using edge types and the total number of edges in all types from the Table [2] we get
R_yjo(HeID(n)) =12(3%4) 2+ 6(3%6) /2 +6(n — 3)(4 % 4) /% +12(n — 2)(4 % 6)~1/2

+(9n% — 331+ 30)(6 % 6) /2

So Randié index for n > 3 is

R_y5(HeID(n)) = 322 + (V6 —4)n+ (2V3+ V2 + % —2V6)

O

Proof of Eﬂ can be done using similar method. Now we compute the general Sum-connectivity index of
the inner dual graph of the n-dimensional honeycomb network.

Theorem 4.3. Let HcID(n) be the inner dual graph of honeycomb network of dimension n, for n > 3 its
general Sum-connectivity index is equal to

Xo(HeID(n)) =12 % 7% + 6 % 3% + 6(n — 3)8% 4 12(n — 2)10% + (90> — 33n + 30)12°
where « is a real number.

Proof. As we know that x,(G) is the general Sum-connectivity index, from Table [I| for HcID(n), we get

Xa(HcID(n)) = Z (dp +dg)®
pq€E(HcID(n))

Putting edge types and total number of edges in each type from the Table [2| and on simplifying the above
equation, we get

Xa(HeID(n)) = 12 7% 4 6 % 32 + 6(n — 3)8% 4 12(n — 2)10% + (9n? — 33n + 30)12*

In the following theorem, we calculate Atom-bond Connectivity (ABC) index of HeID(n).

Theorem 4.4. Let HcID(n) be the inner dual graph of honeycomb network of dimension n, for n > 3 its
Atom-bond Connectivity (ABC) index is equal to

ABC(HeID(n)) = 3*2[10112 4 (3*2/6 b4V - Hfom + (V5 4+ VT4 — 9‘2/6 —8V3 + 5v10)
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Proof. As we know that ABC(G) is the Atom-bond Connectivity index, from Table 1| for HelID(n), we get

ABC(HeID(m) = 3 W
pq€E(HcID(n)) P

Using edge types and the total number of edges in all types from the Table 2 we get

ABC(HCID(n)):m\/W+6\/<3+6)_2+6(n_3) (4+4)-2

3x4 3%x6 4 x4
41+6)—2 6+6)—2
(—2*)6+(9n233n+30) 6+6 -2

So ABC index for n > 3 is

ABC(HeID(n)) = 32‘@ 2 (3‘[+4f— 11\f0) +(2ﬁ5+ﬁ4—9\2/6 — 8V3 + 5V10)

O

In the next theorem, the Geometric-arithmetic (GA) index of the inner dual graph of HeclID(n) is
computed.

Theorem 4.5. Let HcID(n) be the inner dual graph of honeycomb network of dimension n, for n > 3 its
Geometric-arithmetic (GA) index is equal to

GA(HceID(n)) = 9n® + (245\/6 —2T)n + (48\[ 4V2 — M +12)

Proof. As we know that GA(G) is the Geometric-arithmetic index, from Table [1| for HelID(n), we get

GA(HcID(n) = Y 2/ (dy * dy)

pq€E(HcID(n)) dp + dq

Using edge types and the total number of edges in each type from the Table [2, we get

2v3 x4 2v3 %6 2vV4 x4 24 % 6
GA(HcID(n)) = 12( 311 )+ 6( 316 )+ 6(n —3)( 111 )+ 12(n — 2)( 156 )
26 %6
2_
+(9n° — 33n + 30)( 516 )
So GA index for n > 3 is
24 4 4
GA(HcelD(n)) = on? + (E\)/a —2Mn+ (—— 8\[ +4v/2 — ﬂ +12)

O

In the following theorem, we calculate the first general Zagreb index for the inner dual graph of the 2D
graphene network.

Theorem 4.6. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of hexagons and
s hexagons in each row, for r > 3 € s > 2 its first general Zagreb index is equal to

My(GID(r,s)) =2%2% +r% 3% 4 (25 — 4)4% 4+ (r — 2)5% 4+ [(r — 2)s — (2r — 4)]6*

where o 18 a real number.
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Proof. As we know that M, (G) is the first general Zagreb index, by from Table (1| for GID(r, s), we have

Mo(GID(r,s)) = Y (dg)”

g€V (GID(r,s))

For r > 3 & s > 2, the graph GID(r,s) have total rs vertices among which 2, r, (2s — 4), (r — 2) and
(r —2)s — (2r — 4) number of vertices are of degree 2, 3, 4, 5 ,and 6 respectively. Using these values in above
equation, we get

My(GID(r,8)) = 2% 2% + 1% 3% + (25 — 4)4% + (r — 2)5% + [(r — 2)s — (2r — 4)]6
O

In the next theorem, the general sum-connectivity index of the inner dual graph of the 2D graphene
network is computed.

Theorem 4.7. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of heragons and
s hexagons in each row, for r,s > 3 its general sum-connectivity index is equal to

Xa(GID(r,s)) = (1 +2)3%% 4 (2r + 25 — 12)8% + 4% 7% + 4 % 6% + [(3r — 8)s — (8r — 21)]12"
+(3r — 8)11% + (4s — 10)10¢
where o s a real number.

Proof. As we know that x,(G) is the general sum-connectivity index, from Table 1| for GID(r,s), we have

Xa(GID(r,s)) = > (dytdy)”

pg€E(GID(r,s))
For r, s > 3, using edge types and the total number of edges from the Table |3 we get
Xa(GID(r,8)) =r(34+6)*+2(44+5)“+ (2r—6)(3+5)*+ (2s —6)(4+4)* +2(2+ 5)~
+2(3+4)*+2(B3+3)*+2(2+4)*+[(Br —8)s — (8 — 21)](6 + 6)* + (3r — 8)(5+ 6)* + (4s — 10)(4 + 6)
By simplifying the above equation, we get
Xa(GID(r,s)) = (1 +2)3%% 4 (2r + 25 — 12)8% + 4% 7% + 4 % 6% + [(3r — 8)s — (8r — 21)]12“
+(3r — 8)11* + (4s — 10)10*
O

In the following theorem, we calculate the Atom-bond Connectivity (ABC) index for the inner dual
graph of the 2D graphene network.

Theorem 4.8. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of heragons and
s hexagons in each row, for r,s > 3 its Atom-bond Connectivity (ABC) index is equal to

ABC(GID(r,s)) = \/>+2\/> 8——1—9 310) +rs\/210 ({—4\/?:0 4\3[)
+(@—3@—4\/§+é ﬁ5+7ﬁ0 4\/50—106)

5 72 3 3 2 5 3
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Proof. As we know that ABC(G) is the Atom-bond Connectivity index, from Table (1| for GID(r,s), we
have

ABC(GID(r,s) = 3. (dy + do) =2 ZCZI) 2
pg€E(GID(r,s)) P

For r,s > 3

Using edge types and total number of edges from the Table |3, we get

e =

(2+5) -2 \/3+4 2\/(3+3)—2 5, [2+4) —2

3*3 * 2x4
+[(3r — 8)s — (8r — 21)] W+(3T_8) (E)ES)GQ—F(ZLS—lO) (422)62

So ABC index for r,s > 3 is

V4 V10 VI V30 V10 \25_ V1o V3

AB 1D = - Al 4> 4
C(GID(r,s)) = ( G 5 3 10 )r+rs 5 + ( 3 3 )s
4 1 1
+(\/5§5 - 3? — 42+ 3 \€5 + 7‘?0 - 4\/50 - 10?)

Now, we compute the Geometric-arithmetic (GA) index for the inner dual graph of the 2D graphene
network.

Theorem 4.9. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of hexagons and
s hexagons in each row, for r,s > 3 its Geometric-arithmetic (GA) index is equal to

GAGID(r ) = (B2 4 Y15 g OV BV gy gy (35 BVIS VD

7717_
7—!—

Proof. As we know that GA(G) is the Geometric-arithmetic index, from Table [1| for GID(r, s), we have

GAGID(r.s) = 3. 2y/(dy * dy)

dp + dyg

8vV3 42 16f0 1)

pq€E(GID(r,s))

Where d, and d, are the end vertices degrees of an edge.
For r,s > 3

Using edge types and total number of edges from the Table [3] we get

+2(2;/§> + 2(2E) (3 —8)s — (87— 21)](%@?) (3 - s)(Qﬁ) T4 — 10)(%‘{?)
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So GA index for GID(r,s) for r,s > 3 is

22 15 6v30 8v6
\?)[—i-\g -8+ \1{ )7“+(\5[—6)s+37"s+(

GA(GID(r,s)) = ( 8\9/5 B 3\?5 N 4¢710

7 3 7_1

83 42 161/30
B8 V2 \1[ — 4/6)

In the next theorem, Randi¢ index of inner dual graph of 2D graphene network is computed.

Theorem 4.10. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of hexagons and
s hexagons in each row, for r,s > 3.

a) The Randi¢ index is equal to

Rop@ID( ) = (2w 2 Ay B (B (B8 2
+\g§+§+\g§—\/%0—5\6/6)+()rs

b) The general Randié¢ connectivity index is equal to
Ro(GID(r,s)) =7 % 18% + 2% 20% + (2r — 6)15% + (25 — 6)4%% + 2 % 10% + 2% 12% + 2% 3%
+2 % 8% 4+ [(3r — 8)s — (8 — 21)]6%* + (3r — 8)30% + (45 — 10)24°
where « is a real number.

Proof. b) As we know that R,(G) is the general Randié¢ index, from Table [1| for GID(r, s), we have

Ro(GID(r,s)) = Do (dpdy)®
pq€E(GID(r,s))

For r,s > 3
Using edge types and the total number of edges from the Table [3| we get
Ro(GID(r,s)) =7(3%6)* +2(4%5)* + (2r —6)(35)* + (25 — 6)(4 x 4)* + 2(2 % 5)*
+2(3%4)* +2(3%3)* +2(2x4)* 4+ [(3r — 8)s — (8 — 21)](6 % 6)* + (3r — 8)(5 % 6)* + (4s — 10)(4 * 6)
So general Randi¢ connectivity index for r,s > 3 is
Ro(GID(r,8)) = 1% 18% + 2% 20% 4 (21 — 6)15% 4 (25 — 6)4%* + 2% 10% + 2% 12% 4 2 x 3%

+2 % 8% 4 [(3r — 8)s — (8r — 21)]6%* + (3r — 8)30“ + (45 — 10)24°
O

In the following theorem, we calculate the Zagreb index for the inner dual graph of the 2D graphene
network.

Theorem 4.11. Let GID(r,s) be the inner dual graph of 2D graphene network with r rows of hexagons and
s hexagons in each row, for r,s >3
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a) The first Zagreb indez is equal to

M, (GID(r,s)) = 36rs — 38r — 40s + 38

b) The second Zagreb index is equal to

M>(GID(r,s)) = 108rs — 1507 — 160s + 208

where o is a real number.

Proof. a) the first Zagreb index for GID(r, s) is expressed as

My(GID(r,s)) = Z (dp + dy)
pgeE(GID(r,s))

For r,s > 3

Using edge types and total number of edges in each type from the Table 3] we get
Mi(GID(r,s)) =7r(34+6)+2(4+5)+(2r—6)(3+5)+(2s—6)(4+4)+2(2+5)+2(3+4)

+2(3+3)+2(24+4) 4+ [(3r —8)s — (8r — 21)]|(6 + 6) + (3r — 8)(5 + 6) + (45 — 10)(4 + 6)

So first Zagreb index for r,s > 3 is

Mi(GID(r,s)) = 36rs — 38r — 40s + 38

5. Conclusions

In this paper, we use the inner dual graph of the honeycomb network and 2D graphene network named
HcID(n) and GID(r,s), respectively. We discuss some structural properties of these graphs. Structural
properties deal with the graph structure in which various properties like vertices, edges, and degrees are
used to establish results. We constructed tables to discuss edge types and the total number of edges in all
types in the honeycomb and graphene network’s inner dual graphs. We also discuss the total number of
vertices and edges in these graphs. The generalized formulas for calculating the general Randi¢ connectivity
index, general sum-connectivity index, first general Zagreb index, Randi¢ index, first Zagreb index, Second
Zagreb index, Atom-bond Connectivity (ABC) index, and Geometric-Arithmetic (GA) index of inner dual
graphs of honeycomb network and graphene network are computed.
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