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UPPER BOUNDS FOR THE SIZE RAMSEY NUMBERS FOR
P; VERSUS C{ OR P,

E.T. BASKOROY?, Y. NURAENI}, A.A.G. NGURAH!

ABSTRACT. In this paper, we derive an upper bound for the size Ramsey
number for a path P3 versus a friendship graph C%. Furthermore, some
minimal Ramsey graph for a combination (P3,C%) is presented. We also
give an upper bound of the size Ramsey number for Ps versus P,.
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1. Introduction

All graphs considered here are finite, simple, and undirected. The graph G
has a vertex set V(G) and edge set E(G). For a general reference for graph
theoretic notions, see [8]. A 2-coloring of a graph F' always means a 2-coloring
on the edges of F' with red and blue. A (G, H)-coloring of a graph F' is a 2-
coloring of F such that F’ contains neither a red copy of G nor a blue copy of H.

For any pair of graphs G and H, notation F' — (G, H) means that in any
2-coloring of F' there exists a monochromatic G or H in F. Let R(G,H)
be the set of all graphs F' satisfying F' — (G, H) and F \ {e} 4 (G, H) for
any edge e € FE(F). Each graph F € R(G, H) is called a minimal Ramsey
graph for a combination of G and H. The size Ramsey number #(G,H) is
defined as min{E(F) | F — (G, H)}. The size Ramsey number was first in-
troduced and studied by P. Erdés, R. J. Faudree, C. C. Rousseau in 1978 [5].

They proved that the size Ramsey number 7(K,,, K,,) = ( T(K”é Kom) ) and
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determined the size Ramsey numbers for stars and for the products of two
graphs. The results on size Ramsey number for paths, trees and cycles can be
found in [1, 2, 9, 10]. Additionally, the size Ramsey number for graph pairs
with one is either a matching or a star, respectively can be found in [3, 4, 6, 11].

Let P, denote a path of n vertices and C% denote a friendship graph, i.e., a
graph obtained by connecting a vertex ¢ (called a hub) to all vertices of t K. In
this paper, we derive an upper bound for the size Ramsey number for a path
P; on three vertices versus a friendship graph C%. Then, we show that W51
is in R(P3, C%). We also give an upper bound of the size Ramsey number for
Pj5 versus P,. Formally, we will prove the following theorems.

Theorem 1. For allt > 1, #(P3,CL) < 6t + 2.
Theorem 2. For allt > 1, Wiy is in R(P3, C}).
Theorem 3. For alln >3, #(P3, P,) <2n—1.

2. The Proof of Theorem 1

In this section, we show that the size Ramsey number #(Ps, C%) < 6t + 2. To
do so, consider any 2-labeling on the edges of a wheel W31 of 6t + 2 edges
as follows.

Let W3441 be a wheel of 3t + 1 spokes, with
V(Way1) = {c} U{vi]l <i<3t+1}
and
E(Ws341) = E1 U Ey
where Ey = {cv;|]1 <1 <3t+ 1} and Ey = {vjvi41|1 <@ < 3t} U{vgp1v1}.

Let x be any 2-coloring of W3,y such that there is no a red P3. We shall show
that x induces a blue C%. To do so, let us consider the following two cases.

Case 1. There exists one red edge in Ej.

Without loss of generality, let cv; be a red edge in F;. Consider a subgraph
Wsi41 — v1 = {c} + Ps;. Since under bi-coloring x, Wsy1 contains no red Ps,
the red edges in E» (if any) are independent and there are at most | 2| of this
color. Therefore, we have at least ¢ blue edges in FEs. These edges together
with ¢ forms a blue C¥ in W3z 1.

Case 2. No red edges in FEj.
By similar argument in Case 1, we have at most L&T‘HJ red edges and other



Upper bounds for the size Ramsey numbers for P3 versus C’§ or P, 143

edges must be blue. It is easy to verify that these blue edges together with
c forms a blue C’§ in Ws,11. As a consequence of these two cases, we have
F(Ps,CL) < 6t +2, for all t > 1. O

3. The Proof of Theorem 2

Now, to prove Theorem 2 we have to show that for any fixed edge e there
exists a 2-labeling on F' =2 Ws3,11 — e such that F' contains neither a red Ps
nor a blue C%.

Let us consider the graph F' = Wy, 41 — e for any fixed edge e € E(Ws3441).
Before the removal the edge e, label the vertices and edges of Ws;11 as in the
proof of Theorem 1. Consider the following two cases.

Case 1. e € Ej.

Without loss of generality, let e = cvy. If ¢ = 1, then color cvs by red and
other edges by blue. Therefore, Wy \ cv; has no red P3 neither blue Ci. If
t>2, let

E3 = {v3141v1, 102, U304, V405, U313 } U (E7 \ cva),

By = {cvy, v3ve41, vavs},
and
Es = E(F)\ (E3U Ey).
Color the edges of E3 by blue and E4 by red. Color the edges of E5 alternat-
ingly two blue and one red (in some order). Under this 2-coloring F' contains
neither a red P53 nor a blue Cé.

Case 2. ¢ € FEs.
Again, without loss of generality, let e = vive. In this case, F' is a fan {c} +
P3t+1. Let
Eg = {vst+1v1, cvs},
E; = {Uzvg, 1)3114} U {El \Cvg},
and
Es = E(F)\ (Eg U Ex).
Color the edges of Eg by red and E- by blue. Color the edges of Eg alternat-
ingly two blue and one red starting from the edge vss11vs:. Consequently, F
contains neither a red P35 nor a blue Cg. [l

The next result presents an upper bound of the size Ramsey number for a
combination of P35 and P,, where n > 3.
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4. The Proof of Theorem 3

To prove Theorem 3, consider the two graphs drawn in Figure 1: (a) for the
case of even n and (b) for the case of odd n.

Let k = [§]. Denote the graph by G, where |V(G)| = n + 1, and |E(G)| =
9 — 1, with
V(G)=A{u;| 1 =0,....,k} U{v;|] i=0,...,s}, s=k—1 for even n or k for
odd n.
E(G) = E1 U Ey U E3 U Ey, where
Elz{mizviui+1| iZO,...,k—l},
Ey ={d; =uw;| 1=0,...,s}, s=k—1 for even n or k for odd n.
E3:{li:uiui+1]izO,...,k—l},
E4:{7“i:’l)i’l)i+1"iZO,...,k—2}.
Define L; = {u;,v;}, i =0,...,k — 1, and Ly = {uy}.

Uo Vo Uo Vo
U1 Vi1 U1 Vi
uz V2 U2 Va
us V3 Us \ V3
Uk-1 Vk-1 Uk-1 V-1
Uk Uk Vk
(@ (b)

FIGURE 1. The graph G: (a) case for even n, and (b) case for
odd n

Let x be any 2-coloring of G. Suppose GG contains no red P3. We will show
that the coloring x creates a blue P, in G. To do so, we use the following
algorithm.

Algoritma 1. Constructing a blue path P, in G

(1) Input n
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(2) P := (up)
(3) i:=0,2:=0
(4) whilei <k —1do
if edge d; is blue
then extend the path P by attaching d; = {u;v;}, namely
P:=PU {uzvz}
else if i = k — 1 and n is even
then wu;_jup and ugvg_1 must be blue. Then, extend path
P by involving these two edges. The resulting path is
P :=PU{ug_qur}U {ugvg_1}, i :== i + 1, return to
step 3.
else w;ujt1, ui+1v;, and v;v;41 must be blue. Then, extend
path P by involving these edges. The resulting path is
P:=PU {uiuiﬂ} U {uﬂ_lvi} U {’L)Z'Ui+1}, and 7 := 1+ 1.

if m; is blue
then extend path P by involving edge m;. The resulting path is
P:=PU{vjuiy1}, and i := i+ 1.
elseif i=k—1
then if n is even
then i := i+ 1, return to step 3.
else v;_1vr and viur must be blue. Then, extend path
P by adding the two edges. The resulting path is
P := PU{vg_qvptU{vgugt, i:=i+1, and z := 1.
else v;v; 11, Vi+1Ui+1, and u;1u;42 are blue. Then, extend
path P by involving these edges. The resulting path is
P := PU{vvip1} U{vig1uis1} U{uip1uiya},
and i :=1+ 2.
(5) if dj is blue and x := 0
then extend path P by involving dj. The resulting path is
P := P U {ugv}.
(6) End.

The resulting path P of the above algorithm will contain exactly two ver-
tices in each L; = {u;,v;}, i =0,...,k — 1 and additionally for odd n it has
at least one vertex in Li. So, the path P has length of at least n. Hence,



146 E. T. Baskoro, Y. Nuraeni, A.A.G. Ngurah

#(P3, Py) < 2n— 1. 0

5. Open problems and conjectures

To conclude this paper, let us state the following conjecture and give some
open problems to work on.

Conjecture 1. For allt > 1, #(Ps,C%) = 6t + 2.

Open problem 1. For n > 3, find a better upper bound for the size Ramsey
number 7(Ps, P,). Find the size Ramsey number #(Pp,, Py,), in general.

For small cases, we are able to show that #(Ps, P;) = 3,5,6,8,10,12,13, 16, 16,19
for k =3,4,5,6,7,8,9,10, 11, 12 respectively. The proofs refer to [12].
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