UPPER BOUNDS FOR THE SIZE RAMSEY NUMBERS FOR P_3 VERSUS C_3^t OR P_n E.T. BASKORO^{1,2}, Y. NURAENI¹, A.A.G. NGURAH¹ ABSTRACT. In this paper, we derive an upper bound for the size Ramsey number for a path P_3 versus a friendship graph C_3^t . Furthermore, some minimal Ramsey graph for a combination (P_3, C_3^t) is presented. We also give an upper bound of the size Ramsey number for P_3 versus P_n . $Key\ words$: Size Ramsey number, path, friendship graph. $AMS\ SUBJECT:\ 05C55,\ 05D10.$ # 1. Introduction All graphs considered here are finite, simple, and undirected. The graph G has a vertex set V(G) and edge set E(G). For a general reference for graph theoretic notions, see [8]. A 2-coloring of a graph F always means a 2-coloring on the edges of F with red and blue. A (G, H)-coloring of a graph F is a 2-coloring of F such that F contains neither a red copy of F nor a blue copy of F. For any pair of graphs G and H, notation $F \to (G, H)$ means that in any 2-coloring of F there exists a monochromatic G or H in F. Let $\mathcal{R}(G, H)$ be the set of all graphs F satisfying $F \to (G, H)$ and $F \setminus \{e\} \not\to (G, H)$ for any edge $e \in E(F)$. Each graph $F \in \mathcal{R}(G, H)$ is called a minimal Ramsey graph for a combination of G and G. The size Ramsey number $\hat{r}(G, H)$ is defined as $\min\{E(F) \mid F \to (G, H)\}$. The size Ramsey number was first introduced and studied by P. Erdös, R. J. Faudree, C. C. Rousseau in 1978 [5]. They proved that the size Ramsey number $$\hat{r}(K_n, K_m) = {r(K_n, K_m) \choose 2}$$ and ¹Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 Indonesia, E-mails: {ebaskoro, s304agung}@math.itb.ac.id. ²School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore, Pakistan. determined the size Ramsey numbers for stars and for the products of two graphs. The results on size Ramsey number for paths, trees and cycles can be found in [1, 2, 9, 10]. Additionally, the size Ramsey number for graph pairs with one is either a matching or a star, respectively can be found in [3, 4, 6, 11]. Let P_n denote a path of n vertices and C_3^t denote a friendship graph, i.e., a graph obtained by connecting a vertex c (called a hub) to all vertices of tK_2 . In this paper, we derive an upper bound for the size Ramsey number for a path P_3 on three vertices versus a friendship graph C_3^t . Then, we show that W_{3t+1} is in $\mathcal{R}(P_3, C_3^t)$. We also give an upper bound of the size Ramsey number for P_3 versus P_n . Formally, we will prove the following theorems. **Theorem 1.** For all $t \ge 1$, $\hat{r}(P_3, C_3^t) \le 6t + 2$. **Theorem 2.** For all $t \geq 1$, W_{3t+1} is in $\mathcal{R}(P_3, C_3^t)$. **Theorem 3.** For all $n \ge 3$, $\hat{r}(P_3, P_n) \le 2n - 1$. #### 2. The Proof of Theorem 1 In this section, we show that the size Ramsey number $\hat{\mathbf{r}}(P_3, C_3^t) \leq 6t + 2$. To do so, consider any 2-labeling on the edges of a wheel W_{3t+1} of 6t + 2 edges as follows. Let W_{3t+1} be a wheel of 3t+1 spokes, with $$V(W_{3t+1}) = \{c\} \cup \{v_i | 1 \le i \le 3t+1\}$$ and $$E(W_{3t+1}) = E_1 \cup E_2$$ where $$E_1 = \{cv_i | 1 \le i \le 3t + 1\}$$ and $E_2 = \{v_i v_{i+1} | 1 \le i \le 3t\} \cup \{v_{3t+1} v_1\}$. Let χ be any 2-coloring of W_{3t+1} such that there is no a red P_3 . We shall show that χ induces a blue C_3^t . To do so, let us consider the following two cases. ### Case 1. There exists one red edge in E_1 . Without loss of generality, let cv_1 be a red edge in E_1 . Consider a subgraph $W_{3t+1} - v_1 \cong \{c\} + P_{3t}$. Since under bi-coloring χ , W_{3t+1} contains no red P_3 , the red edges in E_2 (if any) are independent and there are at most $\lfloor \frac{3t}{2} \rfloor$ of this color. Therefore, we have at least t blue edges in E_2 . These edges together with c forms a blue C_3^t in W_{3t+1} . # Case 2. No red edges in E_1 . By similar argument in Case 1, we have at most $\lfloor \frac{3t+1}{2} \rfloor$ red edges and other edges must be blue. It is easy to verify that these blue edges together with c forms a blue C_3^t in W_{3t+1} . As a consequence of these two cases, we have $\hat{r}(P_3, C_3^t) \leq 6t + 2$, for all $t \geq 1$. #### 3. The Proof of Theorem 2 Now, to prove Theorem 2 we have to show that for any fixed edge e there exists a 2-labeling on $F \cong W_{3t+1} - e$ such that F contains neither a red P_3 nor a blue C_3^t . Let us consider the graph $F \cong W_{3t+1} - e$ for any fixed edge $e \in E(W_{3t+1})$. Before the removal the edge e, label the vertices and edges of W_{3t+1} as in the proof of Theorem 1. Consider the following two cases. # Case 1. $e \in E_1$. Without loss of generality, let $e = cv_1$. If t = 1, then color cv_3 by red and other edges by blue. Therefore, $W_4 \setminus cv_1$ has no red P_3 neither blue C_3^1 . If $t \geq 2$, let $$E_3 = \{v_{3t+1}v_1, v_1v_2, v_3v_4, v_4v_5, v_{3t-1}v_{3t}\} \cup (E_1 \setminus cv_4),$$ $$E_4 = \{cv_4, v_{3t}v_{3t+1}, v_2v_3\},$$ and $$E_5 = E(F) \setminus (E_3 \cup E_4).$$ Color the edges of E_3 by blue and E_4 by red. Color the edges of E_5 alternatingly two blue and one red (in some order). Under this 2-coloring F contains neither a red P_3 nor a blue C_3^t . #### Case 2. $e \in E_2$. Again, without loss of generality, let $e = v_1 v_2$. In this case, F is a fan $\{c\} + P_{3t+1}$. Let $$E_6 = \{v_{3t+1}v_1, cv_3\},$$ $$E_7 = \{v_2v_3, v_3v_4\} \cup \{E_1 \setminus cv_3\},$$ and $$E_8 = E(F) \setminus (E_6 \cup E_7).$$ Color the edges of E_6 by red and E_7 by blue. Color the edges of E_8 alternatingly two blue and one red starting from the edge $v_{3t+1}v_{3t}$. Consequently, F contains neither a red P_3 nor a blue C_3^t . The next result presents an upper bound of the size Ramsey number for a combination of P_3 and P_n , where $n \geq 3$. # 4. The Proof of Theorem 3 To prove Theorem 3, consider the two graphs drawn in Figure 1: (a) for the case of even n and (b) for the case of odd n. Let $k = \lfloor \frac{n}{2} \rfloor$. Denote the graph by G, where |V(G)| = n + 1, and |E(G)| = 2n - 1, with $V(G) = \{u_i | i = 0, ..., k\} \cup \{v_i | i = 0, ..., s\}, s = k - 1 \text{ for even } n \text{ or } k \text{ for odd } n.$ $E(G) = E_1 \cup E_2 \cup E_3 \cup E_4, \text{ where}$ $E_1 = \{m_i = v_i u_{i+1} | i = 0, \dots, k-1\},$ $E_2 = \{d_i = u_i v_i | i = 0, \dots, s\}, \ s = k-1 \text{ for even } n \text{ or } k \text{ for odd } n.$ $E_3 = \{l_i = u_i u_{i+1} | i = 0, \dots, k-1\},$ $E_4 = \{r_i = v_i v_{i+1} | i = 0, \dots, k-2\}.$ Define $L_i = \{u_i, v_i\}, \ i = 0, \dots, k-1, \text{ and } L_k = \{u_k\}.$ FIGURE 1. The graph G: (a) case for even n, and (b) case for odd n Let χ be any 2-coloring of G. Suppose G contains no red P_3 . We will show that the coloring χ creates a blue P_n in G. To do so, we use the following algorithm. **Algoritma 1.** Constructing a blue path P_n in G (1) Input n ``` (2) P := (u_0) ``` (3) i := 0, x := 0 (4) while $i \leq k-1$ do if edge d_i is blue **then** extend the path P by attaching $d_i = \{u_i v_i\}$, namely $$P := P \cup \{u_i v_i\}$$ else if i = k - 1 and n is even then $u_{k-1}u_k$ and u_kv_{k-1} must be blue. Then, extend path P by involving these two edges. The resulting path is $P:=P\cup\{u_{k-1}u_k\}\cup\{u_kv_{k-1}\},\ i:=i+1,$ return to step 3. else $u_i u_{i+1}$, $u_{i+1} v_i$, and $v_i v_{i+1}$ must be blue. Then, extend path P by involving these edges. The resulting path is $P := P \cup \{u_i u_{i+1}\} \cup \{u_{i+1} v_i\} \cup \{v_i v_{i+1}\}$, and i := i+1. **if** m_i is blue then extend path P by involving edge m_i . The resulting path is $P := P \cup \{v_i u_{i+1}\}, \text{ and } i := i+1.$ else if i = k - 1 then if n is even then i := i + 1, return to step 3. else $v_{k-1}v_k$ and v_ku_k must be blue. Then, extend path P by adding the two edges. The resulting path is $P := P \cup \{v_{k-1}v_k\} \cup \{v_ku_k\}, i := i+1, \text{ and } x := 1.$ else $v_i v_{i+1}$, $v_{i+1} u_{i+1}$, and $u_{i+1} u_{i+2}$ are blue. Then, extend path P by involving these edges. The resulting path is $P := P \cup \{v_i v_{i+1}\} \cup \{v_{i+1} u_{i+1}\} \cup \{u_{i+1} u_{i+2}\},$ and i := i+2. (5) **if** d_k is blue and x := 0**then** extend path P by involving d_k . The resulting path is $P := P \cup \{u_k v_k\}.$ (6) **End.** The resulting path P of the above algorithm will contain exactly two vertices in each $L_i = \{u_i, v_i\}, i = 0, ..., k-1 \text{ and additionally for odd } n \text{ it has at least one vertex in } L_k$. So, the path P has length of at least n. Hence, $\hat{r}(P_3, P_n) \le 2n - 1.$ ## 5. Open problems and conjectures To conclude this paper, let us state the following conjecture and give some open problems to work on. Conjecture 1. For all $t \ge 1$, $\hat{r}(P_3, C_3^t) = 6t + 2$. **Open problem 1.** For $n \geq 3$, find a better upper bound for the size Ramsey number $\hat{r}(P_3, P_n)$. Find the size Ramsey number $\hat{r}(P_m, P_n)$, in general. For small cases, we are able to show that $\hat{r}(P_3, P_k) = 3, 5, 6, 8, 10, 12, 13, 16, 16, 19$ for k = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively. The proofs refer to [12]. #### References - J. Beck, On size ramsey number of paths, trees, and circuits I, J. Graph Theory 7 (1983), 115 - 129. - [2] J. Beck, On size ramsey number of paths, trees, and circuits II, in: Mathematics of Ramsey theory, Algorithms combin. 5 (eds. J. Nešetřil, V. Rödl), Springer, berlin (1990), 34 - 45. - [3] S. A. Burr, A survey of noncomplete Ramsey theory for graphs, Ann. New york Acad. Sci. 328 (1979), 58 75. - [4] S. A. Burr, P. Erdös, R. J. Faudree, C. C. Rousseau, R. H. Schelp, Ramsey-minimal graphs for multiple copies, *Indag. Math.* 40 (1978), 187 - 195. - [5] P. Erdös, R. J. Faudree, C. C. Rousseau, R. H. Schelp, The size Ramsey number, Period. math. Hungar 9 (1978), 145 - 161. - [6] R. J. Faudree, J. Sheehan, Size Ramsey numbers for small-order graphs, J. Graph Theory, 7 (1983) 53 - 55. - [7] R. J. Faudree, J. Sheehan, Size Ramsey numbers involving star, *Discrete Math.*, 46 (1983) 151 - 157. - [8] N. Hartsfield and G. Ringel, Pearls in graph theory, Academic Press, New York, 2nd Edition, 2001. - [9] P. E. Haxell, Y. Kohayakawa, The size Ramsey numbers of trees, Isr. J. Math., 89 (1995) 261 - 274. - [10] X. Ke, The size Ramsey numbers of trees with bounded degree, Random Structure Algorithms, 4 (1993) 85 - 97. - [11] R. Lortz, I. Mengersen, Size Rramsey results for path versus stars, Austraasian. J. Combin., 18 (1998) 3 - 12. - [12] Y. Nuraeni, Size Ramsey number for paths (in Indonesian), *Master Theses*, Department of Mathematics, Institut Teknologi Bandung, Indonesia, (2004).