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UPPER BOUNDS FOR THE SIZE RAMSEY NUMBERS FOR
P3 VERSUS Ct

3 OR Pn

E.T. BASKORO1,2, Y. NURAENI1, A.A.G. NGURAH1

Abstract. In this paper, we derive an upper bound for the size Ramsey
number for a path P3 versus a friendship graph Ct

3. Furthermore, some
minimal Ramsey graph for a combination (P3, C

t
3) is presented. We also

give an upper bound of the size Ramsey number for P3 versus Pn.
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1. Introduction

All graphs considered here are finite, simple, and undirected. The graph G
has a vertex set V (G) and edge set E(G). For a general reference for graph
theoretic notions, see [8]. A 2-coloring of a graph F always means a 2-coloring
on the edges of F with red and blue. A (G,H)-coloring of a graph F is a 2-
coloring of F such that F contains neither a red copy of G nor a blue copy of H.

For any pair of graphs G and H, notation F → (G, H) means that in any
2-coloring of F there exists a monochromatic G or H in F . Let R(G,H)
be the set of all graphs F satisfying F → (G,H) and F \ {e} 6→ (G, H) for
any edge e ∈ E(F ). Each graph F ∈ R(G,H) is called a minimal Ramsey
graph for a combination of G and H. The size Ramsey number r̂(G, H) is
defined as min{E(F ) | F → (G,H)}. The size Ramsey number was first in-
troduced and studied by P. Erdös, R. J. Faudree, C. C. Rousseau in 1978 [5].

They proved that the size Ramsey number r̂(Kn, Km) =
(

r(Kn,Km)
2

)
and
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determined the size Ramsey numbers for stars and for the products of two
graphs. The results on size Ramsey number for paths, trees and cycles can be
found in [1, 2, 9, 10]. Additionally, the size Ramsey number for graph pairs
with one is either a matching or a star, respectively can be found in [3, 4, 6, 11].

Let Pn denote a path of n vertices and Ct
3 denote a friendship graph, i.e., a

graph obtained by connecting a vertex c (called a hub) to all vertices of tK2. In
this paper, we derive an upper bound for the size Ramsey number for a path
P3 on three vertices versus a friendship graph Ct

3. Then, we show that W3t+1

is in R(P3, C
t
3). We also give an upper bound of the size Ramsey number for

P3 versus Pn. Formally, we will prove the following theorems.

Theorem 1. For all t ≥ 1, r̂(P3, C
t
3) ≤ 6t + 2.

Theorem 2. For all t ≥ 1, W3t+1 is in R(P3, C
t
3).

Theorem 3. For all n ≥ 3, r̂(P3, Pn) ≤ 2n− 1.

2. The Proof of Theorem 1

In this section, we show that the size Ramsey number r̂(P3, C
t
3) ≤ 6t + 2. To

do so, consider any 2-labeling on the edges of a wheel W3t+1 of 6t + 2 edges
as follows.

Let W3t+1 be a wheel of 3t + 1 spokes, with

V (W3t+1) = {c} ∪ {vi|1 ≤ i ≤ 3t + 1}
and

E(W3t+1) = E1 ∪ E2

where E1 = {cvi|1 ≤ i ≤ 3t + 1} and E2 = {vivi+1|1 ≤ i ≤ 3t} ∪ {v3t+1v1}.

Let χ be any 2-coloring of W3t+1 such that there is no a red P3. We shall show
that χ induces a blue Ct

3. To do so, let us consider the following two cases.

Case 1. There exists one red edge in E1.
Without loss of generality, let cv1 be a red edge in E1. Consider a subgraph
W3t+1 − v1

∼= {c}+ P3t. Since under bi-coloring χ, W3t+1 contains no red P3,
the red edges in E2 (if any) are independent and there are at most b3t

2 c of this
color. Therefore, we have at least t blue edges in E2. These edges together
with c forms a blue Ct

3 in W3t+1.

Case 2. No red edges in E1.
By similar argument in Case 1, we have at most b3t+1

2 c red edges and other
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edges must be blue. It is easy to verify that these blue edges together with
c forms a blue Ct

3 in W3t+1. As a consequence of these two cases, we have
r̂(P3, C

t
3) ≤ 6t + 2, for all t ≥ 1. ¤

3. The Proof of Theorem 2

Now, to prove Theorem 2 we have to show that for any fixed edge e there
exists a 2-labeling on F ∼= W3t+1 − e such that F contains neither a red P3

nor a blue Ct
3.

Let us consider the graph F ∼= W3t+1 − e for any fixed edge e ∈ E(W3t+1).
Before the removal the edge e, label the vertices and edges of W3t+1 as in the
proof of Theorem 1. Consider the following two cases.

Case 1. e ∈ E1.
Without loss of generality, let e = cv1. If t = 1, then color cv3 by red and
other edges by blue. Therefore, W4 \ cv1 has no red P3 neither blue C1

3 . If
t ≥ 2, let

E3 = {v3t+1v1, v1v2, v3v4, v4v5, v3t−1v3t} ∪ (E1 \ cv4),

E4 = {cv4, v3tv3t+1, v2v3},
and

E5 = E(F ) \ (E3 ∪ E4).
Color the edges of E3 by blue and E4 by red. Color the edges of E5 alternat-
ingly two blue and one red (in some order). Under this 2-coloring F contains
neither a red P3 nor a blue Ct

3.

Case 2. e ∈ E2.
Again, without loss of generality, let e = v1v2. In this case, F is a fan {c} +
P3t+1. Let

E6 = {v3t+1v1, cv3},
E7 = {v2v3, v3v4} ∪ {E1 \ cv3},

and
E8 = E(F ) \ (E6 ∪ E7).

Color the edges of E6 by red and E7 by blue. Color the edges of E8 alternat-
ingly two blue and one red starting from the edge v3t+1v3t. Consequently, F
contains neither a red P3 nor a blue Ct

3. ¤

The next result presents an upper bound of the size Ramsey number for a
combination of P3 and Pn, where n ≥ 3.
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4. The Proof of Theorem 3

To prove Theorem 3, consider the two graphs drawn in Figure 1: (a) for the
case of even n and (b) for the case of odd n.

Let k = bn
2 c. Denote the graph by G, where |V (G)| = n + 1, and |E(G)| =

2n− 1, with
V (G) = {ui| i = 0, . . . , k} ∪ {vi| i = 0, . . . , s}, s = k − 1 for even n or k for

odd n.
E(G) = E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = {mi = viui+1| i = 0, . . . , k − 1} ,
E2 = {di = uivi| i = 0, . . . , s}, s = k − 1 for even n or k for odd n.
E3 = {li = uiui+1| i = 0, . . . , k − 1} ,
E4 = {ri = vivi+1| i = 0, . . . , k − 2} .

Define Li = {ui, vi}, i = 0, . . . , k − 1, and Lk = {uk}.
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(a)   (b)

Figure 1. The graph G: (a) case for even n, and (b) case for
odd n

Let χ be any 2-coloring of G. Suppose G contains no red P3. We will show
that the coloring χ creates a blue Pn in G. To do so, we use the following
algorithm.

Algoritma 1. Constructing a blue path Pn in G

(1) Input n
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(2) P := (u0)
(3) i := 0, x := 0
(4) while i ≤ k − 1 do

if edge di is blue
then extend the path P by attaching di = {uivi}, namely

P := P ∪ {uivi}
else if i = k − 1 and n is even

then uk−1uk and ukvk−1 must be blue. Then, extend path
P by involving these two edges. The resulting path is
P := P ∪ {uk−1uk}∪ {ukvk−1}, i := i + 1, return to
step 3.

else uiui+1, ui+1vi, and vivi+1 must be blue. Then, extend
path P by involving these edges. The resulting path is
P := P ∪{uiui+1}∪{ui+1vi}∪{vivi+1}, and i := i+1.

if mi is blue
then extend path P by involving edge mi. The resulting path is

P := P ∪ {viui+1}, and i := i + 1.
else if i = k − 1

then if n is even
then i := i + 1, return to step 3.
else vk−1vk and vkuk must be blue. Then, extend path

P by adding the two edges. The resulting path is
P := P ∪{vk−1vk}∪{vkuk}, i := i+1, and x := 1.

else vivi+1, vi+1ui+1, and ui+1ui+2 are blue. Then, extend
path P by involving these edges. The resulting path is
P := P ∪ {vivi+1} ∪ {vi+1ui+1} ∪ {ui+1ui+2},
and i := i + 2.

(5) if dk is blue and x := 0
then extend path P by involving dk. The resulting path is

P := P ∪ {ukvk}.
(6) End.

The resulting path P of the above algorithm will contain exactly two ver-
tices in each Li = {ui, vi}, i = 0, . . . , k − 1 and additionally for odd n it has
at least one vertex in Lk. So, the path P has length of at least n. Hence,
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r̂(P3, Pn) ≤ 2n− 1. ¤

5. Open problems and conjectures

To conclude this paper, let us state the following conjecture and give some
open problems to work on.

Conjecture 1. For all t ≥ 1, r̂(P3, C
t
3) = 6t + 2.

Open problem 1. For n ≥ 3, find a better upper bound for the size Ramsey
number r̂(P3, Pn). Find the size Ramsey number r̂(Pm, Pn), in general.

For small cases, we are able to show that r̂(P3, Pk) = 3, 5, 6, 8, 10, 12, 13, 16, 16, 19
for k = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively. The proofs refer to [12].
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