

Journal of Prime Research in Mathematics

Isomorphism Theorems in Generalized d-algebras

Muhammad Anwar Chaudhry^a, Muhammad Imran Qureshi^b, Asfand Fahad^{c,*}, Muhammad Sajjad Bashir^a

Abstract

We introduce the generalized d-algebras, generalized d-ideals (d^* -ideals, d^* -ideals, d^* -ideals) and other related notions. We also prove some properties about d-ideal, d^* -ideal and results related to quotient generalized d-algebra. Through these constructions, we prove the first, second and the third isomorphism theorems for the generalized d-algebras. These developments contribute to the theory of the BCI/BCK/BCH and the generalized BCH-algebras.

Keywords: Generalized d-algebras, Isomorphism theorems, BCH-algebras, d[#]-ideals. 2010 MSC: 06F35, 03G25.

1. Introduction

The notions of the BCK-algebras and the BCI-algebras were given in [12] and [13] among which the prior is the proper subclass of the latter. Several mathematicians studied multiple aspects of these algebras, for example BCI-algebras [25], BCK-algebras and ideals in BCK-algebras [19, 20], ideals, relevant theory and filters in BCH-algebras [8, 24].

The notion of a BCH-algebras was characterized by Hu et. al. in 1983 ([11]). The notion of BCH-algebras is a generalized notion of BCK-algebras and BCI-algebras. Chaudhry [9], Dudek et. al. [10] and many other researchers worked on this class.

Neggers et. al. [22] gave the idea of a d-algebra. The class of d-algebras is a generalized class of BCK-algebras. The authors in [22], worked on the relations between BCK-algebras and d-algebras. Several notions/aspeptts of d-algebras such as, ideal theory based on N-structures [2], fuzzy ideals [17], d-fuzzy ideals [21], d-algebra ideals [23], deformation in d/BCK-algebras [26] and BCK-neighborhood systems in d-algebras [27] have been studied extensively. Moreover, some other types related to d-algebras such as

^aDepartment of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan.

^bDepartment of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.

^cCenter for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan.

^{*}Corresponding author

Email addresses: chaudhry@isp.edu.pk (Muhammad Anwar Chaudhry), imranqureshi18@gmail.com (Muhammad Imran Qureshi), asfandfahad1@yahoo.com (Asfand Fahad), sajjadhashmi77@gmail.com (Muhammad Sajjad Bashir)

companion d-algebras [4], L-up and mirror d-algebras [5] and d-algebras of d-transitive d^* -algebra [18] have also been introduced and investigated. The theory of ideal of d-algebras was given by Neggers, et. al. ([23]). They gave the notions of a d-subalgebra, a d^* -ideal, a d-ideal and a $d^\#$ -ideal and studied their connection.

In 2013, Abdullah et. al. [1] gave the idea of a semi d-ideal of a d-algebra, and also many relations between semi d-ideals and d-ideals in d-algebras are examined in [3].

The notion of a generalized d-algebra was firstly introduced by Chaudhry et. al. [7] and some elementary aspects of generalized d-algebras were discussed. The properties of these algebras have been not discovered extensively, yet.

The main objective of this paper is to inspect some ideals in generalized d-algebras and d[#]-ideals and prove some isomorphism theorems in these algebras.

2. Preliminaries

Throughout this article X=(X,*,0) will be a non-empty set with a binary operation "*" and a distinguished element $0 \in X$. K. Iseki and Y.Imai gave the notion of a BCK-algebras in 1966.

Definition 2.1. [13, 15] X is called a BCK-algebra if

```
1. ((\rho * v) * (\rho * n)) * (n * v) = 0,
```

$$2. (\varrho * (\varrho * \upsilon)) * \upsilon = 0,$$

3.
$$\varrho * \varrho = 0$$
,

4.
$$0 * \varrho = 0$$
,

5. $\varrho * \upsilon = 0$ and $\upsilon * \varrho = 0$ imply $\varrho = \upsilon$, for all $\varrho, \upsilon, n \in X$.

In a BCK-algebra X, the following hold [23]:

```
I (\rho * v) * \rho = 0,

II ((\rho * n) * (v * n)) * (\rho * v) = 0, for all \rho, v, n \in X.
```

BCI-algebra was proposed in 1966, by K. Iseki, a generalization of a BCK-algebra [12].

Definition 2.2. [16] X is called a BCI-algebra if it satisfies 1, 2, 3, 5 in definition 2.1 and

```
(6) \varrho * 0 = 0 implies \varrho = 0.
```

Every BCK-algebra is a BCI-algebra but the converse is not true [16]. In 1983, the concept of a BCH-algebra was presented by Q. P. Hu and X. Li [11]. They proved that BCI-algebras's class is a proper subclass of the BCH-algebras's class. Some basic properties of the BCH-algebras can be seen in [9] and their decomposition has been presented in [10].

Definition 2.3. [9] X is called a BCH-algebra if $\forall \varrho, v, n \in X$, it satisfies

- (3) $\varrho * \varrho = 0$,
- (5) $\rho * v = 0$ and $v * \rho = 0$ imply $\rho = v$,
- (7) $(\varrho * \upsilon) * n = (\varrho * n) * \upsilon$.

Definition 2.4. [11] Let X be a BCK/BCI/BCH-algebra. A relation \leq is defined on X by: $\varrho \leq v$ if and only if $\varrho * v = 0$.

Every BCI/BCK-algebra, with respect to this relation \leq is partially ordered (see [15]).

Definition 2.5. [14] Let X be a BCK/BCI/BCH-algebra. $\phi \neq I \subseteq X$ is a BCK/BCI/BCH-ideal of X if

- (I) $0 \in I$
- (II) $\varrho \in I$ and $\upsilon * \varrho \in I$, implies $\upsilon \in X$.

Definition 2.6. [14] Let X be a BCK/BCI/BCH-algebra and $\phi \neq I \subseteq X$. I is a closed ideal of X if

- (I) $0 * \varrho \in I$, for all $\varrho \in I$,
- (II) $\varrho \in I$ and $\upsilon * \varrho \in I$ imply $\upsilon \in I$, $\upsilon, \varrho \in X$.

Lemma 2.7. [14] Let I be a BCK/BCI/BCH-ideal of a BCK-algebra X. If $\varrho \in I$ and $\upsilon * \varrho = 0$ then $\upsilon \in I$.

2.1. $d-algebra\ Notions$

In 1999, Neggers et al. gave the notion of a d-algebra [22].

Definition 2.8. [22] X is called a d-algebra if $\forall v, \varrho \in X$, it satisfies

- (I) $\varrho * \varrho = 0$,
- (II) $0 * \varrho = 0$,
- (III) $\varrho * \upsilon = 0$ and $\upsilon * \varrho = 0$ imply $\varrho = \upsilon$.

Every BCK-algebra is a d-algebra. But converse is not true. (see [22]).

Let X be a d-algebra. We specify the relation \leq on X by: $\varrho \leq v$ if and only if $\varrho * v = 0$.

Definition 2.9. [22] A d-algebra X is d-transitive if $\varrho * n = 0 \& n * v = 0$ imply $\varrho * v = 0$, for all $\varrho, v, n \in X$.

2.2. Some special Subsets and Ideals in d-algebra

Definition 2.10. [6] Let X be a d-algebra. $\phi \neq S \subseteq X$ is called a sub algebra of X if $\forall \varrho, v \in S, \varrho * v \in S$.

Definition 2.11. [23] Let X be a d-algebra and $\phi \neq I \subseteq X$ is a d-ideal of X if

- (D_1) $\varrho * \upsilon \in I$ and $\upsilon \in I$ imply $\varrho \in I$.
- (D_2) $\varrho \in I$ and $v \in X \Rightarrow \varrho * v \in I$, i.e., $I * X \subseteq I$.

It is not necessary that d-subalgebra is also d-ideal, see [23].

Lemma 2.12. Suppose I is a d-ideal in a d-algebra X, then $0 \in I$.

Proof. Since I is a non-empty set, so $\exists \varrho \in I$. Also $I \subseteq X$, so $\varrho \in X$. Thus $0 = \varrho * \varrho \in I$ by using (D_2) . \square

It is known that every d-ideal of a d-algebra is a BCK-ideal, but converse is not true.

Proposition 2.13. Suppose I is a d-ideal of a d-algebra X. If $\varrho \in I$ and $\upsilon * \varrho = 0$, then $\upsilon \in I$.

Proof. Assume that $\rho \in I$ and $v * \rho = 0$. By Lemma 2.12 and (D_1) , we have $v \in I$.

Definition 2.14. A d-ideal of a d-algebra X is called a d^* -ideal of X, if for arbitrary $\varrho, v, n \in X$, (D_3) $\varrho * n \in I$, whenever $\varrho * v \in I$ and $v * n \in I$.

We note that every d^* -ideal is a d-ideal, but converse is not true. (see [23]).

Definition 2.15. A d-algebra X is called a d^* -algebra if it satisfies $(\varrho * \upsilon) * \varrho = 0 \ \forall \varrho, \upsilon \in X$.

Definition 2.16. A subset $I \neq \phi$ of a d-algebra X is called a $d^{\#}$ -ideal of X if it is a d^{*} -ideal and it satisfies

 (D_4) $\varrho * \upsilon \in I$ and $\upsilon * \varrho \in I$ imply $(\varrho * n) * (\upsilon * n) \in I$ and $(n * \varrho) * (n * \upsilon) \in I \ \forall \ \varrho, \upsilon, n \in X$.

Every $d^{\#}$ -ideal in a d-algebra is a d^* -ideal, but converse is not true, (see [23]).

Definition 2.17. ([22]) A mapping $f: X \to Y$ is called a d-homomorphism if $f(\varrho * \upsilon) = f(\varrho) * f(\upsilon), \forall \varrho, \upsilon \in X$.

Note that f(0) = f(0 * 0) = f(0) * f(0) = 0.

3. Generalized d-algebras Notions

In this section, few notions of generalized d-algebras are given. The concepts and some results about the generalized d-subalgebras and generalized d-ideal are proved to set the pathway towards the concept of quotient generalized d-algebras.

Definition 3.1. (Generalized d-algebra)

X is called generalized d-algebra if it satisfying these axioms:

- (I) $\rho * \rho = 0$
- (II) $(0 * \varrho) * \varrho = 0$
- (III) $\varrho * \upsilon = 0$ and $\upsilon * \varrho = 0$ implies $\varrho = \upsilon$ for all $\varrho, \upsilon \in X$.

Remark 3.2. Every BCK/d-algebra is a generalized d-algebra because the condition $0 * \varrho = 0$ implies $(0 * \varrho) * \varrho = 0 * \varrho = 0$. Moreover. In general the converse is not true.

Example 3.3. Let $X = \{0, \rho, v\}$ with binary operation "*" defined by:

*	0	ρ	v
0	0	0	v
ρ	Q	0	ρ
v	v	v	0

Then (X, *, 0) is a generalized d-algebra, but it is not a BCK-algebra, as

$$(\varrho * (\varrho * \upsilon)) * \upsilon = (\varrho * \varrho) * \upsilon = 0 * \upsilon = \upsilon \neq 0.$$

Further, this is not a d-algebra because $0 * v = v \neq 0$.

We note that the class of d-algebras and the class of BCK-algebras contained in the class of generalized d-algebras. Thus, our results of this paper are valid for d-algebras as well as for BCK-algebras.

We remark that the relation \leq , definitions of transitive generalized d-algebras and generalized d-subalgebra are the same as the definitions of corresponding notions in d-algebras.

Remark 3.4. If X is a generalized d-algebra, then we define a relation \leq on X as $\varrho \leq v$ if and only if $\varrho * v = 0, \forall \varrho, v \in X$.

Definition 3.5. (Transitive generalized d-algebra)

A generalized d-algebra X is a transitive generalized d-algebra if $\rho * n = 0$ and n * v = 0 imply $\rho * v = 0$.

Definition 3.6. (Generalized d-subalgebra)

Let X be a generalized d-algebra. $\phi \neq S \subseteq X$ is called a generalized d-subalgebra of X if for all $\varrho, \upsilon \in S$, we have $\varrho * \upsilon \in S$.

Definition 3.7. (Generalized d-ideal)

Let X be a generalized d-algebra and $\phi \neq I \subseteq X$. I is said to be a generalized d-ideal of X if it satisfies:

- (GD_1) $\varrho * \upsilon \in I$ and $\upsilon \in I \Rightarrow \varrho \in I$.
- (GD_2) $\varrho \in I$ and $v \in X$ imply $(\varrho * v) * v \in I$.

Every generalized d-ideal is a generalized d-subalgebra. Suppose $\varrho, v \in I \subseteq X$, then $v \in X$. Thus by $(GD_2), (\varrho * v) * v \in I$ and by $(GD_1), \varrho * v \in I$.

Example 3.8. Let $X = \{0, a, b, c\}$ be a generalized d-algebra and "*" is a binary operation defined on X as:

*	0	a	b	c
0	0	0	0	c
a	a	0	С	a
b	b	c	0	a
c	c	c	c	0

Then $I = \{0, c\}$ is a generalized d-ideal of X.

It can be noted that every generalized d-subalgebra is not necessary a generalized d-ideal.

Theorem 3.9. Every generalized d-ideal of a generalized d-algebra X is a BCK-ideal of X.

Proof. Let X is a generalized d-algebra. Let I a generalized d-ideal of X.

Since $I \neq \phi$. So there exists an $\varrho \in I$. Further, $\varrho \in X$ so by (GD_2) , $(\varrho * \varrho) * \varrho = 0 * \varrho \in I$. Now (GD_1) gives $0 \in I$.

Now suppose $\varrho * v, v \in I$ then by (GD_1) , we have $\varrho \in I$. Thus, I is a BCK-ideal.

Proposition 3.10. Suppose I is a generalized d-ideal of a generalized d-algebra X. Then $0 * \varrho \in I$ for all $\varrho \in I$.

Proof. Since $I \neq \phi$, there exists an $\varrho \in I$. Since $\varrho \in X$, so by (GD_2) , $(\varrho * \varrho) * \varrho = 0 * \varrho \in I$.

Definition 3.11. A generalized d-ideal I of a generalized d-algebra X is called a d^* -ideal of X, if for arbitrary $\rho, v, n \in X$.

 (GD_3) $\varrho * n \in I$ whenever $\varrho * v \in I$ and $v * n \in I$.

In generalized d-algebra, it is not necessary that generalized d-ideal is also generalized d^* -ideal.

Definition 3.12. A generalized d-algebra X is called a d^* -algebra if $((\rho * \upsilon) * \rho) * \rho = 0$ for all $\rho, \upsilon \in X$.

Definition 3.13. If a d^* -ideal I of a generalized d-algebra X satisfies

(GD₄) $\varrho * v \in I$ and $v * \varrho \in I$ imply $(\varrho * n) * (v * n) \in I$ and $(n * \varrho) * (n * v) \in I$ for all $\varrho, v, n \in X$, then I is to be a $d^{\#}$ -ideal in X.

In generalized $d^{\#}$ -algebra, every d^* -ideal is $d^{\#}$ -ideal but converse is not true in general.

4. Quotient Generalized d-algebras

The concept of a quotient generalized d-algebra is introduced in this section and also obtain some results.

Definition 4.1. (*d*-morphism)

Let X and Y be generalized d-algebras. A mapping $f: X \to Y$ is called a d-morphism if $f(\varrho * \upsilon) = f(\varrho) * f(\upsilon) \forall \varrho, \upsilon \in X$.

Let $f: X \to Y$ be a d-morphism then $f(0) = f(\varrho * \varrho) = f(\varrho) * f(\varrho)$. So $f(0_X) = 0_Y$.

Let I be a $d^{\#}$ -ideal in generalized d-algebra $(X, *, 0_X)$. For any $\varrho, v \in X$, we define $\varrho \sim v$ if and only if $\varrho * v \in I$ and $v * \varrho \in I$. We claim that \sim is an equivalence relation on X. Since $0 \in I$, we have $\varrho * \varrho = 0 \in I$, implies $\varrho \sim \varrho$ for any $\varrho \in X$. That is, \sim is reflexive.

Let $\varrho \sim v$ and $v \sim n$. Then $\varrho * v, v * \varrho \in I$ and $v * n, n * v \in I$. By $(GD_3), \varrho * n, n * \varrho \in I$ and hence $\varrho \sim n$. Thus \sim is transitive. The symmetry of \sim is obvious. Thus \sim is equivalence relation on X.

To show \sim is a congruence, we suppose $\varrho, v, p, q \in X$ and let $\varrho \sim v$ and $p \sim q$. Then $\varrho * v, v * \varrho, p * q, q * p \in I$. Since I is a $d^\#$ -ideal, so $(\varrho * p) * (v * p) \in I$ and $(v * p) * (v * q) \in I$. Hence $(\varrho * p) * (v * q) \in I$. Similarly $(v * q) * (\varrho * q) \in I$ and $(\varrho * q) * (\varrho * p) \in I$, imply $(v * q) * (\varrho * p) \in I$. Hence $\varrho * p \sim v * q$. So \sim is a congruence relation on X.

The congruence class containing ϱ is denoted by $[\varrho]_I$ or C^I_ϱ . That is $[\varrho]_I = \{\upsilon \in X : \varrho \sim \upsilon\}$. We know that $\varrho \sim \upsilon$ if and only if $[\varrho]_I = [\upsilon]_I$. Collection of all equivalence classes of X is denoted by X/I, that is, $X/I = \{[\varrho]_I : \varrho \in X\}$ or $\{C^I_\varrho : \varrho \in I\}$.

Definition 4.2. A transitive generalized d-algebra X is called a generalized d^{\$}-algebra if it satisfies x*0=x.

Definition 4.3. Let X and X' be two generalized d-algebras. Let $f: X \to X'$ be a d-morphism. The set $ker(f) = \{\varrho : \varrho \in X \text{ and } f(\varrho) = 0\}$ is the Kernal of the d-morphism f. Also the set $Im(f) = \{v : v \in X' \text{ and } y = f(\varrho) \text{ for some } \varrho \in X\}$ is called image of f.

Theorem 4.4. Let X and X' be generalized d-algebra and generalized d^{\$}-algebra respectively. Let $f: X \to X'$ be a generalized d-morphism, then ker(f) is a generalized d-ideal in X.

Proof. Since f(0) = 0, so $0 \in ker(f)$. Hence ker(f) is non-empty. Let $\varrho * \upsilon, \upsilon \in ker(f)$, so $f(\varrho * \upsilon) = 0 = f(\upsilon)$. This implies

$$0 = f(\varrho * \upsilon) = f(\varrho) * f(\upsilon) = f(\varrho) * 0 = f(\varrho)$$

Thus $f(\varrho) = 0$, so $\varrho \in ker(f)$. So clearly $\varrho * \upsilon, \upsilon \in ker(f) \Rightarrow \varrho \in ker(f)$. Thus (GD_1) is satisfied. Now, let $\varrho \in ker(f)$ and $\upsilon \in X$. Now

$$f((\varrho * v) * v) = f(\varrho * v) * f(v)$$

$$= (f(\varrho) * f(v)) * f(v)$$

$$= (0 * f(v)) * f(v)$$

$$= 0 (Since X' is a generalized d - algebra)$$

This implies $(\varrho * \upsilon) * \upsilon \in ker(f)$.

Clearly $\varrho \in ker(f)$ and $v \in X$ imply that $(\varrho * v) * v \in ker(f)$. Hence (GD_2) is satisfied, so ker(f) is an generalized ideal of X.

Proposition 4.5. Suppose $f: X \to Y$ is a d-morphism from a generalized d-algebra X into a generalized d^{\$}-algebra Y. Then ker(f) is a d[#]-ideal of X.

Proof. Let $\varrho * \upsilon, \upsilon \in ker(f)$. Then by Theorem 4.4, ker(f) satisfies (GD_1) and (GD_2) . Now, if $\varrho * \upsilon, \upsilon * n \in ker(f)$, then

$$f(\varrho) * f(\upsilon) = f(\upsilon) * f(n)$$

= 0

Since Y is transitive generalized d-algebra, we obtain. $f(\varrho) * f(n) = 0$ and hence $\varrho * n \in ker(f)$, which proves (GD_3) . Let $\varrho * \upsilon, \upsilon * \varrho \in ker(f)$, then

$$f(\varrho) * f(\upsilon) = f(\upsilon) * f(\varrho)$$

= 0.

Since Y is a generalized $d^{\$}$ -algebra, so we obtain $f(\varrho) = f(v)$.

$$\begin{array}{lll} f((\varrho*n)*(\upsilon*n)) & = & f(\varrho*n)*f(\upsilon*n) \\ & = & (f(\varrho)*f(n))*(f(\upsilon)*f(n)) \\ & = & (f(\varrho)*f(n))*(f(\varrho)*f(n)) \\ & = & 0 \end{array}$$

Hence $(\varrho * n) * (\upsilon * n) \in ker(f)$. Similarly $(n * \varrho) * (n * \upsilon) \in ker(f)$, which proves (GD_4) . Hence ker(f) is a $d^{\#}$ -ideal.

Lemma 4.6. Suppose I is an $d^{\#}$ -ideal of a generalized d-algebra X. Then $[0]_I = I$

Proof. Suppose $\varrho \in I$. By Proposition 3.10, $0 * \varrho \in I$. Also $0 \in I$. For $\varrho, 0 \in I$ implies $\varrho * 0 \in I$ (Since every generalized $d^{\#}$ -ideal is subalgebra). So $\varrho \in [0]_I$, that is $I \subseteq [0]_I$. Let $v \in [0]_I$. So $v \sim 0$. Thus $v * 0 \in I$. Since $0 \in I$, so $v \in I$. Hence $[0]_I \subseteq I$. Thus $[0]_I = I$

Theorem 4.7. Suppose X is a generalized d-algebra and I be d^* -ideal in X. If $[\varrho]_I * [\upsilon]_I = [\varrho * \upsilon]_I (\varrho, \upsilon \in X)$, then $(X/I, *, [0]_I)$ is a generalized d-algebra, namely quotient generalized d-algebra.

Proof. As \sim is a congruence relation on X, $\varrho * \upsilon \sim \varrho' * \upsilon'$ for any $\varrho \sim \varrho'$, $\upsilon \sim \upsilon'$. Hence $[\varrho]_I * [\upsilon]_I = [\varrho * \upsilon]_I$ is well defined. Let $[\varrho]_I, [\upsilon]_I \in X/I$. Then

- (i) $[\varrho]_I * [\varrho]_I = [\varrho * \varrho]_I = [0]_I$.
- (ii) Let $[\varrho * \upsilon]_I = [0]_I = [\upsilon * \varrho]_I$. Then $\varrho * \upsilon, \upsilon * \varrho \in I$. Thus $\varrho \sim \upsilon$ and hence $[\varrho]_I = [\upsilon]_I$.
- (iii) $([0]_I * [\varrho]_I) * [\varrho]_I = ([0 * \varrho]_I * [\varrho]_I) = [(0 * \varrho) * \varrho]_I = [0]_I$.

Hence $(X/I, *, [0]_I)$ is a generalized d-algebra.

5. Isomorphism Theorem in Generalized d-algebras

Three isomorphism theorems for generalized d-algebras are proved in this section.

Theorem 5.1. (First Isomorphism Theorem of generalized d-algebra)

Suppose $f: X \to Y$ is a d-morphism from a generalized d-algebra X onto a generalized d^{\$}-algebra Y, then $X/ker(f) \cong Y$.

Proof. We define $\mu: X/ker(f) \to Y$ by $\mu([\varrho]_{ker(f)}) = f(\varrho)$.

We now show that (1) μ is well defined and (2) μ an isomorphism.

- (1) If $[\varrho]_{ker(f)} = [\upsilon]_{ker(f)}$ then $\varrho * \upsilon, \upsilon * \varrho \in ker(f)$, and so $f(\varrho) * f(\upsilon) = 0 = f(\upsilon) * f(\varrho)$. Since Y is a $d^{\$}$ -algebra, we have $f(\varrho) = f(\upsilon)$. That is, $\mu([\varrho]_{ker(f)}) = \mu([\upsilon]_{ker(f)})$. This shows that μ is well defined.
- (2) To prove that μ is an isomorphism, we will show (i) μ is a d-morphism, (ii) is onto, (iii) μ is one-one.
 - (i) Let $[\varrho]_{ker(f)}$, $[\upsilon]_{ker(f)} \in X/ker(f)$. Then $\mu([\varrho]_{ker(f)} * [\upsilon]_{ker(f)}) = \mu([\varrho * \upsilon]_{ker(f)}) = f(\varrho * \upsilon) = f(\varrho) * f(\upsilon) = \mu([\varrho]_{ker(f)}) * \mu([\varrho]_{ker(f)})$. Thus μ is a d-morphism.
 - (ii) For any $v \in Y$, there is an $\varrho \in X$ such that $v = f(\varrho)$ because f is onto. Hence $\mu([\varrho]_{ker(f)}) = f(\varrho) = v$, which means that μ is onto.
- (iii) If $\mu([\varrho]_{ker(f)}) = \mu([\upsilon]_{ker(f)})$, So $f(\varrho) = f(\upsilon)$, which gives $f(\varrho * \upsilon) = f(\varrho) * f(\upsilon) = 0$ and $f(\upsilon * \varrho) = f(\upsilon) * f(\varrho) = 0$. Hence $\varrho * \upsilon \in ker(f)$ and $(\upsilon * \varrho) \in ker(f)$. So $\varrho \sim \upsilon$. Hence $[\varrho]_{ker(f)} = [\upsilon]_{ker(f)}$. Hence μ is one-one.

Thus we have $X/ker(f) \cong Y$.

Theorem 5.2. (Second Isomorphism Theorem of generalized d-algebra)

Let H, K be $d^{\#}$ -ideals of a generalized $d^{\$}$ -algebra X. Let $Y = \bigcup_{k \in K} C_k^H$. Then Y is a subalgebra of X containing H and K, $H \cap K$ is a d^* -ideal in K and $Y/H \cong K/(H \cap K)$.

Proof. First we show that Y is a subalgebra of X. Let $y_1, y_2 \in Y$. Then $\exists k_1, k_2 \in K$ such that $y_1 \in C_{k_1}^H$ and $y_2 \in C_{k_2}^H$. Hence $y_1 \sim k_1$ and $y_2 \sim k_2$ since \sim is a congruence, so $y_1 * y_2 \sim k_1 * k_2$. Thus $y_1 * y_2 \in C_{k_1 * k_2}^H \subseteq \bigcup_{k \in K} C_k^H$. Hence Y is a subalgebra of X and obviously is a generalized $d^{\$}$ -algebr. Now let $k \in K$. Since $k \sim k$, so $k \in C_k^H \subseteq Y$. Thus $K \subseteq Y$. Since $0 \in K$, so $C_0^H = H$. Thus $H \subseteq \bigcup_{k \in K} C_k^H = Y$.

We now show that $H \cap K$ is a $d^{\#}$ -ideal in K. Obviously $0 \in K$ and $0 \in H$, so $0 \in H \cap K$, let $\sigma \in H \cap K$. Since H and K are d^{*} -ideals, so $0 * \sigma \in H, 0 * \sigma \in K$. Hence $0 * \sigma \in H \cap K$. Let $\varsigma \in K, \varsigma * \sigma \in H \cap K, \sigma \in H \cap K$. Since H is a d^{*} -ideal, so $\varsigma \in H$. Thus $\varsigma \in H \cap K$.

Let $\sigma * \varsigma, \varsigma * z \in H \cap K$, so $\sigma * \varsigma, \varsigma * z \in H$ and $\sigma * \varsigma, \varsigma * z \in K$. Since H and K are d^* -ideals, so using $\sigma * \varsigma \in H$ and $\varsigma * z \in K$, we have $\sigma * z \in H \cap K$.

Now let $\sigma * \varsigma, \varsigma * \sigma \in H \cap K$, so $\sigma * \varsigma, \varsigma * \sigma \in H$ and $\sigma * \varsigma, \varsigma * \sigma \in K$. Since H and K are d^* -ideals so $(\sigma * z) * (\varsigma * z), (z * \sigma) * (z * \varsigma) \in H$ and $(\sigma * z) * (\varsigma * z), (z * \sigma) * (z * \varsigma) \in K$, which gives $H \cap K$ is a d^* -ideal of K. So $K/(H \cap K)$ is well defined generalized $d^{\$}$ -algebra.

Further H is a d^* -ideal of X, so obviously H is d^* -ideal of Y. Hence Y/H is well defined. We now define a mapping $\phi: K \to Y/H$ by $\phi(k) = C_k^H \in \cup_{k \in K} C_k^H = Y \ \forall k \in K$. We first show that ϕ is well-defined. Let $k_1, k_2 \in K$ and $k_1 = k_2$. Then $k_1 * k_2 = 0$ and $k_2 * k_1 = 0$. That is $k_1 * k_2 \in H$, $k_2 * k_1 \in H$. So $k_1 \sim k_2$. Thus $C_{k_1}^H = C_{k_2}^H$. So $\phi(k_1) = \phi(k_2)$. Hence ϕ is well-defined. Let $k_1, k_2 \in K$. So

$$\phi(k_1 + k_2) = C_{k_1 + k_2}^H = C_{k_1}^H * C_{k_2}^H = \phi(k_1) * \phi(k_2).$$

Thus ϕ is a generalized d-algebra morphism. Let $C_{\varsigma}^{H} \in Y/H = \cup_{k \in K} C_{k}^{H}$. So there exists $k \in K$ such that $\varsigma \in C_{k}^{H}$. Thus $C_{\varsigma}^{H} = C_{k}^{H}$. Now $\phi(k) = C_{k}^{H} = C_{\varsigma}^{H}$. Hence ϕ is onto. We now show that $ker(\phi) = H \cap K$. Let $\sigma \in H \cap K$. So $\sigma \in H$ and $\sigma \in K$. Now $\phi(\sigma) = C_{\sigma}^{H} = H = C_{0}^{H}$.

We now show that $ker(\phi) = H \cap K$. Let $\sigma \in H \cap K$. So $\sigma \in H$ and $\sigma \in K$. Now $\phi(\sigma) = C_{\sigma}^{H} = H = C_{0}^{H}$. So $\sigma \in ker(\phi)$. Thus $H \cap K \subseteq ker(\phi)$. Let $\sigma \in ker(\phi) \subseteq K$. So $\sigma \in K$ and $\phi(\sigma) = C_{0}^{H}$. Also $\phi(\sigma) = C_{\sigma}^{H}$. Thus $C_{0}^{H} = C_{\sigma}^{H}$, which gives $\sigma \in H$. So $\sigma \in H \cap K$. Thus $ker(\phi) \subseteq H \cap K$. Thus we get $ker(\phi) = H \cap K$. So by Theorem 5.1, we get that $K/ker(\phi) \cong Y/H$, that is, $Y/H \cong K/(H \cap K)$.

Theorem 5.3. (Third Isomorphism Theorem of generalized d-algebras)

Let X be a generalized $d^{\$}$ -algebra. Let H and K be $d^{\#}$ -ideals of X such that $H \subseteq K$. Then $X/H/K/H \cong X/K$.

Proof. Since H and K are $d^{\#}$ -ideals of X, so X/H and X/K are well defined $d^{\$}$ -algebras. Let $C_k^H \in K/H$. So $k \in K \subseteq X$. Thus $k \in X$. Hence $C_k^H \in X/H$. So $K/H \subseteq X/H$.

Now we show that K/H is a $d^\#$ -ideal of X/H. Since K is a d^* -ideal of X, so $0 \in K$. Thus $C_0^H = H \in K/H$. Let $C_k^H \in K/H$, so $k \in K$. Since K is an d^* -ideal of X, so $0 * k \in K$. Hence $C_{0*k}^H \in K/H$. Thus $C_0^H * C_k^H \in K/H$.

Let $C_{\varsigma}^{H} * C_{\sigma}^{H} \in K/H$, $C_{\sigma}^{H} \in K/H$. So $C_{\varsigma*\sigma}^{H} \in K/H$, $C_{\sigma}^{H} \in K/H$, so $\varsigma*\sigma \in K$, $\sigma \in K$. Since K is a d^* -ideal, so $\varsigma \in K$. Hence $C_{\varsigma}^{H} \in K/H$.

Let $C_{\sigma}^{H} * C_{\varsigma}^{H} \in K/H$ and $C_{\varsigma}^{H} * C_{z}^{H} \in K/H$. That is $C_{\sigma * \varsigma}^{H} \in K/H$ and $C_{\varsigma * z}^{H} \in K/H$, so $\sigma * \varsigma \in K$ and $\varsigma * z \in K$. Since K is a d^{*} -ideal, so $\sigma * z \in K$. Thus $C_{\sigma * z}^{H} \in K/H$. Hence $C_{\sigma}^{H} * C_{z}^{H} \in K/H$.

Now let $C_{\sigma}^{H} * C_{\varsigma}^{H} \in K/H$ and $C_{\varsigma}^{H} * C_{\sigma}^{H} \in K/H$. That is, $C_{\sigma * \varsigma}^{H} \in K/H$ and $C_{\varsigma * \sigma}^{H} \in K/H$. Thus $\sigma * \varsigma \in K$ and $\varsigma * \sigma \in K$. Since K is a $d^{\#}$ -ideal of X, so $(\sigma * z) * (\varsigma * z) \in K$ and $(z * \sigma) * (z * \varsigma) \in K$ for $\sigma, \varsigma, z \in X$. Hence $C_{(\sigma * z) * (\varsigma * z)}^{H} \in K/H$ and $C_{(z * \sigma) * (z * \varsigma)}^{H} \in K/H$, which gives $C_{\sigma * z}^{H} * C_{\varsigma * z}^{H} \in K/H$ and $C_{z * \sigma}^{H} * C_{z * \varsigma}^{H} \in K/H$. Thus $(C_{\sigma}^{H} * C_{z}^{H}) * (C_{\varsigma}^{H} * C_{z}^{H}) \in K/H$ and $(C_{z}^{H} * C_{\sigma}^{H}) * (C_{z}^{H} * C_{\varsigma}^{H}) \in K/H$ for all $C_{\sigma}^{H}, C_{\varsigma}^{H}, C_{z}^{H} \in X/H$. Thus K/H is a $d^{\#}$ -ideal of X/H. Hence X/H/K/H is a well defined generalized $d^{\#}$ -algebra.

Now we define a mapping $\phi: X/H \to X/K$ by $\phi(C_{\sigma}^H) = C_{\sigma}^K$ for all $\sigma \in X$. Let $C_{\sigma}^H = C_{\sigma'}^H$. Then $\sigma \sim \sigma'$ in H. Thus $\sigma * \sigma', \sigma' * \sigma \in H$. Since $H \subseteq K$, so $\sigma * \sigma', \sigma' * \sigma \in K$. Thus $\sigma \sim \sigma'$ in K. Hence $C_{\sigma}^K = C_{\sigma'}^K$.

That is, $\phi(C_{\sigma}^{H}) = \phi(C_{\sigma'}^{H})$. Hence ϕ is well defined. Now

$$\phi(C_{\sigma}^{H} * C_{\varsigma}^{H}) = \phi(C_{\sigma * \varsigma}^{H})$$

$$= C_{\sigma * \varsigma}^{K}$$

$$= C_{\sigma}^{K} * C_{\varsigma}^{K}$$

$$= \phi(C_{\sigma}^{H}) = \phi(C_{\varsigma}^{H}).$$

Let $C_{\sigma}^K \in X/K$, so $\sigma \in X$. Thus $C_{\sigma}^H \in X/H$ and $\phi(C_{\sigma}^H) = C_{\sigma}^K$. So ϕ is onto. Now, we show that $K/H = ker(\phi)$. Let $C_{\sigma}^H \in ker(\phi)$. So $\phi(C_{\sigma}^H) = C_0^K$, that is, $C_{\sigma}^K = C_0^K$. Thus $\sigma \sim 0$ in K. So $0 * \sigma, \sigma * 0 \in K$. Hence $\sigma \in K$. Thus $C_{\sigma}^H \in K/H$. So $ker(\phi) \subseteq K/H$.

Let $C_k^H \in K/H$. So $k \in K$. Further

$$\begin{array}{lcl} \phi(C_k^H) & = & C_k^K \\ & = & K & (because \ k \in K) \\ & = & C_0^K \end{array}$$

Hence $C_k^H \in ker(\phi)$, so $K/H \subseteq ker(\phi)$. Thus $ker(\phi) = K/H$.

So by Theorem 5.1 we get

$$X/H/\ker(\phi) \cong X/K$$
. That is, $X/H/K/H \cong X/K$.

6. Conclusion

The concept of d-algebras is one of the very interesting topic among the study of algebraic structures, which has attracted many mathematicians. In this article, we have studied the structures of Generalized d-algebra, Transitive Generalized d-algebra, Generalized d-subalgebra, Generalized d-ideal and Quotient Generalized d-algebra. Some algebraic properties of these concepts are proved. In the last section, by defining d-morphism, first, second and third isomorphism theorems for Generalized d-algebra are proved.

Data Availability Statement: No additional data set has been used to support the study.

Conflict of Interest: The authors declare that there are no conflicts of interest.

Funding Statement: No specific funding has been received for the processing of this manuscript.

References

- [1] Abdullah, H. K., & Hassan, A. K. (2013). Semi d-ideal in d-algebra. Journal of Kerbala University, 11(3), 192-197.
- [2] Ahn, S. S. & Han, G. H. (2011). Ideal theory of d-algebras based on N-structures. J. Appl. Math. Inform., 29(5-6), 1489-1500.
- [3] Akram, M., & Dar, K. H. (2005). On fuzzy d-algebras. Journal of Mathematics, 37, 61-76.
- Allen, P. J., Kim, H. S., & Neggers, J. (2007). Companion d-algebras. Math. Slovaca, 57(2), 93-106.
- [5] Allen, P. J., Kim, H. S., & Neggers, J. (2004). L-up and mirror d-algebras. Sci. Math. Jpn., 59(3), 605-612.
- [6] Chaudhry, M. A., & Ali, F. (2012). Multipliers in d-algebras. World Applied Science Journal, 18(11), 1649-1653.
- Chaudhry, M. A., Fahad, A., Rao, Y., Qureshi, M. I. & Gulzar, S. (2020). Branchwise solid generalized BCHalgebras. AIMS Mathematics, 5(3), 2424-2432.
- Chaudhry, M. A., & Fakhar-ud-din, H. (1996). Ideals and Filters in BCH-algebra. Math. Japonica, 44(1), 101-112.
- Chaudhry, M. A. (1991). On BCH-algebrs. *Math. Japoniea*, 36(4), 665-676.
- [10] Dudek, W. A., & Thomys, J. (1990). On decompositions of BCH-algebras. Math. Japon., 35, 1131-1138.
- [11] Hu, Q. P., & Li, X. (1985). On proper BCH-algebras. Math. Japon., 30, 659-661.
- [12] Iseki, K. (1966). An algebra related with a Propositional Calculus. Proc. Japan Acad., 42, 26-29.
- [13] Imai, Y., & Iseki, K. (1966). On Axiom systems of Propositional Calculi. XIV, Proc. Japan Acad., 2, 19-22.
- [14] Iseki, K., & Tanaka, S. (1976). An ideal theory of BCK-algebra. Math Japonica, 211, 352-366.
- [15] Iseki, K. & Tanaka, S. (1975). An introduction to BCK-algebras. Math. Japonica, 23, 1-26.
- [16] Iseki, K. (1980). On BCI-algebra. Math. Seminar Nots, 33, 125-130.
- [17] Jun, Y. B., Neggers, J., & Kim, H. S. (1999). Fuzzy d-ideals of d-algebras. J. Fuzzy Math., 8(1), 123-130.
- [18] Lee, Y. C., & Kim, H. S. (1999). On d-subalgebras of d-transitive d*-algebras. Math. Slovaca, 49(1), 27-33.
- [19] Meng, J., & Jun, Y. B. (1994). BCK-algebra. Kyng Moon Sa Co.

- [20] Meng, J. (1994). On ideal in BCK-algebras. Math. Japion., 40(1), 143-154.
- [21] Neggers, J., Dvurecenskij, A., & Kim, H. S. (2000). On d-fuzzy functions in d-algebras. Found. Phys., 30(10), 889-894.
- [22] Neggers, J., & Kim, H. S. (1999). On d-algebras. Math. Slovaca, 49, 19-26.
- [23] Neggers, J., Jun, Y. B., & Kim, H. S. (1999). On d-ideals in d-algebras. Math. Slovaca, 49, 243-251.
- [24] Saeid, A. B., Namdar, A., & Borzooei, R. A. (2009). Ideal Theory of BCH-algebras. World Applied Science Journal, 7(11), 1446-1455.
- [25] Yisheng, H. (2006). BCI-algebras. Science Press, Beijing.
- [26] Allen, P. J., Kim, H. S., & Neggers, J. (2011). Deformations of d/BCK-algebras. Bull. Korean Math. Soc., 48, 315324.
- [27] Kim, H. S., Neggers, J., & Ahn, S. S. (2021). Construction of BCK-neighborhood systems in a d-algebra. AIMS Mathematics, 6(9), 94229435.