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Abstract

We introduce the generalized d-algebras, generalized d-ideals (d∗-ideals, d#-ideals, d$-ideals) and other
related notions. We also prove some properties about d-ideal, d#-ideal and results related to quotient
generalized d-algebra. Through these constructions, we prove the first, second and the third isomorphism
theorems for the generalized d-algebras. These developments contribute to the theory of the BCI/BCK/BCH
and the generalized BCH-algebras.

Keywords: Generalized d-algebras, Isomorphism theorems, BCH-algebras, d#-ideals.
2010 MSC: 06F35, 03G25.

1. Introduction

The notions of the BCK-algebras and the BCI-algebras were given in [12] and [13] among which the prior
is the proper subclass of the latter. Several mathematicians studied multiple aspects of these algebras, for
example BCI-algebras [25], BCK-algebras and ideals in BCK-algebras [19, 20], ideals, relevant theory and
filters in BCH-algebras [8, 24].

The notion of a BCH-algebras was characterized by Hu et. al. in 1983 ([11]). The notion of BCH-
algebras is a generalized notion of BCK-algebras and BCI-algebras. Chaudhry [9], Dudek et. al. [10] and
many other researchers worked on this class.

Neggers et. al. [22] gave the idea of a d-algebra. The class of d−algebras is a generalized class of
BCK-algebras. The authors in [22], worked on the relations between BCK-algebras and d-algebras. Several
notions/aspepcts of d-algebras such as, ideal theory based on N -structures [2], fuzzy ideals [17], d-fuzzy
ideals [21], d-algebra ideals [23], deformation in d/BCK-algebras [26] and BCK-neighborhood systems in
d-algebras [27] have been studied extensively. Moreover, some other types related to d-algebras such as
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companion d-algebras [4], L-up and mirror d-algebras [5] and d-algebras of d-transitive d∗-algebra [18] have
also been introduced and investigated. The theory of ideal of d-algebras was given by Neggers, et. al.
([23]). They gave the notions of a d−subalgebra, a d∗−ideal, a d−ideal and a d#−ideal and studied their
connection.
In 2013, Abdullah et. al. [1] gave the idea of a semi d−ideal of a d−algebra, and also many relations between
semi d−ideals and d−ideals in d-algebras are examined in [3].

The notion of a generalized d−algebra was firstly introduced by Chaudhry et. al. [7] and some ele-
mentary aspects of generalized d−algebras were discussed. The properties of these algebras have been not
discovered extensively, yet.

The main objective of this paper is to inspect some ideals in generalized d−algebras and d#−ideals and
prove some isomorphism theorems in these algebras.

2. Preliminaries

Throughout this article X = (X, ∗, 0) will be a non-empty set with a binary operation ”*” and a
distinguished element 0 ∈ X. K. Iseki and Y.Imai gave the notion of a BCK-algebras in 1966.

Definition 2.1. [13, 15] X is called a BCK-algebra if

1. ((ϱ ∗ υ) ∗ (ϱ ∗ n)) ∗ (n ∗ υ) = 0,

2. (ϱ ∗ (ϱ ∗ υ)) ∗ υ = 0,

3. ϱ ∗ ϱ = 0,

4. 0 ∗ ϱ = 0,

5. ϱ ∗ υ = 0 and υ ∗ ϱ = 0 imply ϱ = υ, for all ϱ, υ, n ∈ X.

In a BCK-algebra X, the following hold [23]:

I (ϱ ∗ υ) ∗ ϱ = 0,

II ((ϱ ∗ n) ∗ (υ ∗ n)) ∗ (ϱ ∗ υ) = 0, for all ϱ, υ, n ∈ X.

BCI-algebra was proposed in 1966, by K. Iseki, a generalization of a BCK-algebra [12].

Definition 2.2. [16] X is called a BCI-algebra if it satisfies 1, 2, 3, 5 in definition 2.1 and

(6) ϱ ∗ 0 = 0 implies ϱ = 0.

Every BCK-algebra is a BCI-algebra but the converse is not true [16]. In 1983, the concept of a BCH-
algebra was presented by Q. P. Hu and X. Li [11]. They proved that BCI-algebras’s class is a proper
subclass of the BCH-algebras’s class. Some basic properties of the BCH-algebras can be seen in [9] and their
decomposition has been presented in [10].

Definition 2.3. [9] X is called a BCH-algebra if ∀ϱ, υ, n ∈ X, it satisfies

(3) ϱ ∗ ϱ = 0,

(5) ϱ ∗ υ = 0 and υ ∗ ϱ = 0 imply ϱ = υ,

(7) (ϱ ∗ υ) ∗ n = (ϱ ∗ n) ∗ υ.

Definition 2.4. [11] Let X be a BCK/BCI/BCH-algebra. A relation ≤ is defined on X by: ϱ ≤ υ if and
only if ϱ ∗ υ = 0.

Every BCI/BCK-algebra, with respect to this relation ≤ is partially ordered (see [15]).

Definition 2.5. [14] Let X be a BCK/BCI/BCH-algebra. ϕ ̸= I ⊆ X is a BCK/BCI/BCH-ideal of X if
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(I) 0 ∈ I
(II) ϱ ∈ I and υ ∗ ϱ ∈ I, implies υ ∈ X.

Definition 2.6. [14] Let X be a BCK/BCI/BCH-algebra and ϕ ̸= I ⊆ X. I is a closed ideal of X if

(I) 0 ∗ ϱ ∈ I, for all ϱ ∈ I,
(II) ϱ ∈ I and υ ∗ ϱ ∈ I imply υ ∈ I, υ, ϱ ∈ X.

Lemma 2.7. [14] Let I be a BCK/BCI/BCH-ideal of a BCK-algebra X. If ϱ ∈ I and υ ∗ ϱ = 0 then υ ∈ I.

2.1. d−algebra Notions

In 1999, Neggers et al. gave the notion of a d−algebra [22].

Definition 2.8. [22] X is called a d−algebra if ∀υ, ϱ ∈ X, it satisfies

(I) ϱ ∗ ϱ = 0,
(II) 0 ∗ ϱ = 0,
(III) ϱ ∗ υ = 0 and υ ∗ ϱ = 0 imply ϱ = υ.

Every BCK-algebra is a d−algebra. But converse is not true. (see [22]).

Let X be a d−algebra. We specify the relation ≤ on X by: ϱ ≤ υ if and only if ϱ ∗ υ = 0.

Definition 2.9. [22] A d−algebra X is d−transitive if ϱ ∗ n = 0 & n ∗ υ = 0 imply ϱ ∗ υ = 0, for all
ϱ, υ, n ∈ X.

2.2. Some special Subsets and Ideals in d−algebra

Definition 2.10. [6] Let X be a d−algebra. ϕ ̸= S ⊆ X is called a sub algebra of X if ∀ϱ, υ ∈ S, ϱ ∗ υ ∈ S.

Definition 2.11. [23] Let X be a d−algebra and ϕ ̸= I ⊆ X is a d−ideal of X if

(D1) ϱ ∗ υ ∈ I and υ ∈ I imply ϱ ∈ I.
(D2) ϱ ∈ I and υ ∈ X ⇒ ϱ ∗ υ ∈ I, i.e., I ∗X ⊆ I.

It is not necessary that d−subalgebra is also d−ideal, see [23].

Lemma 2.12. Suppose I is a d−ideal in a d−algebra X, then 0 ∈ I.

Proof. Since I is a non-empty set, so ∃ ϱ ∈ I. Also I ⊆ X, so ϱ ∈ X. Thus 0 = ϱ ∗ ϱ ∈ I by using (D2).

It is known that every d−ideal of a d−algebra is a BCK-ideal, but converse is not true.

Proposition 2.13. Suppose I is a d−ideal of a d−algebra X. If ϱ ∈ I and υ ∗ ϱ = 0, then υ ∈ I.

Proof. Assume that ϱ ∈ I and υ ∗ ϱ = 0. By Lemma 2.12 and (D1), we have υ ∈ I.

Definition 2.14. A d−ideal of a d−algebra X is called a d∗−ideal of X, if for arbitrary ϱ, υ, n ∈ X,

(D3) ϱ ∗ n ∈ I, whenever ϱ ∗ υ ∈ I and υ ∗ n ∈ I.

We note that every d∗−ideal is a d−ideal, but converse is not true. (see [23]).

Definition 2.15. A d−algebra X is called a d∗−algebra if it satisfies
(ϱ ∗ υ) ∗ ϱ = 0 ∀ϱ, υ ∈ X.

Definition 2.16. A subset I ̸= ϕ of a d−algebra X is called a d#−ideal of X if it is a d∗−ideal and it
satisfies

(D4) ϱ ∗ υ ∈ I and υ ∗ ϱ ∈ I imply (ϱ ∗ n) ∗ (υ ∗ n) ∈ I and (n ∗ ϱ) ∗ (n ∗ υ) ∈ I ∀ ϱ, υ, n ∈ X.

Every d#−ideal in a d−algebra is a d∗−ideal, but converse is not true, (see [23]).

Definition 2.17. ([22]) A mapping f : X → Y is called a d−homomorphism if
f(ϱ ∗ υ) = f(ϱ) ∗ f(υ), ∀ ϱ, υ ∈ X.

Note that f(0) = f(0 ∗ 0) = f(0) ∗ f(0) = 0.
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3. Generalized d−algebras Notions

In this section, few notions of generalized d−algebras are given. The concepts and some results about
the generalized d−subalgebras and generalized d−ideal are proved to set the pathway towards the concept
of quotient generalized d−algebras.

Definition 3.1. (Generalized d−algebra)
X is called generalized d−algebra if it satisfying these axioms:

(I) ϱ ∗ ϱ = 0

(II) (0 ∗ ϱ) ∗ ϱ = 0

(III) ϱ ∗ υ = 0 and υ ∗ ϱ = 0 implies ϱ = υ for all ϱ, υ ∈ X.

Remark 3.2. Every BCK/d−algebra is a generalized d−algebra because the condition 0 ∗ ϱ = 0 implies
(0 ∗ ϱ) ∗ ϱ = 0 ∗ ϱ = 0. Moreover. In general the converse is not true.

Example 3.3. Let X = {0, ϱ, υ} with binary operation ”*” defined by:

* 0 ϱ υ

0 0 0 υ

ϱ ϱ 0 ϱ

υ υ υ 0

Then (X, ∗, 0) is a generalized d−algebra, but it is not a BCK-algebra, as

(ϱ ∗ (ϱ ∗ υ)) ∗ υ = (ϱ ∗ ϱ) ∗ υ = 0 ∗ υ = υ ̸= 0.

Further, this is not a d−algebra because 0 ∗ υ = υ ̸= 0.

We note that the class of d−algebras and the class of BCK-algebras contained in the class of generalized
d−algebras. Thus, our results of this paper are valid for d−algebras as well as for BCK-algebras.
We remark that the relation ≤, definitions of transitive generalized d−algebras and generalized d−subalgebra
are the same as the definitions of corresponding notions in d−algebras.

Remark 3.4. If X is a generalized d−algebra, then we define a relation ≤ on X as ϱ ≤ υ if and only if
ϱ ∗ υ = 0, ∀ϱ, υ ∈ X.

Definition 3.5. (Transitive generalized d−algebra)
A generalized d−algebra X is a transitive generalized d−algebra if
ϱ ∗ n = 0 and n ∗ υ = 0 imply ϱ ∗ υ = 0.

Definition 3.6. (Generalized d−subalgebra)
Let X be a generalized d−algebra. ϕ ̸= S ⊆ X is called a generalized d−subalgebra of X if for all ϱ, υ ∈ S,
we have ϱ ∗ υ ∈ S.

Definition 3.7. (Generalized d−ideal)
Let X be a generalized d−algebra and ϕ ̸= I ⊆ X. I is said to be a generalized d−ideal of X if it satisfies:

(GD1) ϱ ∗ υ ∈ I and υ ∈ I ⇒ ϱ ∈ I.

(GD2) ϱ ∈ I and υ ∈ X imply (ϱ ∗ υ) ∗ υ ∈ I.

Every generalized d−ideal is a generalized d−subalgebra. Suppose ϱ, υ ∈ I ⊆ X, then υ ∈ X. Thus by
(GD2), (ϱ ∗ υ) ∗ υ ∈ I and by (GD1), ϱ ∗ υ ∈ I.
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Example 3.8. Let X = {0, a, b, c} be a generalized d−algebra and ”*” is a binary operation defined on X
as:

* 0 a b c

0 0 0 0 c

a a 0 c a

b b c 0 a

c c c c 0

Then I = {0, c} is a generalized d−ideal of X.

It can be noted that every generalized d−subalgebra is not necessary a generalized d−ideal.

Theorem 3.9. Every generalized d−ideal of a generalized d−algebra X is a BCK-ideal of X.

Proof. Let X is a generalized d−algebra. Let I a generalized d−ideal of X.
Since I ̸= ϕ. So there exists an ϱ ∈ I. Further, ϱ ∈ X so by (GD2), (ϱ ∗ ϱ) ∗ ϱ = 0 ∗ ϱ ∈ I. Now (GD1) gives
0 ∈ I.
Now suppose ϱ ∗ υ, υ ∈ I then by (GD1), we have ϱ ∈ I. Thus, I is a BCK-ideal.

Proposition 3.10. Suppose I is a generalized d−ideal of a generalized d−algebra X. Then 0 ∗ ϱ ∈ I for all
ϱ ∈ I.

Proof. Since I ̸= ϕ, there exists an ϱ ∈ I. Since ϱ ∈ X, so by (GD2), (ϱ ∗ ϱ) ∗ ϱ = 0 ∗ ϱ ∈ I.

Definition 3.11. A generalized d−ideal I of a generalized d−algebra X is called a d∗−ideal of X, if for
arbitrary ϱ, υ, n ∈ X.

(GD3) ϱ ∗ n ∈ I whenever ϱ ∗ υ ∈ I and υ ∗ n ∈ I.

In generalized d−algebra, it is not necessary that generalized d−ideal is also generalized d∗−ideal.

Definition 3.12. A generalized d−algebra X is called a d∗−algebra if
((ϱ ∗ υ) ∗ ϱ) ∗ ϱ = 0 for all ϱ, υ ∈ X.

Definition 3.13. If a d∗−ideal I of a generalized d−algebra X satisfies

(GD4) ϱ ∗ υ ∈ I and υ ∗ ϱ ∈ I imply (ϱ ∗ n) ∗ (υ ∗ n) ∈ I and (n ∗ ϱ) ∗ (n ∗ υ) ∈ I for all ϱ, υ, n ∈ X, then I is
to be a d#−ideal in X.

In generalized d#−algebra, every d∗−ideal is d#−ideal but converse is not true in general.

4. Quotient Generalized d−algebras

The concept of a quotient generalized d−algebra is introduced in this section and also obtain some
results.

Definition 4.1. (d−morphism)
Let X and Y be generalized d−algebras. A mapping f : X → Y is called a d−morphism if
f(ϱ ∗ υ) = f(ϱ) ∗ f(υ) ∀ ϱ, υ ∈ X.
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Let f : X → Y be a d−morphism then f(0) = f(ϱ ∗ ϱ) = f(ϱ) ∗ f(ϱ). So f(0X) = 0Y .
Let I be a d#−ideal in generalized d−algebra (X, ∗, 0X). For any ϱ, υ ∈ X, we define ϱ ∼ υ if and only if
ϱ ∗υ ∈ I and υ ∗ ϱ ∈ I. We claim that ∼ is an equivalence relation on X. Since 0 ∈ I, we have ϱ ∗ ϱ = 0 ∈ I,
implies ϱ ∼ ϱ for any ϱ ∈ X. That is, ∼ is reflexive.
Let ϱ ∼ υ and υ ∼ n. Then ϱ ∗ υ, υ ∗ ϱ ∈ I and υ ∗ n, n ∗ υ ∈ I. By (GD3), ϱ ∗ n, n ∗ ϱ ∈ I and hence ϱ ∼ n.
Thus ∼ is transitive. The symmetry of ∼ is obvious. Thus ∼ is equivalence relation on X.
To show ∼ is a congruence, we suppose ϱ, υ, p, q ∈ X and let ϱ ∼ υ and p ∼ q. Then ϱ∗υ, υ∗ϱ, p∗q, q∗p ∈ I.
Since I is a d#−ideal, so (ϱ ∗ p) ∗ (υ ∗ p) ∈ I and (υ ∗ p) ∗ (υ ∗ q) ∈ I. Hence (ϱ ∗ p) ∗ (υ ∗ q) ∈ I. Similarly
(υ ∗ q)∗ (ϱ∗ q) ∈ I and (ϱ∗ q)∗ (ϱ∗p) ∈ I, imply (υ ∗ q)∗ (ϱ∗p) ∈ I. Hence ϱ∗p ∼ υ ∗ q. So ∼ is a congruence
relation on X.
The congruence class containing ϱ is denoted by [ϱ]I or CI

ϱ . That is [ϱ]I = {υ ∈ X : ϱ ∼ υ}. We know
that ϱ ∼ υ if and only if [ϱ]I = [υ]I . Collection of all equivalence classes of X is denoted by X/I, that is,
X/I = {[ϱ]I : ϱ ∈ X} or {CI

ϱ : ϱ ∈ I}.

Definition 4.2. A transitive generalized d−algebra X is called a generalized d$−algebra if it satisfies
x ∗ 0 = x.

Definition 4.3. Let X and X ′ be two generalized d−algebras. Let f : X → X ′ be a d−morphism. The
set ker(f) = {ϱ : ϱ ∈ X and f(ϱ) = 0} is the Kernal of the d−morphism f . Also the set Im(f) = {υ : υ ∈
X ′ and y = f(ϱ) for some ϱ ∈ X} is called image of f .

Theorem 4.4. Let X and X ′ be generalized d−algebra and generalized d$−algebra respectively. Let f :
X → X ′ be a generalized d−morphism, then ker(f) is a generalized d−ideal in X.

Proof. Since f(0) = 0, so 0 ∈ ker(f). Hence ker(f) is non-empty.
Let ϱ ∗ υ, υ ∈ ker(f), so f(ϱ ∗ υ) = 0 = f(υ). This implies

0 = f(ϱ ∗ υ) = f(ϱ) ∗ f(υ) = f(ϱ) ∗ 0 = f(ϱ)

Thus f(ϱ) = 0, so ϱ ∈ ker(f). So clearly ϱ ∗ υ, υ ∈ ker(f) ⇒ ϱ ∈ ker(f). Thus (GD1) is satisfied. Now, let
ϱ ∈ ker(f) and υ ∈ X. Now

f((ϱ ∗ υ) ∗ υ) = f(ϱ ∗ υ) ∗ f(υ)
= (f(ϱ) ∗ f(υ)) ∗ f(υ)
= (0 ∗ f(υ)) ∗ f(υ)
= 0 (Since X ′ is a generalized d− algebra)

This implies (ϱ ∗ υ) ∗ υ ∈ ker(f).
Clearly ϱ ∈ ker(f) and υ ∈ X imply that (ϱ ∗ υ) ∗ υ ∈ ker(f). Hence (GD2) is satisfied, so ker(f) is an
generalized ideal of X.

Proposition 4.5. Suppose f : X → Y is a d−morphism from a generalized d−algebra X into a generalized
d$−algebra Y . Then ker(f) is a d#−ideal of X.

Proof. Let ϱ ∗ υ, υ ∈ ker(f). Then by Theorem 4.4, ker(f) satisfies (GD1) and (GD2).
Now, if ϱ ∗ υ, υ ∗ n ∈ ker(f), then

f(ϱ) ∗ f(υ) = f(υ) ∗ f(n)
= 0

Since Y is transitive generalized d−algebra, we obtain. f(ϱ) ∗ f(n) = 0 and hence ϱ ∗ n ∈ ker(f), which
proves (GD3). Let ϱ ∗ υ, υ ∗ ϱ ∈ ker(f), then

f(ϱ) ∗ f(υ) = f(υ) ∗ f(ϱ)
= 0.
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Since Y is a generalized d$−algebra, so we obtain f(ϱ) = f(υ).
⇒

f((ϱ ∗ n) ∗ (υ ∗ n)) = f(ϱ ∗ n) ∗ f(υ ∗ n)
= (f(ϱ) ∗ f(n)) ∗ (f(υ) ∗ f(n))
= (f(ϱ) ∗ f(n)) ∗ (f(ϱ) ∗ f(n))
= 0

Hence (ϱ ∗ n) ∗ (υ ∗ n) ∈ ker(f). Similarly (n ∗ ϱ) ∗ (n ∗ υ) ∈ ker(f), which proves (GD4). Hence ker(f) is a
d#−ideal.

Lemma 4.6. Suppose I is an d#−ideal of a generalized d−algebra X. Then [0]I = I

Proof. Suppose ϱ ∈ I. By Proposition 3.10, 0 ∗ ϱ ∈ I. Also 0 ∈ I. For ϱ, 0 ∈ I implies ϱ ∗ 0 ∈ I (Since every
generalized d#−ideal is subalgebra). So ϱ ∈ [0]I , that is I ⊆ [0]I . Let υ ∈ [0]I . So υ ∼ 0. Thus υ ∗ 0 ∈ I.
Since 0 ∈ I, so υ ∈ I. Hence [0]I ⊆ I. Thus [0]I = I

Theorem 4.7. Suppose X is a generalized d−algebra and I be d∗−ideal in X. If [ϱ]I∗[υ]I = [ϱ∗υ]I(ϱ, υ ∈ X),
then (X/I, ∗, [0]I) is a generalized d−algebra, namely quotient generalized d−algebra.

Proof. As ∼ is a congruence relation on X, ϱ ∗ υ ∼ ϱ′ ∗ υ′ for any ϱ ∼ ϱ′, υ ∼ υ′. Hence [ϱ]I ∗ [υ]I = [ϱ ∗ υ]I
is well defined. Let [ϱ]I , [υ]I ∈ X/I. Then

(i) [ϱ]I ∗ [ϱ]I = [ϱ ∗ ϱ]I = [0]I .

(ii) Let [ϱ ∗ υ]I = [0]I = [υ ∗ ϱ]I . Then ϱ ∗ υ, υ ∗ ϱ ∈ I. Thus ϱ ∼ υ and hence [ϱ]I = [υ]I .

(iii) ([0]I ∗ [ϱ]I) ∗ [ϱ]I = ([0 ∗ ϱ]I ∗ [ϱ]I) = [(0 ∗ ϱ) ∗ ϱ]I = [0]I .

Hence (X/I, ∗, [0]I) is a generalized d−algebra.

5. Isomorphism Theorem in Generalized d−algebras

Three isomorphism theorems for generalized d−algebras are proved in this section.

Theorem 5.1. (First Isomorphism Theorem of generalized d−algebra)
Suppose f : X → Y is a d−morphism from a generalized d−algebra X onto a generalized d$−algebra Y ,
then X/ker(f) ∼= Y .

Proof. We define µ : X/ker(f) → Y by µ([ϱ]ker(f)) = f(ϱ).
We now show that (1) µ is well defined and (2) µ an isomorphism.
(1) If [ϱ]ker(f) = [υ]ker(f) then ϱ ∗ υ, υ ∗ ϱ ∈ ker(f), and so f(ϱ) ∗ f(υ) = 0 = f(υ) ∗ f(ϱ). Since Y is a

d$−algebra, we have f(ϱ) = f(υ). That is, µ([ϱ]ker(f)) = µ([υ]ker(f)). This shows that µ is well defined.
(2) To prove that µ is an isomorphism, we will show (i) µ is a d−morphism, (ii) is onto, (iii) µ is one-one.

(i) Let [ϱ]ker(f), [υ]ker(f) ∈ X/ker(f). Then µ([ϱ]ker(f)∗[υ]ker(f)) = µ([ϱ∗υ]ker(f)) = f(ϱ∗υ) = f(ϱ)∗f(υ) =
µ([ϱ]ker(f)) ∗ µ([ϱ]ker(f)). Thus µ is a d−morphism.

(ii) For any υ ∈ Y , there is an ϱ ∈ X such that υ = f(ϱ) because f is onto. Hence µ([ϱ]ker(f)) = f(ϱ) = υ,
which means that µ is onto.

(iii) If µ([ϱ]ker(f)) = µ([υ]ker(f)), So f(ϱ) = f(υ), which gives f(ϱ ∗ υ) = f(ϱ) ∗ f(υ) = 0 and f(υ ∗ ϱ) =
f(υ) ∗ f(ϱ) = 0. Hence ϱ ∗ υ ∈ ker(f) and (υ ∗ ϱ) ∈ ker(f). So ϱ ∼ υ. Hence [ϱ]ker(f) = [υ]ker(f).
Hence µ is one-one.

Thus we have X/ker(f) ∼= Y .
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Theorem 5.2. (Second Isomorphism Theorem of generalized d−algebra)
Let H,K be d#−ideals of a generalized d$−algebra X. Let Y = ∪k∈KCH

k . Then Y is a subalgebra of X
containing H and K, H ∩K is a d∗−ideal in K and Y/H ∼= K/(H ∩K).

Proof. First we show that Y is a subalgebra of X. Let y1, y2 ∈ Y . Then ∃ k1, k2 ∈ K such that y1 ∈ CH
k1

and y2 ∈ CH
k2
. Hence y1 ∼ k1 and y2 ∼ k2 since ∼ is a congruence, so y1 ∗ y2 ∼ k1 ∗ k2. Thus y1 ∗ y2 ∈

CH
k1∗k2 ⊆ ∪k∈KCH

k . Hence Y is a subalgebra of X and obviously is a generalized d$−algebr. Now let k ∈ K.

Since k ∼ k, so k ∈ CH
k ⊆ Y . Thus K ⊆ Y . Since 0 ∈ K, so CH

0 = H. Thus H ⊆ ∪k∈KCH
k = Y .

We now show thatH∩K is a d#−ideal inK. Obviously 0 ∈ K and 0 ∈ H, so 0 ∈ H∩K, let σ ∈ H∩K. Since
H and K are d∗−ideals, so 0 ∗σ ∈ H, 0 ∗σ ∈ K. Hence 0 ∗σ ∈ H ∩K. Let ς ∈ K, ς ∗σ ∈ H ∩K,σ ∈ H ∩K.
Since H is a d∗−ideal, so ς ∈ H. Thus ς ∈ H ∩K.
Letσ ∗ ς, ς ∗ z ∈ H ∩ K, so σ ∗ ς, ς ∗ z ∈ H and σ ∗ ς, ς ∗ z ∈ K. Since H and K are d∗−ideals, so using
σ ∗ ς ∈ H and ς ∗ z ∈ K, we have σ ∗ z ∈ H ∩K.
Now let σ ∗ ς, ς ∗ σ ∈ H ∩ K, so σ ∗ ς, ς ∗ σ ∈ H and σ ∗ ς, ς ∗ σ ∈ K. Since H and K are d∗−ideals so
(σ ∗ z) ∗ (ς ∗ z), (z ∗ σ) ∗ (z ∗ ς) ∈ H and (σ ∗ z) ∗ (ς ∗ z), (z ∗ σ) ∗ (z ∗ ς) ∈ K, which gives H ∩K is a d∗−ideal
of K. So K/(H ∩K) is well defined generalized d$−algebra.
Further H is a d∗−ideal of X, so obviously H is d∗−ideal of Y . Hence Y/H is well defined. We now define
a mapping ϕ : K → Y/H by ϕ(k) = CH

k ∈ ∪k∈KCH
k = Y ∀k ∈ K. We first show that ϕ is well-defined. Let

k1, k2 ∈ K and k1 = k2. Then k1 ∗ k2 = 0 and k2 ∗ k1 = 0. That is k1 ∗ k2 ∈ H, k2 ∗ k1 ∈ H. So k1 ∼ k2.
Thus CH

k1
= CH

k2
. So ϕ(k1) = ϕ(k2). Hence ϕ is well-defined.

Let k1, k2 ∈ K. So
ϕ(k1 + k2) = CH

k1+k2 = CH
k1 ∗ C

H
k2 = ϕ(k1) ∗ ϕ(k2).

Thus ϕ is a generalized d−algebra morphism. Let CH
ς ∈ Y/H = ∪k∈KCH

k . So there exists k ∈ K such that
ς ∈ CH

k . Thus CH
ς = CH

k . Now ϕ(k) = CH
k = CH

ς . Hence ϕ is onto.
We now show that ker(ϕ) = H ∩K. Let σ ∈ H ∩K. So σ ∈ H and σ ∈ K. Now ϕ(σ) = CH

σ = H = CH
0 .

So σ ∈ ker(ϕ). Thus H ∩K ⊆ ker(ϕ). Let σ ∈ ker(ϕ) ⊆ K. So σ ∈ K and ϕ(σ) = CH
0 . Also ϕ(σ) = CH

σ .
Thus CH

0 = CH
σ , which gives σ ∈ H. So σ ∈ H ∩K. Thus ker(ϕ) ⊆ H ∩K. Thus we get ker(ϕ) = H ∩K.

So by Theorem 5.1, we get that K/ker(ϕ) ∼= Y/H, that is, Y/H ∼= K/(H ∩K).

Theorem 5.3. (Third Isomorphism Theorem of generalized d−algebras)

Let X be a generalized d$−algebra. Let H and K be d#−ideals of X such that H ⊆ K. Then X/H
/
K/H ∼=

X/K.

Proof. Since H and K are d#−ideals of X, so X/H and X/K are well defined d$−algebras. Let CH
k ∈ K/H.

So k ∈ K ⊆ X. Thus k ∈ X. Hence CH
k ∈ X/H. So K/H ⊆ X/H.

Now we show thatK/H is a d#−ideal ofX/H. SinceK is a d∗−ideal ofX, so 0 ∈ K. Thus CH
0 = H ∈ K/H.

Let CH
k ∈ K/H, so k ∈ K. Since K is an d∗−ideal of X, so 0 ∗ k ∈ K. Hence CH

0∗k ∈ K/H. Thus
CH
0 ∗ CH

k ∈ K/H.
Let CH

ς ∗CH
σ ∈ K/H, CH

σ ∈ K/H. So CH
ς∗σ ∈ K/H, CH

σ ∈ K/H, so ς ∗σ ∈ K,σ ∈ K. Since K is a d∗−ideal,
so ς ∈ K. Hence CH

ς ∈ K/H.
Let CH

σ ∗ CH
ς ∈ K/H and CH

ς ∗ CH
z ∈ K/H. That is CH

σ∗ς ∈ K/H and CH
ς∗z ∈ K/H, so σ ∗ ς ∈ K and

ς ∗ z ∈ K. Since K is a d∗−ideal, so σ ∗ z ∈ K. Thus CH
σ∗z ∈ K/H. Hence CH

σ ∗ CH
z ∈ K/H.

Now let CH
σ ∗CH

ς ∈ K/H and CH
ς ∗CH

σ ∈ K/H. That is, CH
σ∗ς ∈ K/H and CH

ς∗σ ∈ K/H. Thus σ ∗ ς ∈ K
and ς ∗ σ ∈ K. Since K is a d#−ideal of X, so (σ ∗ z) ∗ (ς ∗ z) ∈ K and (z ∗ σ) ∗ (z ∗ ς) ∈ K for σ, ς, z ∈ X.
Hence CH

(σ∗z)∗(ς∗z) ∈ K/H and CH
(z∗σ)∗(z∗ς) ∈ K/H, which gives CH

σ∗z ∗CH
ς∗z ∈ K/H and CH

z∗σ ∗CH
z∗ς ∈ K/H.

Thus (CH
σ ∗CH

z )∗ (CH
ς ∗CH

z ) ∈ K/H and (CH
z ∗CH

σ )∗ (CH
z ∗CH

ς ) ∈ K/H for all CH
σ , CH

ς , CH
z ∈ X/H. Thus

K/H is a d#−ideal of X/H. Hence X/H
/
K/H is a well defined generalized d#−algebra.

Now we define a mapping ϕ : X/H → X/K by ϕ(CH
σ ) = CK

σ for all σ ∈ X. Let CH
σ = CH

σ′ . Then σ ∼ σ′

in H. Thus σ ∗ σ′, σ′ ∗ σ ∈ H. Since H ⊆ K, so σ ∗ σ′, σ′ ∗ σ ∈ K. Thus σ ∼ σ′ in K. Hence CK
σ = CK

σ′ .
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That is, ϕ(CH
σ ) = ϕ(CH

σ′ ). Hence ϕ is well defined. Now

ϕ(CH
σ ∗ CH

ς ) = ϕ(CH
σ∗ς)

= CK
σ∗ς

= CK
σ ∗ CK

ς

= ϕ(CH
σ ) = ϕ(CH

ς ).

Let CK
σ ∈ X/K, so σ ∈ X. Thus CH

σ ∈ X/H and ϕ(CH
σ ) = CK

σ . So ϕ is onto.
Now, we show that K/H = ker(ϕ). Let CH

σ ∈ ker(ϕ). So ϕ(CH
σ ) = CK

0 , that is, CK
σ = CK

0 . Thus σ ∼ 0 in
K. So 0 ∗ σ, σ ∗ 0 ∈ K. Hence σ ∈ K. Thus CH

σ ∈ K/H. So ker(ϕ) ⊆ K/H.
Let CH

k ∈ K/H. So k ∈ K. Further

ϕ(CH
k ) = CK

k

= K (because k ∈ K)

= CK
0

Hence CH
k ∈ ker(ϕ), so K/H ⊆ ker(ϕ). Thus ker(ϕ) = K/H.

So by Theorem 5.1 we get

X/H
/
ker(ϕ) ∼= X/K. That is, X/H

/
K/H ∼= X/K.

6. Conclusion

The concept of d−algebras is one of the very interesting topic among the study of algebraic structures,
which has attracted many mathematicians. In this article, we have studied the structures of Generalized
d−algebra, Transitive Generalized d−algebra, Generalized d−subalgebra, Generalized d−ideal and Quotient
Generalized d−algebra. Some algebraic properties of these concepts are proved. In the last section, by defin-
ing d−morphism, first, second and third isomorphism theorems for Generalized d−algebra are proved.
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