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Abstract

In this paper, we use new definition of left and right conformable fractional integral to obtain some new
inequalities. The results obtained are refinements of existing results.
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1. Introduction and Preliminaries

Recently, a significant number of considerations have been given to fractional calculus due to its various
applications in different field of sciences. In pure and applied mathematics, fractional calculus is the most
developed areas of classical calculus. The development of several fractional operators is a noteworthy feature
of this investigation (See [1, 2, 3, 6, 12, 15]). A more complete overview of the development of this area with
its overlapping with the generalized local calculus can be found at [5], [8] and [9].

Integral inequalities have significant role as these are helpful for the study of different classes of differential
and integral equations.

In this paper, we present new integral inequalities in the framework of conformable fractional integral
of order α.

The class of functions that we will consider in our study is defined below (see [6] and [9]) as:

Definition 1.1. A function h is said to be in Lq,r[0,+∞) space if

Lq,r[0,+∞) = {h : ∥h∥Lq,r[0,+∞) =

(∫ a2

a1

|h(s)|qsrds
) 1

q

,
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where < +∞, 1 ≤ q < +∞, r ≥ 0} and for r = 0, we have

Lq[0,+∞) = {h : ∥h∥Lq [0,+∞)

=

(∫ a2

a1

|h(s)|qds
) 1

q

< +∞, 1 ≤ q < +∞}.

In [8], the following functional class is defined as:

Definition 1.2. Let h ∈ L1[0,+∞) and Ψ be an increasing and positive monotone function on [0,+∞)
and Ψ′ is also continuous on [0,+∞) and Ψ(0) = 0. The space Xq

Ψ(0,+∞) where 1 ≤ q < +∞ of those
real-valued Lebesgue measurable functions h on [0,+∞) for which

∥h∥XΨ
q
=

(∫ a2

a1

|h(s)|qΨ′(s)ds

) 1
q

< +∞, 1 ≤ q < +∞.

Based on the previous definition, there is another functional class defined as:

Definition 1.3. Let h ∈ L1[0,+∞) and F continuous and positive function on [0,+∞) with F (0) = 0. The
space Xq

F (0,+∞)(1 ≤ q < +∞) of those real-valued Lebesgue measurable functions h on [0,+∞) for which

∥h∥Xq
F
=

(∫ a2

a1

|h(s)|qF (s)ds

) 1
q

< +∞, 1 ≤ q < +∞,

and for the case q = +∞
∥h∥X∞

F
= ess sup

0≤s<∞
[F (s)h(s)] .

Remark 1.4. If F (t) = 1, 1 ≤ q < +∞ the space Xq
F (0,+∞) coincides with the Lq[0,+∞)-space.

Remark 1.5. If F (t) = 1
t the space Xq

F (0,+∞) coincides with Lq,r[1,+∞)-space (see [10, 16, 17]).

More and more researchers have dedicated themselves to this area [6, 7]. A more complete overview of
the development of this area with its overlapping with the generalized local calculus can be found at [4] and
[18].

To make the work easier to read, we begin by these definitions for fractional integrals and derivatives,
here authors proved that (see [14]): ∫ 1

0
F δ+1(s)ds ≥

∫ 1

0
sδF (s)ds,

and ∫ 1

0
F δ+1(s)ds ≥

∫ 1

0
sF δ(s)ds,

where δ > 0 and f is a positive continuous function on [0, 1] such that∫ 1

u
F (s)ds ≥

∫ 1

u
sds, u ∈ [0, 1].

Then in [12] , W. J. Liu et al. established the following result:∫ b

a
Fα+β(s)ds ≥

∫ b

a
(s− a)αF β(s)ds.
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Definition 1.6. [18](Left Conformable derivative). Let a function F : [u1, u2] → R, where 0 ≤ u1 < u2.
Then left conformable fractional derivative of F of order α is defined as:

Dα
u1
(G)(⊤) = limε→0

G(⊤+ ε⊤−α(⊤− u1))−G(⊤)

ε(1− u1⊤−α)
,

where ⊤ > u1, α ∈ (0, 1) and ⊤α ̸= u1.

Theorem 1.7. Let ⊤ > u1, α ∈ (0, 1) and ⊤α ̸= u1, we have following results for left conformable fractional
derivative of order α

(i) Dα
u1
(aF ± bG) = aDα

u1
(F )± bDα

u1
(G) ,

(ii) Dα
u1
(FG) = FDα

u1
(G) +GDα

u1
(F ) ,

(iii) Dα
u1
(FG) =

GDα
u1

(F )−FDα
u1

(G)

G2 ,
(iv) Dα

u1
(c) = 0,

(v) Dα
u1
(⊤n) = n⊤n−1(⊤−a)

(⊤α−a) , where n ∈ R,
(vi) Dα

u1
(F ◦G) = F ′(G(⊤))Dα

u1
(G(⊤)),

(vii) Dα
u1
(G(⊤)) =

(
⊤−a
⊤α−a

)
G′(⊤).

Proof. (vii) We know

Dα
u1
(G)(⊤) = limε→0

G(⊤+ ε⊤−α(⊤− u1))−G(⊤)

ε(1− u1⊤−α)
.

Substitute ε⊤−α(⊤− u1) = ℓ, we have

Dα
u1
(G)(⊤) =

⊤− u1
⊤α − u1

limℓ→0
G(⊤+ ℓ)−G(⊤)

ℓ
.

Now, we will define right conformable derivative as:

Definition 1.8. (Right Conformable derivative). Let a function F : [u1, u2] → R, where 0 ≤ u1 < u2. Then
right conformable fractional derivative of F of order α is defined as u

Dα
u2
(G)(⊤) = − limε→0

G(⊤+ ε⊤−α(u2 −⊤))−G(⊤)

ε(1− u2⊤−α)
,

where ⊤ < u2, α ∈ (0, 1) and ⊤α ̸= u2.

Theorem 1.9. Let ⊤ < u2, α ∈ (0, 1) and ⊤α ̸= u2, we have following results for right conformable
fractional derivative of order α

(i) Dα
u2
(aF ± bG) = aDα

u2
(F )± bDα

u2
(G) ,

(ii) Dα
u2
(FG) = FDα

u2
(G) +GDα

u2
(F ) ,

(iii) Dα
u2
(FG) =

GDα
u2

(F )−FDα
u2

(G)

G2 ,
(iv) Dα

u2
(c) = 0,

(v) Dα
u2
(⊤n) = n⊤n−1

(
u2−⊤
u2−⊤α

)
, where n ∈ R,

(vi) Dα
u2
(F ◦G) = F ′(G(⊤))Dα

u2
(G(⊤)),

(vii)Dα
u2
(G(⊤)) =

(
u2−⊤
u2−⊤α

)
G′(⊤).
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Proof. (vii) We know

Dα
u2
(G)(⊤) = − limε→0

G(⊤+ ε⊤−α(u2 −⊤))−G(⊤)

ε(1− u2⊤−α)
.

Substitute ε⊤−α(u2 −⊤) = ℓ, we have

Dα
u2
(G)(⊤) =

u2 −⊤
u2 −⊤α

limℓ→0
G(⊤+ ℓ)−G(⊤)

ℓ
.

Definition 1.10. Let a function G : [u1, u2] −→ R, where 0 ≤ u1 < u2. Then left conformable fractional
integral of G of order α is defined as:

Iαu1
(G)(⊤) =

∫ ⊤

u1

G(u)
(uα − u1)

(u− u1)
du, (1.1)

where ⊤ > u1, α ∈ (0, 1].

Definition 1.11. Let a function G : [u1, u2] −→ R,where 0 ≤ u1 < u2. Then right conformable fractional
integral of G of order α is defined as:

Iαu2
(G)(⊤) =

∫ u2

⊤
G(u)

(u2 − uα)

(u2 − u)
du, (1.2)

where ⊤ < u2, α ∈ (0, 1].

Remark 1.12. When α = 1 and u1 = 0, we obtain from (1.1) :

I10 (G)(⊤) =

∫ ⊤

0
G(u)du.

Remark 1.13. When α = 1 and u2 = 0, we obtain from (1.2) :

I10 (G)(⊤) =

∫ ⊤

0
G(u)du.

In [11] and [12], the following two theorems were proved.

Theorem 1.14. Let F and G be continuous and positive functions defined on the interval [a, b], such that
F ≤ G on [a, b]. Such that F

G is decreasing and F is increasing. Assume that Φ is a convex function
Φ : Φ(0) = 0. Then the inequality

∫ b
a F (s)ds∫ b
a G(s)ds

≥
∫ b
a Φ(F (s))ds∫ b
a Φ(G(s))ds

,

holds.

Theorem 1.15. Let F, G and H be three continuous and positive functions defined on the interval [a, b],
such that F ≤ H on [a, b]. Such that F

H is decreasing and F and G are increasing. Assume that Φ is a
convex function Φ : Φ(0) = 0. Then the inequality

∫ b
a F (s)ds∫ b
a H(s)ds

≥
∫ b
a Φ(F (s))G(s)ds∫ b
a Φ(H(s))G(s)ds

,

holds.
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2. Main Results

In this section we obtain new integral inequalities within the framework of the generalized operators of
the definition 1.10 and 1.11.

Theorem 2.1. Let F and G be continuous and positive functions defined on the interval [1,+∞), such that
F ≤ G. Under the condition that F

G is decreasing and F is increasing over [1,+∞), then for any convex
function Ω that satisfies Ω(0) = 0, the following inequality holds:

Iαu1
[F (⊤)]

Iαu1
[G(⊤)]

≥
Iαu1

[Ω(F (⊤))]

Iαu1
[Ω(G(⊤))]

, (2.1)

where α ∈ (0, 1].

Proof. Utilizing the convexity of Ω and from the fact that Ω(0) = 0, the function Ω(F (u))
u is increasing and F

is also increasing, then we have the increasing function Ω(F (u))
F (u) . Using the fact that F

G is decreasing function,(
Ω(F (ν))

F (ν)
− Ω(F (u))

F (u)

)(
F (u)

G(u)
− F (ν)

G(ν)

)
≥ 0, (2.2)

for all u, ν ∈ [1,+∞). From the inequality (2.2), we have

Ω(F (ν))

F (ν)

F (u)

G(u)
+

Ω(F (u))

F (u)

F (ν)

G(ν)
≥ Ω(F (u))

F (u)

F (u)

G(u)
+

Ω(F (ν))

F (ν)

F (ν)

G(ν)
. (2.3)

On multiplying inequality (2.3) by G(ν)G(u), we obtain

Ω(F (ν))

F (ν)
G(ν)F (u) +

Ω(F (u))

F (u)
G(u)F (ν) ≥ Ω(F (u))G(ν) + Ω(F (ν))G(u). (2.4)

Multiplying the inequality (2.4) by (uα−u1)
(u−u1)

and integrating the above inequality over (u1,⊤) w.r.t. u, we
obtain

Ω(F (ν))

F (ν)
G(ν)Iαu1

(F )(⊤) + Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
F (ν) (2.5)

≥ Iαu1
[Ω(F (⊤))]G(ν) + Ω(F (ν))Iαu1

[G(⊤)] .

Similarly, multiplying the inequality (2.5) by (vα−v1)
(v−v1)

, integrating the resulting inequality over (u1,⊤) with
respect to ν, we obtain

Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
Iαu1

[F (⊤)] + Iαu1
[F (⊤)] Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≥ Iαu1

[Ω(F (⊤))] Iαu1
[G(⊤)] + Iαu1

[Ω(F (⊤))] Iαu1
[G(⊤)] , (2.6)

We have from (2.6)
Iαu1

[F (⊤)]

Iαu1
[G(⊤)]

≥
Iαu1

[Ω(F (⊤))]

Iαu1

[
Ω(F (⊤))
F (⊤) G(⊤)

] .
Since, F ≤ G and the from property of Ω, it is easy to obtain that

Ω(F (⊤))

F (⊤)
≤ Ω(G(⊤))

G(⊤)
,⊤ ∈ [a1,+∞)

Then in the same way, we obtain

Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iαu1

[Ω(G(⊤))] . (2.7)

By utilizing (2.7) in (2.6), we obtained the required inequality (2.1).
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Remark 2.2. If u1 = a, ⊤ = b and α = 1, then we obtain Theorem 1.14.

Theorem 2.3. Let F and G be continuous and positive functions defined on the interval [1,+∞), such that
F ≤ G. Under the condition that F

G is decreasing and F is increasing over [1,+∞), then for any convex
function Ω that satisfies Ω(0) = 0, the following inequality holds:

Iαu1
[Ω(G(⊤))] Iγu1

[F (⊤)] + Iαu1
[F (⊤)] Iγu1

[Ω(G(⊤))] (2.8)

≥ Iγu1
[Ω(F (⊤))] Iαu1

[G(⊤)] + Iαu1
[Ω(F (⊤))] Iγu1

[G(⊤)] ,

with ⊤ ∈ (0, 1].

Proof. Utilizing the convexity of Ω and from the fact that Ω(0) = 0, the function Ω(F (u))
u is increasing and F

is also increasing, then we have the increasing function Ω(F (u))
F (u) . Using the fact that F

G is decreasing function,(
Ω(F (ν))

F (ν)
− Ω(F (u))

F (u)

)(
F (u)

G(u)
− F (ν)

G(ν)

)
≥ 0, (2.9)

for all u, ν ∈ [1,+∞). From the inequality (2.9), we have

Ω(F (ν))

F (ν)

F (u)

G(u)
+

Ω(F (u))

F (u)

F (ν)

G(ν)
≥ Ω(F (u))

F (u)

F (u)

G(u)
+

Ω(F (ν))

F (ν)

F (ν)

G(ν)
. (2.10)

On multiplying inequality (2.10) by G(ν)G(u), we obtain

Ω(F (ν))

F (ν)
G(ν)F (u) +

Ω(F (u))

F (u)
G(u)F (ν) ≥ Ω(F (u))G(ν) + Ω(F (ν))G(u). (2.11)

If we multiply the inequality (2.11) by (uγ−u1)
(u−u1)

and integrating the resulting inequality over (u1,⊤) with
respect to u, we obtain

Ω(F (ν))

F (ν)
G(ν)Iγu1

[F (⊤)] + Iγu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
F (ν)

≥ Iγu1
[Ω(F (⊤))]G(ν) + Ω(F (ν))Iγu1

[G(⊤)] . (2.12)

Similarly, multiplying the inequality (2.12) by (vα−v1)
(v−v1)

, integrating the resulting inequality over (u1,⊤) with
respect to ν, we obtain

Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
Iγu1

[F (⊤)] + Iαu1
[F (⊤)] Iγu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≥ Iγu1

[Ω(F (⊤))] Iαu1
[G(⊤)] + Iαu1

[Ω(F (⊤))] Iγu1
[G(⊤)] . (2.13)

Since F ≤ G and using the property of Ω, it is easy to obtain that

Ω(F (u))

F (u)
≤ Ω(G(u))

G(u)
, u ∈ [a1,+∞)

If we multiply with both sides with (uα−u1)
(u−u1)

G(u) and integrating the above inequality over (u1,⊤) with
respect to u, we obtain

Iαu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iαu1

[Ω(G(⊤))] . (2.14)

Similarly. we obtain

Iγu1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iγu1

[Ω(G(⊤))] . (2.15)

By utilizing inequalities (2.14) and (2.15) in (2.13), we obtained the required inequality.
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Remark 2.4. If γ = α in 2.8, we obtain Theorem 2.1.

Remark 2.5. If u1 = a, ⊤ = b and γ = α = 1, then we obtain Theorem 1.14.

Theorem 2.6. Let F and G be continuous and positive functions defined on the interval [1,+∞), such that
F ≤ G. Under the condition that F

G is decreasing and F is increasing over [1,+∞), then for any convex
function Ω that satisfies Ω(0) = 0, the following inequality holds:

Iαv2 [Ω(G(⊤))] Iαu2
[F (⊤)] + Iαv2

[F (⊤)] Iαu2
[Ω(G(⊤))]

≥ Iαu2
[Ω(F (⊤))] Iαv2 [G(⊤)] + Iαv2 [Ω(F (⊤))] Iαu2

[G(⊤)] , (2.16)

where α ∈ (0, 1].

Proof. Utilizing the convexity of Ω and from the fact that Ω(0) = 0, the function Ω(F (u))
u is increasing and F

is also increasing, then we have the increasing function Ω(F (u))
F (u) . Using the fact that F

G is decreasing function,(
Ω(F (ν))

F (ν)
− Ω(F (u))

F (u)

)(
F (u)

G(u)
− F (ν)

G(ν)

)
≥ 0, (2.17)

for all u, ν ∈ [1,+∞). From the inequality (2.17), we have

Ω(F (ν))

F (ν)

F (u)

G(u)
+

Ω(F (u))

F (u)

F (ν)

G(ν)
≥ Ω(F (u))

F (u)

F (u)

G(u)
+

Ω(F (ν))

F (ν)

F (ν)

G(ν)
. (2.18)

On multiplying inequality (2.18) by G(ν)G(u), we obtain

Ω(F (ν))

F (ν)
G(ν)F (u) +

Ω(F (u))

F (u)
G(u)F (ν) ≥ Ω(F (u))G(ν) + Ω(F (ν))G(u). (2.19)

Multiplying both members of above inequality by (u2−uα)
(u2−u) and integrating the resulting inequality over

(⊤, u2) with respect to u, we obtain

Ω(F (ν))

F (ν)
G(ν)Iαu2

(F )(⊤) + Iαu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
F (ν) (2.20)

≥ Iαu2
[Ω(F (⊤))]G(ν) + Ω(F (ν))Iαu2

[G(⊤)] .

Similarly, multiplying the inequality (2.20) by (v2−vα)
(v2−v) , integrating the resulting inequality over (⊤, u2) with

respect to v, we obtain

Iαv2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
Iαu2

[F (⊤)] + Iαv2 [F (⊤)] Iαu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
(2.21)

≥ Iαu2
[Ω(F (⊤))] Iαv2 [G(⊤)] + Iαv2 [Ω(F (⊤))] Iαu2

[G(⊤)] .

Since, F ≤ G and the properties of Ω

Ω(F (⊤))

F (⊤)
≤ Ω(G(⊤))

G(⊤)
,⊤ ∈ [a1,+∞).

It is easy to obtain that

Iαu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iαu2

[Ω(G(⊤))] , (2.22)

and

Iαv2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iαv2 [Ω(G(⊤))] . (2.23)

By utilizing (2.22) and (2.23) in (2.21), we obtained the required inequality.
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Remark 2.7. If u2 = v2 = b, ⊤ = a and α = 1, then we obtain Theorem 1.14.

Theorem 2.8. Let F and G be continuous and positive functions defined on the interval [1,+∞), such that
F ≤ G. Under the condition that F

G is decreasing and F is increasing over [1,+∞), then for any convex
function Ω that satisfies Ω(0) = 0, the following inequality holds:

Iαv1 [Ω(G(⊤))] Iγu2
[F (⊤)] + Iαv1 [F (⊤)] Iγu2

[Ω(G(⊤))] (2.24)

≥ Iγu2
[Ω(F (⊤))] Iαv1 [G(⊤)] + Iαv1 [Ω(F (⊤))] Iγu2

[G(⊤)] ,

where α ∈ (0, 1].

Proof. Utilizing the convexity of Ω and from the fact that Ω(0) = 0, the function Ω(F (u))
u is increasing and F

is also increasing, then we have the increasing function Ω(F (u))
F (u) . Using the fact that F

G is decreasing function,(
Ω(F (ν))

F (ν)
− Ω(F (u))

F (u)

)(
F (u)

G(u)
− F (ν)

G(ν)

)
≥ 0, (2.25)

for all u, ν ∈ [1,+∞). From the inequality (2.9), we have

Ω(F (ν))

F (ν)

F (u)

G(u)
+

Ω(F (u))

F (u)

F (ν)

G(ν)
≥ Ω(F (u))

F (u)

F (u)

G(u)
+

Ω(F (ν))

F (ν)

F (ν)

G(ν)
. (2.26)

On multiplying inequality (2.10) by G(ν)G(u), we obtain

Ω(F (ν))

F (ν)
G(ν)F (u) +

Ω(F (u))

F (u)
G(u)F (ν) ≥ Ω(F (u))G(ν) + Ω(F (ν))G(u). (2.27)

Multiplying both sides of above inequality by (u2−uγ)
(u2−u) , and integrating the resulting inequality over (⊤, u2)

with respect to u, we obtain

Ω(F (ν))

F (ν)
G(ν)Iγu2

[F (⊤)] + Iγu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
F (ν) (2.28)

≥ Iγu2
[Ω(F (⊤))]G(ν) + Ω(F (ν))Iγu2

[G(⊤)] .

Similarly, multiplying the inequality (2.28) by (vα−v1)
(v−v1)

, integrating the resulting inequality over (⊤, v1) with
respect to v, we obtain

Iαv1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
Iγu2

[F (⊤)] + Iαv1 [F (⊤)] Iγu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≥ Iγu2

[Ω(F (⊤))] Iαv1 [G(⊤)] + Iαv1 [Ω(F (⊤))] Iγu2
[G(⊤)] . (2.29)

Since, F ≤ G and from the properties of Ω, it is easy to obtain that

Ω(F (u))

F (u)
≤ Ω(G(u))

G(u)
, u ∈ [a1,+∞)

If we multiply both sides with (u2−uγ)
(u2−u) G(u) and integrating the resulting inequality over (⊤, u2) w.r.t. u, we

obtain

Iγu2

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iγu2

[Ω(G(⊤))] . (2.30)

Similarly, we obtain

Iαv1

[
Ω(F (⊤))

F (⊤)
G(⊤)

]
≤ Iαv1 [Ω(G(⊤))] . (2.31)

By utilizing (2.30) and (2.31) in (2.29), we obtained the required inequality.

Remark 2.9. If u2 = v2 = b, ⊤ = a and α = γ = 1, then we obtain Theorem 1.14.
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3. Conclusion

We established some new inequality for new conformable left and right fractional Integrals. The existing
inequalities can be established from new established inequalities as special cases.
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