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Abstract

In this paper, we present a nonlinear equation modeling a time-fractional pseudoparabolic problem, involving
fractional Caputo derivative where the fractional order is 0 < a < 1. We first started with the associated
linear problem, we establish the energy inequalities to obtaine a priori estimate,and demonstrate the density
of the operator’s range generated. Accordingly, the existence and uniqueness of the weak solutions are given,
then we use the preceding results to handle the nonlinear case via an iterative process.
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1. Introduction

Fractional Differential equations, started with the ideas of G. Leibniz, by extending the order of deriva-
tives and integrals with any number irrational, fractional or complex, this initial spark motivated many
mathematicians, physicists and engineers to develop it gradually up to now, and it has been recognized as
one of the leading instruments to portray long-memory processes, radioactive nuclear decay in fluid flows,
plasma of physics, population dynamics, semiconductor modeling, transmission theory and certain biological
processes, underground-water flow. Such models were curiously for engineers and physicists but moreover
for pure mathematicians, and it was introduced in various different ways, most evident formulations is based
on the fundamental definition such Riemann-Liouville, Grunwald-Leitnikov, Weyl, Riesz, Caputo.

For all models such as those used, the solution may not necessarily be directly solvable, or do not
have explicit form, their only often unclear, but whether solutions are unique or exist, are also a notable
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subjects of interest. However there are a various results concerning the existence and the uniqueness of
solution have been established, mentioning : energy inequality[I] and Adomian decomposition [2],Variational
Iteration Method [3] and Fractional Difference Method [4], Rothe time-discretization [5], Power Series [6],
Laplace Transform [7], Fractional Green’s Function [8], Mellin Transform.[9] Or restricted on it existence
and uniqueness only as fixed point of a sum operator, fixed point of Schauder [10], upper and lower solutions,
perturbation method [11, 12].

In this paper, we focus on providing the existence and uniqueness of the solutions to non-linear time-
fractional differential equations equation, where the highest order derivative may be greater than one, and
the fractional order is 0 < a < 1, depending on Caputo approach, by the energy inequality method. Firstly
the statement of the problem where the equation is posed, then in Sec.3 introduce some useful function
spaces, and obtain some results for the associated linear problem, thereafter in the Sec.4 we examine an
iterative process based on the result obtained on the previous sections for validating the existence and
uniqueness of the non—linear problem

2. Formulation of the problem

We considering the fractional nonlinear partial differential equation as follows
0% 00 00

— —nN—— = h(z,t,0, —

o2 ora2 = ME 0 5y,

in the bounded domain Qr = {(x, HHER2LT>0:0<z<1, 0<t<T } , associating with initial condi-
tions

£ =5 Do — k (2.1)

o0 =200 gy (2.2
POD _ it (23

and the integral condition
1
/Q(x,t)d:z = E(t), (2.4)
0

where k and 7 are positive real constants, and the operator g Dy is the Caputo left fractional derivative of
order 0 < a < 1 defined as

t
1 0
C pa t
Do = dr,t .
0t F(l—a)/(t—T)a Tt>0
0

For more details we refer to [15].

The nonlinear equation has some known importance because of its applications in describing certain
heat diffusion phenomena with source terms. The obvious example is given by the theory of thermal conduc-
tion related to a deformable body [16]. Here 6 plays the role of the conductive temperature, k is the report
of the conductivity upon the specific heat, 7 is positive real constant denotes the temperature discrepancy
factor (the conductive temperature and thermodynamic temperature) and h(z,t,0, %) is intensity of heat
source.

Moreover, this equation is accompanied by some conditions that lead to a description of the physical
properties of the system: the integral and Neumann conditions , which can be interpreted respec-
tively as the average values and the flow of quantities physical respectively. Then E(¢) in will be taken
as the heat energy removed and condition (2.3) means that the heat flow across the boundary is equal to
p(t)-

Besides, this equation can describe other physical processes, among which: infiltration of homoge-
neous fluids through fissured rocks [17], non-stationary flows of second-order fluids [18], diffusion of resonant
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radiation trapped through a gas [19] and unidirectional propagation of nonlinear dispersive long waves [20]
etc.

Since the integral boundary conditions are inhomogeneous, we introducing the new function u(zx,t) =
0(z,t) — U(x,t) defined as

t
Ul(z,t) = 322E(t) + (1 — 2z) /u (2.5)
0

§Dfu— kG —nghty = f(a,t,u, 52)
ou(z,0) /(.%')

where

ou ou 0oU
f(x,t,u,%)—h(x,t,u—l—Ua +%) LU

up(z) = O(x) — qU (,1)

In addition we assume that f is a lipschitz function for all (z,t) € Qr .

Problems with non-stationary conditions are little known and require some precautions. Consequently, in
order to convert it to the usual problem of stationary conditions, we introduce an appropriate transformation
and thus we reduce the problem — with non-homogeneous and non-stationary integral
conditions to problem with homogeneous and stationary conditions. Obviously, the two problems are
equivalent and specify the same behavior of physical phenomena

3. The linear problem associated

In the first part, in this section, we restrict on the linear problem (3.1), which presents a particular
restriction where the effect of the nonlinear terms is considered negligible and manifests itself only weakly
and in a smooth way in the dynamics of the system.

(§Dpu—kIY — 0t = f(x,1)

922~ 56022
aué 0) 7)

8u(0 t) é
1 ot

Jutat

0

For investigating the posed problem , we introduce some function spaces that we used .

Starting by L2 (0,1), L? (0, T; H) where H is a Hilbert space, and C (0, T’; H) is the standard functional
space, we denoted by L?, (0,1) the weighted L2-space normed with

1 1/2

lulligon = | [(1-onldn) (3.2)

0
and H} (0,1) is the weighted Sobolev space normed with
9 1/2
5 3.3
L3(071)> &

ou
2
ol o) = (HuuLg(O,l) + o
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as well let F being the Banach space with the finite norm

x 2

lulfy = §0¢ |(fa- 0% +lulEormon (34)
0 L2(Qt)
also F' is the Hilbert space with the finite norm

115 = 11320y + b 72 0.y - (3.5)

Now refer to (2.6) considering the operator Lu = F, where L = (£,q),F = (f,u(), acting from E into

F, and the domain of definition of the operator L is D(L), The solution of the problem (2.6) can be

considered as a solution of the problem in the operational form Lu = F, moreover set all functions u €
2 2 3

L? (O,T; L2 (0, 1)) ,%%%%&2;& € L? (O,T; L2 (0, 1)) , and satisfying integral conditions in problem

E3).

3.1. Uniqueness of solution (a priori estimate)

Lemma 3.1. For any function uw € D(L), there exist a positive constant C such that
lullg < C|[Lullp- (3.6)
Proof. We take the scalar product in L? (0, 1) of the equation in (3.I)) and the integro-differential operator
x

Mu = /(1 — g)g—gdg, and integrating over (Q,) with 7 < T, we have
0

T 1
C potl 0° &2
// o Di T us Mu = kgzs - Mu—nggs - Mu ) o0 (3.7)
:f(.%‘,t)MU
00

Taking into account the initial and boundary conditions(3.1]), and integrating by parts each terms of (3.7) ,

we obtain
xT

82u
Ot
_ / ’ (3.8)
O L2(01
Further,
0u i
0
Ou (z,T) 2
(H . HuaHLg(o,U) | 39

For the first term of (3.7) we use Alikhanov’s inequality [14]

T

)
/OCDgu /(1—4)82‘@ dxdt

Qt 0
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_ /CDt (// (wm)Mﬁ

T

. 2

1 1¢

>5[ forfa-oFtataa =5 pr|(fa-oFta| .10
Qt 0 0 L2(Qt)

For the first term on the right side of (3.7) ,we applying Cauchy e inequality [21], then we use Poincare type

inequalities [21], this yields
d¢ | dxdt
/f(/‘ acc) !

T 1 1 T 1 2
;//fQMﬁ+//(/ @)th
0 00
€ 2
= 2a0 dt + /] (3.11)
20/ L2(0,1) o L2(01)
Now substituting all the precedent results(3.8]) — into , we find
2
1 DO"H / 8u§td< L1 ou (z,T)
2 O £2(0,1)
0 L2(Q1) o
e[ 2 0 2 11 [ ou(z, t) ||?
- (2/ 1z e+ 5 ““?f““)) Gevs 9 1750 o B
0 0 o b

We simplifying ((3.12) , by using the Gronwall’s lemma [13], we need (%7 k:) > 0, let’s suppose is realized,

we get
i ou (z,7)|
C na )
D 1- 0% +||—
0t (/( C) ¢ ‘ ‘ 9x  lr2(01)
0 L2(Q1) o
2
<C(/f%m@ﬁ+“6gmq> (3.13)
0
where
max g,ﬂ’ %L*k 11
= (2 2 (f \77/5 ))6(25\/5]6>T‘ (3.14)
min (3, 3)
Now adding this following elementary inequality to (3.13)
e < /thMM1M+/H o (3.15)
L2(0,1
it yields
CUM/E— —« T a0

0 L2(Qt)
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2
<C /||f||iz(071) dt + H%HLg(oJ) + / ||U($,T)||?{g(o,1) dt. (3.16)
0 0
Inequality (3.16) is equivalent to
C na f u 2
o D ||(f (1= C)afcdf + llu@, )20,
0 12(Q1)
T T
o 2
<C /||f||i2(0,1) dt + HUéHLg(O,l) + / ”u(l‘ﬂ')||%{;(o,1) dt, (3.17)
0 0
where
C° =max (C,1). (3.18)
Again we applying the Gronwall’s lemma to (3.17)
T 5 T
(03 U o 2
6 D; (/(1 - C)afch + [lu(@, 73 01y < C /HfH%z(o,n dt + [ 1 0.1y | - (3.19)
0 L2(Qt) 0
' =ceel. (3.20)
Since the right-hand side is independent of 7, we take the upper boundary on the left-hand side of (3.19))
. 2
«a Ou o 2
6 D; (/(1 - O(‘ngc + ullommi o) < C <”fH%2(Qt) + HUE)HLg(o,l)) : (3.21)
0 L2(Q1)

O

3.2. Ezistence of solution of the linear problem

The proof based on two steps (result of functional analysis), The operator L: B — F is closable,
(a linear operator is called closable if it has a closed extension) and R(L) is dense in F'

Corollary 3.2. The operator L: B — F admit a closure

Proof. Let (uy), € D (L) a sequence such that :

u, — 0,in B (3.22)
Lu, — (f,u6) , in F

The procedure is to find
Proof is similar to [21].
Denote by L the closure of L and D (f) its domain. O

Definition 3.3. The solution of Lu = F is called the strong generalized solution of the problem ({3.1])

since the point of the graph of L is boundary of sequence of points of the graph of L, the energy inequality
obtained by passing to the limit in (3.6)

Jull g < C || Lu||, - (3.23)

This last entails the following corollaries
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Corollary 3.4. The range R(L) of L is closed in F and R(L) = R(L)
Proof. See [2]] O

Proposition 3.5. The problem (3.1)) admit a strong generalized solution u = L='F

Proof. First we prove R(L) is dense in F' ie. (R(L): = {0}) for the special case, where D(L) = B is
reduced to Do(L) with Do(L) = {u, uw € D(L),qu = 0}, then we complete the proof by the density of the
trace operator in any Hilbert space. O

Lemma 3.6. For allu € D(L) and w € L? (Qt) we have

/£ - wdzdt =0, (3.24)
Qt
then w annulled almost everywhere.

Proof. The scalar product of F' is defined by

1
(Lu,w)p = /C- w dzxdt + /qu - wyd, (3.25)
Ot 0
the inequality (3.25)) written as follow
o 0%u O3u
/Dt u-w drdt = /kaﬁ - w dxdt + /UW - w dxdt, (3.26)
Qt Qt Qt
by taking
1n
= //u((,t)dnd{, (3.27)
z 0
we integrating by parts each terms we get
/Df‘u -w dxdt
Ot
1 C a 1 a
> = 5 SD2( [ u(¢,t)de) dudt = %0 Dy —d( : (3.28)
Qt 0 0 L2(Qt)
Again from (3.26)), it follows that
0%u
/kaxz cw dwdt = =k ||ul| 72 (3.29)
Qt
the same for
OCu it = " (2, 7)||? (3.30)
T otox? 2 ’ ’ ’
Qt
finally, we get
. 2
1l 7
s IForfa-ogta| v klulagy + 3 e Dl <0 (331)
0 L2(Qt)

So we have v = 0 then w definitely equal to zero. O
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4. The nonlinear problem
We consider the homogeneous equation with the same conditions in (3.1))

0w PBw
T 4.1
022 "grorz =V (4.1)
“Eor )

wO.t) _
o . (4.2)

/ w(z,t)dx =0
0
We put y = u — w where u is the solution of problem ({3.1]), therefore y satisfies

o 9%y Py dy
oth Y- k@ T2 f <$7t, Y, 8:v> ) (4.3)

§Dfw — k

and

Oy(z,0)

9y@0) _
ox

0y(0,t)

y@t 0

1
/y(x,t)dx =0
0

where f (m, t,y, %) =f (w, t,y + w, g—g + %) is a lipschitz function, as we mentioned before realize

}f(x,t,pl,QI) - -]E(xatap27q2)} < L(|p1 —P2‘ + ’ql - Q2|)7 (A)

for all (z,t) € Q-

The inhomogeneous nonlinear equation with condition is obtained from the homogeneous lin-
ear equation without source with the same condition via the transformation. They are equivalent
and free to the same physics as mentioned above.

According the results of the previous section we deduce that the homogenous problem admit a unique
solution that depending the initial condition.

Now we introduce the space function as

d%*v

Oxot

C(Qt) = {1/ € C*(Qt), such that € C(Qt) } , (4.5)

assume that v,y € c! (Qt), trying to write the variational formula for (4.3) we consider the integro-

differential operator
x

My = %(C,t)d(, (4.6)
satisfied the condition .
/g’;(m,t)dx =0 ’ (4.7)
0 ayg;,T) _ 0

with



H. Merad et al., Journal of Prime Research in Mathematics, 17(2) (2021), 168-181 176

1

8y((93; 0 =0, /y(m,t)da: =0. (4.8)
0
Firstly we have
/Da Mydz:dt—/kazy Myda:dt—/ Oy Mvdxdt = /f Muydxdt (4.9)
¥ 02 T otox? N ’ ‘
Qt Qt Qt Qt
by using conditions on v and y, the integration by parts each term on the equation (4.9)), with quick
computation, gives
Oy Ov
t)d¢ | ded = dxdt, 4.10
(%2( UG 4) //Mx (4.10)
Qt
also
o3 1T
Y y O
dxdt = - dtd 4.11
OtOx? (C’ v / / Oz T (4.11)
Qt 0 00
the same for
/gmw(éZ@oM)@ﬁuﬂf(/<mdﬁ ——duxdt,
Qt 0 Qt 0
finally, the rest term
xT
0
/f £)d¢ Mﬁ:/ /ﬂgmmé£Wﬁ. (4.12)
Qt 0

Substituting (4.10]) — into (4.9), and let A (y,v) been the left-hand side of ([£.12) that’s yields

i ov
= — 4.1
= [ | [#eac) Gasa, (113)
t \0
where
o ov 0y Ov oy 0%v
/D / (¢, t)d¢ axdxdt—i—k 9 Dz dxdt —n D (%axdtdx (4.14)
Qt Qt

Definition 4.1. The function y € L? (0, T;HL (0, 1)) called a weak solution of the problem (4.3) — (4.4) if

A = [ ( / f(C,t)dC) 2 gt

Qt \0
y verifies 8y((?(z,t) =0,

hold.

We construct an iteration sequence, starting with

y© =0, (4.15)



H. Merad et al., Journal of Prime Research in Mathematics, 17(2) (2021), 168-181 177

then the sequence (y(”))n is defined as follows:

eN
H2 (n) 93 (n) . o (n—1)
Cpa,(m) _ .99 Oy (n-1) 99~
By(")( 0) _ 0
oy 2
y t( B _

1 , (4.17)
/y(”) (x,t)dxr =0

0

where y(»=1) given for n =1, 2, ...
Asserts that for fixed n, each problem ([.16) — (4.17) has a unique solution y(™ (z,t), if we set 2(") =
y™*+1D) — (") then we have the new problem

P g

Cna,(n) o — n—1)
8z(™) (2,0
8:1(0 =0
o0 _
o : (4.19)
/z(”) (z,t)dx =0
0
where
_ - ay( ) o _ ay(n_l)
(n—=1) — (n) _ (n=1) 29 "] 4.9
¢ (m7 t) f <x7 Y ax f x’ t?y Y 81. ( 0)
Lemma 4.2. Assume that condition (A) holds, then there exist a positive constant
Cy =2TCL*exp (T), (4.21)
such that
<0 H (n—1) ’ (4.22)
L2(0,T;HL(0,1)) L2(0,T;HL(0,1))

x

Proof. Multiplying Eq (4.18)by /(1 -0 %5 9z )dC we get
0

r 52 92, [ 7 92 P [ 7 PRO
JCEAER (/( -0 )k/w (/(10 5 >n m(%(/(lo §<>
0 0 Qt

Qt Qt 0

[y, ’ L
—Q/tas <,t>(0/<1 0 ac>, (1.23)

integrating over (0,7) x (0, 1), we obtain

x 2 2

1 Qy 0 || 0= (2, 7)

D </<1—<> ) IR R s
0 12(Q)

LZ(0,1)
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€ [ 2 82 ”) (x,t)
<$ W*”‘ dt+ (= — — / dt. 4.24
- 2/ H(b L2(0,1) 2e\f (4.24)
0 L2(0,1)
Applying the Gromwell’s Lemma we find
r w |’ (m) 2
0z 02" (xz,7)
C na )
D 1-— d —_—
fop(fa-o ]+ | P )
0 LQ(Qt) 0'(071)
< Wl)‘ 4.2
<O 1 (425)
0
where
max (&, (== —k 1
c— (2'(21 2 >)e iﬁ—’f)iﬂ (4.26)
min (3, 3)
adding this elementary inequality into(4.25|) and eliminate its first element on the left-side
o= @0
H ™) (2, 7) /H dt+/ gzl dt, (4.27)
L2 0,1) 2(0,1) Ox
0 Lz(0,1)
we get
Hz(”)(x 7')’ ’ < C/ Hgb” 1)‘ dt—i—/H ™) (g t)‘ dt. (4.28)
" HL(0,1) L2(0,1) HL(0,1)
Now, since
T 2
ay(n) B dy(=1)
n—1) _ - ¢ (n—1) Y4~ 4.9
/H¢ L2(01 / ( Ox Flaoty " Ox (4.29)
0 L?
by hypothesis (A) we have
. §2n-1) 2
§L2// (‘z("l) (:c,t)‘—i— ZW) dudt (4.30)
oz
00
T 2
2 (n—1)
<ot (zw woff, 4 ) "
L2(0,1) ox
0 L2(0,1)
T
- 2L2/ HZWU ( t)‘ Low (4.31)
“lEL00) ’
0
Hence, the inequality (4.28]) becomes
T T
Hz(")(l‘ 7')‘ ’ <20L? | |27V (z t)‘ ’ dt + / ‘ = (2 t)‘ ’ (4.32)
" lEL00) T " lHL0,1) " lHL0,1) '
0
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Again, the Gronwall’s lemma amounts to finding

2

Hz(”)(l‘ 7')‘ ’ < 20L%exp (T /H (n=1) (g t)’ dt (4.33)
PG BV:EICR '
integrating over (0, 7)
2
H m|? <0 Hz("*l)) dt, (4.34)
L2(0,T;HL(0,1)) L2(0,T;HL(0,1))

where

Cy =2TCL*exp (T).

From the criteria of convergence of series, we see that the series ), -, 2(") is convergent if &/C7 < 1, Since
2() = y(+1) _ (") then the sequence (y("))neN is defined by

i
L

y ™ (z,t) = 28 4 @ (4.35)

TT

—_ =

(k+1) _ (k) (0)
(3/ Y )—i—y 5

e
I
—

which converges to an element y in L? ((), T; H} (0, 1)) .
Now to prove that this limit function y is a solution of the problem under consideration (4.16)) — (4.17)),
we should show that y verify the Definition 4.1.

Consider the weak formulation of the problem (4.16]) — (4.17])

A(y,v) —Q/t O/fgtdg gda:dt

where

oy Ov oy 9*v

ov
/Dt / (¢, t)d¢ %da:dt + k 8—8—d xdt — %8t8xdtd$' (4.36)
Ot Ot

Trying to estimate the first term of (4.36)) by integrating by parts

xT

/ DY / £)d¢ %dmdt: / / yd¢ | (,D*) (g:) dwdt (4.37)

Ot \0
then, becomes
§/ /ydC dxdt/[ ( ﬂ dxdt
Qt \O Qt
< o) <8”> [zt
2 92/ ll12qn |

Then, we have

A (y(”) ~y, V) (4.38)
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(7 9 (y™ ~y) ov 9y —y) o
_/Dt (/ — yd() —dmdt + k‘/ o %d:cdt — / o BT dtdz
Qt 0

Qt Qt
1 o [ OV d (y™ —y ov
5 (D)<8x> Hy 7y)L2 t g ( Ox ! ‘&x
L2(Qt) (@) L2(Qt) L2(Qt)
9 (y™ — 02
+n 7(11 y) H 5 ay )
L2(Qt) Tl
Furthermore
A (y(”) —v, l/)
f 1 8y(n Y f Jy
:/ /f Gty 2 5 d¢ d;vdt—/ /f <(,t Y, C) d¢ dxdt (4.39)
Qt \O Qt \O
ov
<1 _ ov 4.4
= 2 <Hy y‘ L2 OTHl(U 1)) ‘ 6.%. LQ(Qt)> ’ ( O)
passing to the limit into (4.38) — (4.40) we obtain
i (n) _ —
nhglmA (y Y, V) = 0. (4.41)
Finally we conclude that problem(4.16)) — (4.17) has a weak solution. O

Lemma 4.3. The problem (4.3] - ) has a unique solution.

Proof. Suppose that yi, yo are two solutions of (.3 — (4.4) ,such that (z =y, —y2 ) € L? (0, T; H} (0, 1))
then

0%z 93z
Cpa, .2~  “~ _
with D2(2.0)
8:0’ =0
0z(0,t) _ 0
ot -
1 7 (4.43)
/z(a:, t)dx =0
0
where

oy < 9y2

Using the same integro-differential operator and making similar computation used in Lemma 4.2, we obtain

HZ||L2(0,T;H;(0,1)) <V ||Z|‘L2(0,T;Hg(o,1)) (4.44)
where
VO =+/2TCL?exp (T) < 1, (4.45)
then
12022 0,213 0,17 = O (4.46)

we conclude that y1 = yo . O
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5. Conclusions

In our work we have shown that the solution of the pseudoparabolic fractional differential equation of
the order 0 < a < 1, depending on Caputo approach, via the energy inequality method, exist and unique.
The proof was divided into two steps, For the first part, we started by the linear problem, the uniqueness of
solution is achieved in accordance with a priori estimate, the existence of solution is realized consistent with
the density of the operator associated with the linear problem. The rest of the proof is depended on the
results obtained on the first, we used them to handle the nonlinear case by applying an iterative process. In
addition this manuscript furnish a perspective to discuss the existence and uniqueness for a similar fractional
partial differential equations, unifies the classical fractional operators :Riemann-Liouville and Caputo, with
a highest fractional order, including also a numerical study.
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