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Abstract

In the present article we establish three generalizations, first generalization is related to discrete Cebysev
identity for function of higher order V divided difference with two independent variables and give its special
case as a sequence of higher order V divided difference. Moreover, we deduce results of discrete inequality
of Cebysev involving higher order V—convex function. The second and third generalizations are for integral
Cebysev and integral Ky Fan identities for function of higher order derivatives with two independent variables
and discuss its inequalities using V—convex function. Generalized results give similar results of Pecarié¢’s
article [23] and recapture some established results.
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1. Introduction and Preliminaries

Over past few decades, there were some reviewers by [18] and [19] respectively, which traced completely
the chronological and historical development of Cebysev identities and its related inequalities. These research
works are remarkable due to in many instances incorrect quotations of results, sometimes by change of several
mathematical scholars—have been uncritically transferred paper to paper and book to book. It is well known
that the famous CebySev functional is applied in many fields such as numerical quadrature, probability,
transform theory, special functions and statistical problems (see [7]).

J an interval in R, throughout the article. Also throughout the article we would use the following
notations for R = (—o0, 00) and Ry = (0, 00). We start this article from a significant result of Cebysev [5] 6]
may be stated as (see also [24], p. 197).
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Proposition 1.1. Let f,h: [a,b] — R be integrable functions and r : [a,b] — Ry, where r is also integrable.
In the same direction, if f and h are monotone, then the inequality

b b b b
/ T(y)dy/ f(y)h(y)T(y)dy—/ h(y)r(y)dy/ f(y)r(y)dy >0 (1.1)

holds, if there is existence of integrals. In the opposite directions, if f(y) and h(y) are monotone, then (1.1)
is also wvalid for reverse inequality. Equality holds in (1.1 in the both cases, iff either h or f is constant
function almost every places.

A discrete form of above proposition can be present as following (see [24]).

Proposition 1.2. Let r be a nonnegative m—tuple and a, b be real m—tuples monotone in the same direction.

Then
M M M M
Z rjajbj Z?”j — Z ijj eraj Z 0 (1.2)
7=1 7=1 7j=1 7=1

holds. In the opposite directions, if a and b are monotone , then (1.2) is also valid for reverse inequality.
Equality holds in (1.2)) in the both cases, iff either ay = ag =+ = Gy, or by = by =+ = by,.

For further details on the materials of Ceby3ev’s inequality we suggest books [20] and [24] and we also
suggest related materials [11 2], 3].
In [21] Ostrowski obtained the result which is connected to inequality of Cebysev as follows:

Proposition 1.3. Let r : J — Ry an integrable function and f,h € C*(J) be both monotone functions.
Then 3v,( € J, >

T(f,h,’l“) = f’(l/)h'(()T(yfa,y—a,r), (13)

where
b b b b
T(ﬂhﬂ"):/ f(y)h(y)r(y)dy/ 7’(y)dy—/ h(y)r(y)dy/ fy)r(y)dy. (1.4)

For other generalizations of Proposition (see [22]). By using the functional, J. Pecari¢ has given the
main generalization of Proposition in [23] which is as follows:

C(fr) = / b /  F (. 2)dz dy / b / " Fly2)r(y. 2)dz . (1.5)

remember that above functions f and r are integrable.

Proposition 1.4. Let r be the integrable function and defined by r: J*> - R, 3

Y(y,y) =Y (y,y) VyeJ

and let either

Y(y,2) >0, a<z<y<b Y(y,2)>0, a<y<z<b

or their reverse inequalities be true, there

Y(y,2z) = /yb /: r(s,t)dtds

Yy, 2) = /ay /zbr(s,t) dt ds.

2 . .
If f:J% = R has fuo) = (%f(y,z), foa) = %f(y,z), and fq1y = %f(y,z) continuous partial
derivatives, then there is existence of v, ¢ € J?, 3

C(fir) =Cy = a)(z = a),7) fuy (v, C)- (1.6)

and
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Now we need some definitions and notations that can be extracted from [10] 13, 16, 17, 24], but we
should remember the basic definitions from [14] [15].

The mth order divided difference of function f : J — R, at different elements y;, yj41,...,Yjtm € J =
[a,b] C R, where j € N is stated as:

s fl = fw), le{ii+l,....j+m}
Wiy /] = Y51, Yjorms f1 =[5, - Yjrm—15 f]
" e 7 Yj+m — Yj

We denote [yj, ..., Yjrm; f] By D) f(y;)-

A function f :J — R, is known as m—convex or mth order conver , if A¢y)f(y;) > 0 holds V(m + 1)
different points y;,...,yj+m € J. Further that if mth order derivative of function exists, then function is
convex of order m iff f(™) > 0.

A function f : J — R, is known as m — V—convex, if V) f(y;) = (=1)"A¢y) f(y;) > 0 holds, where
V(m + 1) different points y;,yj+1,...,Yj+m. Further that if mth order derivative of function exists, then
function is V—convex of order m iff (—1)™f(™) > 0.

Let f:J x L — R, be function, then (m,n)th order divided difference of function at different elements
YirYjt+1s---sYj+m € J, 21,2141, - - -, 214n € L for some j,1 € N, is stated as

Ay f Wi, 20) = [Yjs -+ s Yjrms 205 -+ 214ms f1]-
A function f : J x L — R, is known as (m, n)th order convez, if V different elements y;, ..., y;4+m € J and
2l Zi4n € Lowe have A, 1) f(y5, 2) > 0. Further that the f is (m,n)—th order convex iff f, ,) > 0, if

the partial derivative % denoted by f(,, ) and exists.
The finite difference of function f : J x L — R of order (m,n), where h,k € Rand y € J, z € L, is stated
as

Ay, 2) = AR(ALSf(y,2) = AR(AR f(y, 2))

Lo

=0

<

where y + jh,z + lk € J, L respectively and j € {0,1,...,m} and [ € {0,1,...,n}. Moreover, a function
f:Jx L — Ris called the (m,n)—convex, if the following condition holds Azrf}cnf(y, 2)>0,VyeJ,ze L.

Finite difference and Divided difference of (m,n) order, of a sequence (aj) are stated as A™"aj =
ATV f(yj,z) and Ay pyaji = Ay fyj,21) respectively, where j € {1,2,...,m}, I € {1,2,...,n}. If
yi = J, z1 =1, then f : {1,....,m} x {1,...,n} — R is the function which is f(j,1) = aj. Moreover,
a sequence (aj;) is called a (m,n)—convez, if following condition holds A™"aj; > 0 for m,n > 0 and
J,le{1,2,...}.

Further, in the current paper we would use following notations for some real sequence (a,,), m € N and
ne{2,3,...}:

VWa,, = Va, = am — Amai, v®a,, = V(V(”_l)am).

We would recall the function f : J x L — R is known as (m,n) — V—convex, if V) f(y;,2) =
(—1)m+"A(myn)f(yj, ;) > 0, holds V different points y;,...,yj4m € J, 21,. .., 214n € L.
Now its time to describe discrete CebySev identity and inequality which is stated as following [23]. Let

M M M M
CA(a,r) = Z Zrﬂajj - Z Zrﬂaﬂ, (1.7)

j=11=1 j=11=1

where 75, a5 € R; 5,0 € {1,2,...,M}.
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Proposition 1.5. The following given inequality
C2(a,r) >0 (1.8)
holds ¥ real numbers aj, for j,l € {1,2,..., M} such that A(l’l)aﬂ >0 forjle{l,....M —1}
iff B
Yier =Yyun (€{,2,...,M -1}

and

Yi>0, je{l+1,1+2,....m} for le{l,2,....M—1}

Yji>0, je{l,2,....01—1} for 1€{2,3,...,M}

hold. The reverse inequality of above inequality 1’ be also valid for j,l € {1,2,..., M —1}, if A(l’l)aﬂ <0,
where

M 1 J
Y= Z ers and ?jl = Z
r=1

r:j s=1 =1 s=

M

Trs-
l

Ky Fan [8] proposed the following result in 1952, as a problem (see also [1§]):

Proposition 1.6. Let (y,z) — v(y, z) be a function of non-negative Lebesgue integrable over {(y,z) : a <
y<b ; a < z < b} square, and let D be a posotive constant > fabv(y, 2)dy < D for almost all z € [a,b]

and f z)dz < D for almost all y € [a,b]. If f and h finite valued functions and both are non-increasing
and non- negatwe in the interval [a,b], then

[ [ oo <b [ som 0o

Remark 1.7. If v(y, z) = constant, then ((1.9) becomes special case of inequality (|1.1)).

In [23] J. Pecarié¢ considered the following expression for f,r and ¢ integrable functions for generalization

of result of Ky Fan , b
R(f,r,Q)z/ f(y,y)Q(y)dy—/ / r(y,2) f(y, z)dy dz (1.10)

and gave the result as follows.

holds.

Proposition 1.8. Let g: J — R and r : J?> — R be both integrable functions, >
Ql(yaz) < Sl<ma${y7 Z})v Ql(a7 Z) = S(Z), Ql(yaa) = Sl(y)7 V% ARS [aa b]

where Q1(y, 2 f f (s,t)dtds, Si(y f q(t
If f:J% - R has fo,1), fa,0), and faq) contmuous partial derivatives on J*. Then there is existence of
(v,¢) € J%, >

R(f,rq) = fan(w, QOR((y — a)(z — a),r,q)  for v, ¢ € [a,b].

We give following Proposition for our article from above Proposition.
Proposition 1.9. Let g:J — R and r : J> — R both are integrable functions, >
Qy, 2) < S(maz{y, z}); Qb,z) = S(2), Qy,b) =S(y), Vy,z €la,b]

where S(y) = [Yq(t = [ [Zr(s,t)dt ds.
If f e 02(J2) then there emsts (V Q) € 72 such that

R(f.r ) = fa,y (v, OR((b = y)(b - 2),7,q). (L.11)
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Under the suppositions of Proposition we would like to use some notations for easy to present the
statements of following upcoming theorems

QU (y,z) = /y/zr(s,t)(y_.ls)j (Z;t)ldtds, (1.12)
Q" (y.2) = // (s,t) .!Sj(zus)ldtds, (1.13)
so00) = [Ma U ULIFN (1.14)
Y(y2) = /amax{y’Z} /abr(s,t)(y;;!)M (Z;V?thds
- f Lzr<s,t>(y;4ﬁ>M<z % e as, (1.15)
o = [ g U,
/ay /:r(s,t) €] ;;!)M (2 J_V!t)thds. (1.16)

Let ¢ : J — R and f,r : J2 — R be functions and in which 7, ¢ are integrable and there should be
existence of f(5; ) and absolutely continuous (in the Carathéodory’s sense [25]), then for this article C(f,r)

and R(f,r,q) defined as:

M N
CUfr) = )= 30D fun®.6) [@77(b.0) - QU (b,0)]

§=0 1=0

N b —(M,l
Z/ foars1(y,0) [Q( Dy, b) - Q(M’”(%b)} dy
=0v¢%

M b A ,
> / fnin®2) [@7V0,2) — QUM . 2)] a, (1.17)
j=0"a
where C(f,r) is stated in (L.5).
R(fra) = RUma) =D D fun(®.6) [69(6) — QU (b, b))
=0 5=0

S (SO0 ) — QAN (y,b)] dy

=0 “9

Z/ fgnin(®,2) [S99(2) = QUM (b, 2)] dz, (1.18)

where R(f,r,¢q) is stated in (1.10)).

This article divide into four main sections. The second section is devoted to generalized discrete identity
and inequality of Cebysev and in 3rd and 4th sections, we would like to discuss about the generalized integral
identities and inequalities of CebySev and Ky Fan respectively.

2. Generalized Discrete Identity and Inequality of Cebysev

In present section we will get discrete identity and inequality of Ceby3ev in sequential manner.
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We would like to introduce following notation in this article

(k. — )" = (e —y) W1 — ¥5) - When — u5), (e — ;)% =1

We are required the following proposition and lemma from [II], to obtain the main identity of the present
section .

Proposition 2.1. Let m, M be integers; m < M and let r; be real numbers for j € {1,2,--- ,M}. Let f(y;)

be a function and y; non-mutual elements from interval J, j € {1,2,...,M}. Then following identity holds
M m—1 /M—k
> rify) > <Z ri(ym — yl){k}> Vi) f(yni—r) (2.1)
j=1 =0 \ /=1

z =

k=1 =1

-m k
+ (Z 1 (Yhm—1 — yz){m_1}> V ) f (k) (Yrotm — Yie)-

Lemma 2.2. Let rj; € R and f : J? — R be discrete function, where j,1 € {1,2,..., M}, then following
identity holds

M
Zlef Yjs 21) (2:2)

11=1

NE

1

<.
Il

M-t

3
|

S
E
w

rep(2ar — 2p) ¥ (yar — ys) WV iy F (i, 2ar—1)

|
i)

o

t
M—m

Il
o

s=1

= o

g

—k

t
Z Tsp M — Zp){k} (Z/t+m—1 - ys){m_l}v(m,k)f(ytv ZMfk)X
s=1

3

_|_
I

0t

X (yt-i-m _yt)
M—-nm—1M-—

I Z D (i1 = 2) "y — y) UV ) Fynr—s, 2) %

k=1 t=0 s=1 p=1

X(Zk+n_zk)
M—-nM-m t k

+ Z ST ra(zianot — 2) " wimo1 — v )TV ) (g 2) X

t=1 s=1p=1

X (yt+m — Y1) (Zhtn — 2k)-

ki
L

e

Theorem 2.3. Let f: J? — R be function and let (yj,2) € J* = [a,b] x [a,b] be mutually different points,
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where (j,0 =1,2,...,M). Let rj; (j,l =1,2,...,M), be real numbers. Then

erﬂf Yj> 2j) erﬂf Yj» 21)
j=11=1

7j=11=1

3
L
3
L

Vi) (UM —t, 20 —k) X

I
= 1]
(]

t=0
M—maz{tk} M—k
X Tsp - Zs {k} (yM - ys){t}
s=1 p=1
M-t M—k
=D > ralem — )M yar -yt
s=1 p=1
n—1M-m
+ V) f Yty 201—k) (Yttm — Yt) X
k=0 t=1
max{t,k} M—k
X Tsp(2m — ZS){k}(yt—‘rm—l - ys>{m_1}
s=1 p=1

t M-k
- Z rsp(ZM - zp>{k}(yt+m—l - ys){mil}
s=1 p=1
M—-—nm-—1
=3 Vi Lt 2k) (kg — 2) X
k=1 t=0
—maz{tk} k
X ZTsp Zktn—1 — 2 ){ 71}(?JM - ys){t}
s=1 p=1
M—t

+
2 o
o
:H
=3
3

v(m,n)f(yta 2k) (Yt+m — Yt) (Zhtn — 2k) X

[l
Q)—‘
)
’QT'»
Z o=

Tsp(zk-i-n—l - ZS){n_l} (yt+m71 - ys){m_l}

NE

X
|
3
Vo)
l
H
iS]
||
L

-
M-

Tsp(Zhgn—1 — Zp){n_l}(ywmq — ys){ml}}

Vo)
Il
—
3
I
—

holds, where N (o) f (Y, 2) = (=1)™ A (1 ) f (1, 2).

Proof. By considering the following expression we begin the proof of this theorem

M M
SN Faf s z)

=1 1=1
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where 7;; is defined as

T = ZI]JVil Tips i=1
’ 0, J#l

M M M M
szlf yﬁzﬂ erﬂf yjazj

j=11=1 j=11=1

[y

We have

M
Zrﬂf (Y, 2) :Z(ZQZG Z]>7
11=1

Jj= Jj=1

where 7j; = ¢ and G : 2 — f(y;,2). Using (2.1) in the inner sum we get

M M n—1 /M—k
SN ity z) = > (Z a(zm — Zj){k}> V) Gj(zm—rk)

NE

j=1 I1=1 j=1k=0 \ I=1
M -n
S (qu s =) Vo — 20
7j=1 k=1 =1

3
,_.

[
EM

—_

Mk
(Z q(zm — 25) > V) Gi(zm—k)
=1

=

+
™
M= TMs

-n k
(Z @ (2hyn—1 — 2) 1" 1}> V) Gj(zk) (2han — Zk))
1 \i=1

M—n M
= ( ij(yj)) + > (Z%‘H(yj)) :
k=0 \j=1 k=1 \j=1

where w; = Zf\ifk q(zm — Zj){k} = Zf\ifk ri(zm — Zj){k}, v; = Zf:l @ (Zkn-1 — Zj){”_l}, F(y;) =
Vi Gi(zm—k), and H(y;) = V() Gj(2k) (2k+n — 2k)-
Using again ([2.1]) on inner sums, then we have

M M
SO vt (i z)

j=11=1

i
L

1

S

n

]

M-p
( w;(yar — yj {p}) Vo) F (ynr—p)

p=0 j=1

n—1M—-m p
+ ij Yp+m—1 — ‘){mil} v(m)F(yp)(yp-i-m _yp)

k=0 p=1 \j=1
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+ Z Z v; (Y _yj){t} v(t)H(nyt)
k= =0 j

J
M—n M—m t
+ Z Z Uj(y“rm*l - yj){m_l} v(m)H(yt)(yter — Yt)
k=

k=0 p=0  j=1 =1
n—1 M—m maz{p,k} M—k

- Z ri(zm — Zj){k}(yp+m—1 - yj){m_l}v(m,k)f(ypa ZM—k) X
k=0 p=1 =1 =1

M—nm—1 M—maz{t,k}

> ritlzran—1 — )" (ar — y) IV ) Fynr—e, 2)
=1

+

k=1 t=0 G=

X (Zk+n — Zk)
M—n M—m mazx{tk} k

+> > > > i1 = 2) T Germer — ) Y x
k=1 t=1 j=1 =1

X v(m,n)f(yt7 Zk)(yt-l—m - yt)(zk+n - zk)

—_

If change j — s, [ — p in all sums and put p — ¢ in first and second sums, then we obtain the required

result by putting the values of Zj\il 21]\;[1 rif(y;, zj) and Lemma inCV(f,r)= ij\il Zl]‘il rif (v, 2j) —
M M

Zj:l 2= Tt (Y 2)- O

Remark 2.4. If put y; = j, z = l and f(yj,2) = f(J,1) = aj; in Theorem then get upcoming next
corollary.

Corollary 2.5. Let rj and aj; (I,j =1,2,3,..., M) be real numbers, then

M M M M
CV(a,r) = Z Z TG — Z Z 051

j=1 1=1 j=1 1=1
n—1m—1 M—maz{tk} M—k &
(M — 9 (A1 — 5
D SP IRV B S Pt KA
k=0 t=0 o st ! !
M-t M—k

(41 - ) (31 — p ¥
t! k!
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max{t,k} M—k ){m—l}

—s{} —s+m
BT s | B S

L - p) (ts+m1){m1}]
1)

B Z "sp k! (m —

M—maz{tk} &k —s{}(k—s—i—n—l){”_l}

T Z Z Vit d(M—tk) [ Z ZTSP ! (n—1)!
k=1 t=0

s=1

_Mtzk:r (M — )t (kp+n1){””]
s=1 p=1 v tl (n—1)
+M7nM7mV (mm) O ri{fk}irsp - 327:)1‘){” o S?m—_l)l.){m -
k=1 t=1
t Zk:r (k — p+n—1){" Y(t—s+m—1)im- 1}]
ot P (n—1)! (m—1)!

holds, where V (p, nyaji represents nabla divided difference of order (m,n) of the sequence (aji).

Before starting the next theorem, we would like to state few notations, under suppositions of Theorem

2.3

n—1m-—1

V() =CV () = 30N Vi fni—t 2ar-k) (2.4)

k=0 t=0
M—maz{tk} M—k
X

Z erpZM_Z {}(yM y){}
p=1

=
= g

—t M-k

rap(zar = 2p) ™ (yar ys){t}]

1M

3
I

1

i
T
E

V ) f Wt 200 —k) (Yem — Ye) X

— 1M

~+~
I

{t.k} M—k
Tsp M — Zs { }<yt+m—1 - ys)

p=1

ma.

{m-1}

1

‘ﬁ 8

— ~+
?T.)—‘

g

—k

]~

7’sp(zM - Zp){k} (yt+m—1 - ys){ml}]
1

@
Il

1p
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T
S
i

Vi) fUnr—t> 21) (Zhan — 28) ¥

g
1

M—maz{t,k} Kk
X TSP(Zk—i-n—l - ZS){nil}(yM - ys){t}
s=1 p=1
M—t k
- erp(zk—&-n—l - Zp){n_l}(yM - ys){t} s
s=1 p=1
maz{t,k} k
Yv(tv k) = Z Z 7:‘513(2’/k+n71 - Zs){nil}(yt-i-m—l - yS){mil}
s=1 p=1
t ok
- Z erp(zk-i-n—l - Zp){n_l}(yt-i-m—l - ys){m_l} - (2.5)
s=1 p=1
Theorem 2.6. Let (y;) and (z) (j,1 =1,2,..., M) be real sequences and monotonic in the same sense and

[ is V—convex function of order (m,n) and ry € R (j,l =1,2,...,M). Then
CV(fir)>0 if YY(tk)>0; t=m+1m+2,....M , k=n+1,n+2,...,M.

where @v(f,r) and YV (t,k) are stated respectively in |D and |D

Proof. This result can easily obtain using ([2.3]). O]
Remark 2.7. If put y; = j, 2 = l and f(y;, z1) = f(J,1) = a;; in previous theorem for m = n = 1 then we get

similar result for V—convex function of Theorem 3 of paper [23] and hence in this result for a;; = f(a;, b;)
we can also get similar result for V—convex function of Corollary 2 of paper [23].

Theorem 2.8. Let (y;,2) € J* = [a,b] x[a,b] (I, =1,2,..., M), be mutually distinct elements and rj; € R
(I, =1,2,..., M) and suppose that f,h: J> — R be (m,n) — V—convex functions, > inequalities

YVt k) >0, t=m+1m+2,...,.M | k=n+1,n+2,..., M. (2.6)
and
Lv(m,n)h<yj7 Zl) < v(m,n)f(yj’ Zl) < Uv(m,n)h(yj’ zl) (27)

hold, then below are valid

LCY (h,r) <C'(f,r) <UC" (h,7), (2.8)
where YV (t,k) is stated in (2.5) and U, L belong to some real constants.

Proof. Let Fi(y;, z1) = f(y;,21) — Lh(y;, z1) and Fa(y;, z1) = Uh(y;, 21) — f(y;, 1), then
Vmm F1(yj, 21) > 0 and V() Fa(yy, 21) > 0, now using Theorem we can get Theorem O

Remark 2.9. If reverse inequalities hold in (2.6) and ({2.7)), then inequalities in (2.8) remain hold. Further
that if the reverse inequalities in (2.8]) are also valid, if reverse of inequality holds in (2.6]).

Remark 2.10. If put y; = j, zy =l and f(y;,2) = f(4,1) = a;; and h(j,1) = bj; in previous theorem then we
get similar result for V—convex function of Theorem 4 of paper [23].
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3. Generalized Integral Identity and Inequality of CebySev

In the current section, we start from the following lemma [I6] which will be helpful for proving the
upcoming important theorem.

Lemma 3.1. Let r, f : J> — R be both functions, r be an integrable function and f € C(M+1’N+1)(J2),
where j € {0,1,--- ,M +1},1€{0,1,...,N 4+ 1}. Then the following identity holds

/b /br(yv 2)f(y, 2)dz dy

zz// (e, O O earas
=01 a ’

j!

N
(y—s)M (b—1)!
ZO/ / / 1)M+1+ (s, ) Vi I fouray (v, b)dt ds dy

M . ; AN
/ / / J+N+1 ,t) (b : 5)] (Z N't) f(]7N+1)(b, Z)dt ds dz

j!

o aAM (. N
//// 1)M+N, st)(y MS!) (2 Nf) fous1,n+1)(y, 2)dt ds dz dy.

Theorem 3.2. Let r, f : J> = R be both functions, where r is an integrable and there should be existence
of partial derivatives fn11,n) and f N1y that are absolutely continuous. Then

crr) = b / (0 2) £y dy — / b / . ) (g 2)d= dy

M N
= L b [@7700) - QU6
j=01

N
+ 3 / DM g (.0) [@(0.0) — @0 (1) dy
b ' _ )
+ Z/ (_1)J+N+1f(ij+1)(b’ 2) [Q(J’N)(b, ) — Q(LN)(b’ z)} dz
j=077
b b
+ / / <—1>M+Nf<M+LN+U<y,z> Y (y,2)dz dy, (3.1)

where QUL @(j’l), and Y (y,z) are stated in , , and b)) respectively.

Proof. For fixed y we define a function f(y, 2) = Fy(z). Now we write Taylor expansion of Fy(z) as follows:

N P l z - N
Fly,2) = Fy(z):;F(Z)(b)(“b)—F/b F(N+1)(t)(N!t)dt

N
— Z(il)l (b —

=0
where FU(b) = f(o,)(y,b) and FNTD(#) = fo vy (0, 1).

Now, for z = y we have

! b N
) fo)(2,0) +/ (1)N+1(tNT)f(0,N+1)(Zat) dt,

N b —_ N\
S = ST fon et + 08 i

Y
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Multiplying above equation by r(y, z) and integrate it by z over the limit a to b, then

b N b Y
[ = S 0oy [T e (3.2

=0

+ /ab (/ybr(y, 2) (DN fo v (1) ( ;VZ!/)NdO dz.

Now we further use representation of functions y — f(0)(y,b) and y = fo y+1)(y,t) by Taylor expansions:

M ' h— j b M
fonw.b) = Ejeawf@nwio(‘7”+l/< D i (5,0) s,
=0 '
M b _ M
f(O,N+1)(y7t) — Z( )Jng+1)(b t +/ M+1f(M+1,N+1)(S’t) (s MZ/') -ds.
=0 v '

Putting these above formulae in equation (3.2)), then

b
/ r(y, 2) f(y,y)dz

Y ) X (b—y)]
—g:— D (1Y S (b b) =

7=0

b 5 — M b _ N\
+/y MHfMH l)(va)(]\/;J!)@)/a 7(y, 2) L “y) dz

b M | b
+/ (/ 1)N+1 (Z(l)Jf(j,NH)(b,t)( j!y)

=0

’ (s—yM  \ t—y»V
+ / M+1f M+1,N+1 (s,1) dS) dt> dz
y ) M NI

M PRy b Y
(Z ]+lf(j b b) (b Jy)J) /a r(y, Z) (b l'y> dz

J=0

_l’_

M= 1M

b _\M b Y/
([ e e C ) [t O
b b_j_N
[ s ( 1W“mewMjﬁ)“ﬁ)wu

b rb s — M L \N
/ </ r(y,z)(—l)M+Nf(M+1,N+1)(s,t)( My!) ds> (¢ N?{) dt dz.

=

@‘O
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Now integrate r(y, z) f(y,y) by y over the limit a to b and obtain:

/ / (y,2)f(y,y)dzdy

M . o\ b PRV
:/a (Z%(l)ﬁlf(j,z)(bv b) s j!y) /a r(y, z) (b l!y) dz | dy
]:

.
g
a L

|/
/ [/ / ( / 1>M+Nf(M+1,N+1)(8,t)(S;Wyl)Mds> (t;vg{)thdz] dy.

(]~ EMZ

.\ J, M I

[e=]

O a0 S ) [ y)de] iy

(=

N!

(e

b (1) ARG
/r(y,z) Z( 1)J+N+1f(j7N+1)(b,t) 7 dtdz| dy
Yy j=0 .

Now changing the order of summation in first summand, and use integral linearity property and obtain.

§=0 1=0

The 2nd summand is rewritten as,
b [ NV
[z

b s —y)M b _ o0l
3 (] 0 aranton C ) [0 dz] ay

/“[ (// r(y, 2 ] (1)M+1+lf(M+1,z)(8,b)(S_My!)Mdzds>] dy

N
- / / / DM (0 E O g g

=0va vy Ja

b s b
=S [ e . DT OI g gy s,

=0 {

Applying Fubini theorem for variables s and y in the last step. Let us first, the change of variable y from
a to b while the changing of variable s from y to b. After the change of order of integration, s is changed a

to b while y is changed a to s. In the similar manner the 3rd summand may be rewritten as:

b b b M — ) —_ NN
/ / / r.2) | P a0 O ) P vy
a a Yy ‘:

4! N!
b—y) (t—y)N

/// r(y, z +N+ fi.n+1)(bs t)( j!) ( N!) dtdz dy
b—y) (t—y)N

NG (4 — o\ N
:Z/ //r(y’z)(_l)ﬁNHf(j,NH)(b’t)(b j,y)j (t N?{) dz dy dt.
j=0’ae Ja Ja ! !
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In above using Fubini theorem twice. First, changing ¢ and z, then changing ¢ and y. Therefore, the last
summand may be rewritten as:

/b [/b /b (/b (Y, 2)(= 1)M+Nf(M+1,N+1)(37t) (s ;/[y!)Mds> (¢ ;\fg!/)thdZ] dy
/ / / / r(y, 2) (=M fouv1,n11)(s,t) (s ;\;/!)M t ;V?{)Nds dt dz dy

max{s,t} S—yMt—yN
/// / v)(_1)M+Nf(M+1,N+1)(37t)( M!) ( N!) dz dy dt ds.

Now, adding up all these summand results to obtain

/b /b’"(yv 2) f(y,y)dz dy

—ZZ/a / r(y, 2) (=17 fi (b,b)(b;!y) (b . ) dz dy

jOlO

(s—y)™ (b-y)

+Z / / / (. 2) (=DM fag g (s, 0) S S dz dy ds
— o\ (+ — .\

/ / / y7 J+N+1f N+1)(ba t) (b ]'y) (t NZ'/) dz dydt

max{s,t}  \M (4 AN
/// / Yy, 2)(— 1)M+Nf(M+1,N+1)(5,t)(S My') (t N‘q{) dzdydtds.

After changing y <+ s, z <> t on right side, then get:

b b
/ / r(y, 2) f(y,y)dz dy
— s 41
—ZZ/G/ (s, ) (=LY fi) (D, b)(bj!“)jdtds

7=0 1=0
b B M _ !
+Z/ /y/ r(s, ) (=DM 1l><y,b><yM3!) (b u” dt ds dy

(b)) (z = 5)"
/ / / s,t)( J+N+1fJ,N+1)(b’ z) I N1 dtdsdz

max{y,z} _ M (5 _ N
/ / / / s,t)(— 1)M+Nf(M+1,N+1)(y,Z) g M') ( N') dtdsdzdy.
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Now by defined notations, finally we obtain

/b /br(yv z) f(y,y)dz dy
M

N
=33 ) (0.5)Q (b.b)

7=0 1=0

b
+ Z / ()M g (5@ (4, b) dy

=z

—(j,N
+Z/ ]+N+1f(j,N+1)(ba Z)Q(j )(b, Z) dz

mazx{y,z} b M N
y—s z— 8
+/a /(l(_l)M+Nf(M+1,N+1)(y,Z)/a /ar(s,t)( M!) ( N!) dtds dz dy,

where @(j’l) is stated in ([1.13). Use above expression for f; ff r(y, 2) f(y,y)dz dy and Lemma in

= b / (0 2) £ s y)d dy — / b / (0 2) £ s )i dy.

we get our required identity. d

Remark 3.3. If put f(y,z) = f(y)h(z) and r(y,z) = r(y)r(z) in Theorem then we can give following
corollary.

Corollary 3.4. Letr, f,h : J — R be three functions > r is an integrable and there should be existence of
derivatives fM) and h™N) with absolutely continuous, then

T(f hr) = T(Qum( 1)+ T (f), @n(h),r) + T(Qur(f), Yn(h),7)
max{y,z} f (M+1) ( )( —s Mh(N+1)(z P S)N
- o [ R
b
X r(s)dsdzdy — /( DM Y () )y )dy/ Y (h)(y)r(y) dy, (3-3)

where Qr(g9)(y) = Ekzow*y);ﬂ, Yi(9)(y) = ff%ds, k € N, and g is a function and
T(f, h,r) is stated in (|1.4).
Proof. Applying Taylor formula for h,f, we can easily obtain (3.3)). O

Corollary 3.5. Let r,f : J> — R be both functions, r is an integrable and there should be existence of
partial derwatives fyr41,n) and fiu,n41) with absolutely continuous, then for % + % =1;p,7>1; we get

eunis ([ [ 1vwara dy)i ([ [ 10 a2 dy); B

where C(f,r) and Y (y,z) are stated in (1.17) and (1.15) respectively.
Proof. Applying inequality of Holder for integrals on Theorem we may obtain (3.4)). O

Theorem 3.6. Let r, f : J> — R be two functions, r is integrable and f is (M + 1, N + 1) — V—convez.
Then
C(f,r) =0 if Y(y,2) =0 Vy,z€lab],

where C(f,r) and Y (y, z) are defined in (1.17) and (1.15)) respectively.
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Proof. If function f is V—convex function of order (M + 1, N 4+ 1) and on domain, it can be approxi-
mated uniformly by polynomials containing nonnegative (M + 1, N + 1)th order partial derivatives. From
polynomials of Bernstein

pre) Z%O() (a5.b0)(y — @ (= — @)} (b — 2)" (b — y)",

(where k = (b —a)/n and h = (b — a)/m) converge to function f uniformly in the domain J? limits as
n — 0o, m — oo provided that function is continuous. Furthermore, if function f (M + 1, N 4+ 1)th order
V —convex function, where polynomial containing non-negative (M + 1, N 4+ 1)th order partial derivatives,

that is, (—1)M+N B&Zl N+1) > 0, applying following formula it may be prove using method of induction:

M+N pm,n
( 1) * B(M+1N+1)(yvz):

(N+1)!(M+1)!<N”+1) (M+1>m§é 1"2 (n— —1) <m_§4_1) .

(AR @ ghea k1)) (2 - @)l b= 2" N Gy = ) (b -y M
m—M—-1n—N-1

= (N + D)N?((M + 1)1)2pMHL N+ (N”H) (M+1) Z Z <m M= 1) x

x (n o 1) (Varsvin flag,b) (2= a) (b = 2"V (y —a) (b — )™M,

where a; = a + jh, by = a + [k and as (a;) and (;) increasing sequences.
Since f is (M + 1, N + 1)th order V—convex, so viMH’NH)f > 0. Since Y(y,z) is continuous and

(—1)M+ NB("X/;LH N1y = 0 in the domain J? so by (1.17)), get

S o max{y,z} b 2 — 5\ y—SM
C(B™",r) = // DM BT vy (s 2 )l/ /r(s,t)( N!) ( M!) dt ds

M N
y—3s)" (z—1t)
- A/ar(s,t) Y N dtds] dzdy > 0,

or we can write

c(B™n",r / / (y, 2 MJFNB%Zl N1y 2)dzdy > 0. (3.5)
Now convergence of B(MJrl N+1) uniformly to fas41,n41) by letting n,m — oo through an appropriate
sequence, provides the requlred result. O

Theorem 3.7. Letr, f : J> = R be functions, where f € CMTLNH) pe g (M 41, N+1)th order V—convex
function on the interval J? and r is integrable. If

Y(y,z) >0

holds Vy, z € [a,b], 3 v, ( € [a,b], D

(fv r) =C(Go,r) (- )M+ fM+1,N+1)(V7C)> (3.6)

where
wman (b= )M (b — )N

(M + 1IN +1)!
and C(f,r), Y(y,2) are stated in (1.17) and (1.15) respectively.

Go(y, 2) = (=1)

(3.7)
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Proof. Since

/ / DMV (y, 2) forsa, v (Y, 2)dz dy,
by applying Mean Value Theorem for the purpose of double integrals, then obtain
B N b rb
) = (D" Y farwin20) [ [ Y2z dy
In above equation, if put f(y, z) = Go(y, z) then we can write as:

C (Go,r) =C(Go,r) // (y,2)dz dy

and hence we get what we wanted.

Remark 3.8. For M = N = 0, Theorem [3.7| recaptures the Proposition

Remark 3.9. By putting f(y, z) = h(z)f(y) and r(y,2) = r(y)r(z) in Theorem with M = N = 0, then

can obtain similar result for V—convex function of (|L.3).

Theorem 3.10. Let f,h: J? — R be both functions and r : J> — R is integrable, > f is (M +1,N +1) —

V—convex function and h € CMFLNFD (72) ayith hvisi,n+1) # 0 on J2. If

holds, 3 v, ¢ € [a,b], >
5(f, r) = f(M+1,N+1)(V7 ¢)
h(avr1,n+1) (v,0)

where Y (y,z) and C(f,r) are stated in (1.15) and (1.17) respectively.

C(h,r),

Proof. Method 1:
Applying Mean Value Theorem of Integral and (3.6]), then

_ f , (y,2)
Cfr) = / / AN JOLNAO W E) 4 2) Y (g 2)dz dy

harrin+1)(Y, 2)

for1,nven (v, €) /b b u
N | Yy, 2)(—1 Nh ,2)dzd
v, v+ (4 €) Jo Ja (v, 2)(=1) (M+1,N+1) (Y, 2)dz dy
_ ey @9 i)
hs1,v+1) (v, €)

Proof. Method 2:

Let w € CM+LN+D) bhe (M +1, N 4 1)th order V—convex function on the interval .J x L, iz stated as:

U= é(h’a T)f - é(f? T)h
by applying Theorem 3.7, F v, ¢ € J, 2
0= 6(71,,7’) = (_1)M+NU(M+1 N+1) (V C) (G()v )7

[C(h, ) fars1,n41) (¥ Q) = C(f, ) Rars1,8+1) (v, OIC(Go, ) = 0.

This gives required result.
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Remark 3.11. If we put M = N = 0 in Theorem then we get similar result for V—convex function of
Theorem 2 of [23].

Theorem 3.12. Let r, f : J> — R be both functions, f is (M + 1,N + 1)th order V—convex and r is
integrable. 3 v, € [a,b], D

(fv r)= (- )M+N Y (v,4) (f(M,N)(ba b) — f(M,N)(b7 a) — f(M,N)(aa b) + f(M,N) (a,a)) )

where Y (y, z) and C(f,r) are stated in (1.15) and (1.17).

Proof. Since (— 1)]‘4“\]36\‘4”+1 N1y = 0 in the interval J? and Y (y, z) is continuous, here B™" is polynomial

of Bernstien, using same statement that was applied in the proof of the Theorem [3.7] -, we start from [3.5] we
obtain

cB™n,r // DMV (y,2) By gy (05 2) dz dy

= (=DMNY (U, Gnn) / / By W, 2) dzdy

= (DM s Gn) (Bliy (0:8) = Bl (0:0) = By (b, @) + By (a,a) )

The points Ymn = (Vmon, Gmn) have a limit point (v, () in J? as m,n — oo, so the uniform convergence of
B( " to Jou, vy by letting m,n — oo through an appropriate sequence, gives our desired result. O

Remark 3.13. For the case M = N = 0 in Theorem [3.12] we can obtain the similar result for V—convex
function of Theorem 6 of [23].

4. Generalized Integral Identity and Inequality of Ky Fan

According to MathSciNet, Ky Fan (1914-2010) published 126 research papers and books. The contri-
butions of Ky Fan in mathematics, have provided many of influence in development of convex analysis,
nonlinear analysis, linear algebra, operator theory, mathematical economics, approximation theory and
mathematical programming (see [12]). In literature, there are different kinds of inequalities due to Ky Fan
worked in several fields; cf. [4].

Now in this section we have to obtain some important identities and inequalities as below:

Theorem 4.1. Let ¢: J — R and f,r : J> = R be functions, 3 q¢ and r are integrable and there should be
existence of partial derivatives fnr1,n) and frny1) with absolutely continuous, then

RUrd) = 3D 1ot [S90() - QU b,b)]

1=0 j=0
N " b
+ D / (DM faray (0,0) [ SO () = QU (y,b)| dy
=074
My
+ Z/ (_1)j+N+1f(j,N+1)(b’ z) [S(j’N)(z) _Q(j,N)(b, z)] dz

// DMINY (y, 2) farsn v (Y, 2) dz dy,

where SUD, QU | and Y(y, z) are stated in , -, and ) respectively.
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Proof. By applying the substitution ,

/a r(y, z)dz = q(y).
we may prove of this theorem in the similar manner as done in proof of Theorem OJ
Remark 4.2. By putting f(y,z) = f(y)h(z) and r(y, z) = M in Theorem here ¢ is integrable and

S a(t)dt
f q(t)dt # 0, then we can give corollary as below.

Corollary 4.3. Let f,h q J — R be functions, 3 q is integrable, where f q(t)dt # 0 and there should be

existence of derivatives f™M) and gV) and are absolutely continuous. Then
T(f h,q) = Qn(h),q) + T(Yu(f), Qn(h),q) + T(Qu(f), Yn(h), q)
/ / /mar{y 2} 1 M+Nf (M+1) ( )( S)M h(N+1)(z)(z—s)N
M! N!

b
% q(s)dsdzdy - / M Yy (F)(w)ay) dy / V() (W)a(y) dy,

M“()

RV 5
where Qu(9)(v) = Yo ", Yilg)(w) = [
T(f, h,r) is defined in (L.4).

Corollary 4.4. Letq: J — R and f,r : J> = R be functions and also r and q are integrable and there should
be existence of partial deriatives fyry1,n) and fa,n4+1) with absolutely continuous. Then for % + % =1,
p, T > 1; we have

R(fira) |< (//r DM farn vy (9,2 \dzdy) (//wy, dedy) ,

where R(f,r,q) and Y(y,z) are stated in (1.18) and (1.16) respectively.

Theorem 4.5. Let q : J — R and f,r : J> = R be three functions and also r and q are integrable and
function f is (M + 1, N + 1)th order V—convex. Then

ds, k € N, and here g is a function and

R(f,r,q) >0 if Y(y,2) >0, Vy,z€[ab],
where R(f,r,q) and Y (y,z) are stated in (1.18) and (1.16) respectively.
Remark 4.6. We can prove Theorem (4.5 in the similar manner as done in proof of Theorem

Theorem 4.7. Let q:J — R and f,r : J> = R be functions and also v and q are integrable and function
fis (M 4+ 1, N + 1)th order V—convex and assuming ¥y, z € [a, D]

Y(y,z) > 0.

dv, ¢ € [a,b], 3 B
R(fa T, q) = (_1)N+Mf(M+1,N+1) (Va C)R (GO) r, Q) )

where R(f,r,q) and Gq are stated in (1.18)) and (3.7) respectively.

Remark 4.8. We can give proof of Theorem in the similar way as done in the proof of Theorem
Further that we recapture the Proposition from Theorem [4.7] by putting M = N = 0.
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Theorem 4.9. Let q: J — R and f,h,r : J> = R be four functions and also q¢ and r are integrable and
function f is (M +1,N + 1) — V—convex and h € CM+LNFD( 72y yith, hvig1,n+1) 7 O in the interval J?
and assuming Yy, z € [a,b]

Y(y,z) > 0.
Then 3 v, ¢ € [a,b], >
forsi,n1) (v, €)
h(M-&-l,N—i—l)(”a ¢)

where R and Y are defined in (1.18) and (1.16) respectively.

Remark 4.10. We can give proof of Theorem [£.9]in the similar ways as done in the proof of Theorem [3.10| by
two different methods. Further, if put M = N = 0 in Theorem then we get similar result for V—convex
function of Theorem 16 of [23].

R(f,r,q) = R(h,7,q),

5. Conclusion

In this article, we have obtained the generalization of discrete Cebysev identity for function in the interval
J? involving higher order V divided difference of two independent variables and also got the similar result
as Theorem for sequence of higher order V divided difference for two dimension if substitute y; = 7,
zp = land f(yj,2) = f(j,l) = aj in Theorem and also found results of discrete inequality of Cebysev
by using (m,n) — V—convex functions of two independent variables on .J2. Moreover, we have obtained
the generalizations of integral Cebysev and Ky Fan’s identities for differentiable function of higher order for
two independent variables and also found results of integral inequalities of Cebysev and Ky Fan by using
(M +1,N + 1) — V—convex function of two independent variables. From the obtained generalizations, we
have given similar results of article [23] and recaptured some established results.
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