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Abstract

The purpose of this paper is to introduce the fuzzy Lp-Spaces. We give some basic definitions and main
properties of fuzzy spaces. The fuzzy Holder’s inequality will be proved. Also we show that the dual of
fuzzy Lp-spaces is fuzzy Lq-spaces, where the scalars p and q are conjugate exponents.
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1. Introduction and Preliminaries

In many cases of the modeling of the real world phenomena, fuzzy initial value problems appear naturally,
since information about the behavior of a dynamical system is uncertain. In order to obtain a more adequate
model, we have to take into account these uncertainties [1]. So it is important to develop fuzzy mathematics
and introduce the formulas for the fuzzy operations. More recently, the literature on fuzzy numbers has
grown in terms of contributions to the fuzzy arithmetic operations. In general, the arithmetic operations
on fuzzy numbers can be approached either by the direct use of the membership function (by the Zadeh
extension principle) or by the equivalent use of the α-cuts representation (introduced by Goetschel and
Voxman in [2]). By this approach, it is possible to define a parametric representation of fuzzy numbers that
allows a large variety of possible shapes (types of membership functions) and is very simple to implement,
with the advantage of obtaining easily a much wider set for standard model the lower and upper extremal
values of the α-cuts.
As we know that the subject of classical Lp-spaces have been extensively studied. They are special examples
of Banach lattices. Several techniques have been applied to prove existence of solution of integral equations
on Lp-spaces. In [3], the authors presented existence of solutions of integral equations of convolution type
on Lp-spaces. In [4], existence and finding an approximation of a continuous solution of nonlinear integral
equations of Volterra types is proposed. Also in [5] and [6], authors studied fuzzy metric spaces.
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In this work, we shall introduce the fuzzy Lp-spaces by using the α-cuts of fuzzy numbers and by using
fuzzy integration. The organization of the paper is as follows: Section 2 contains a brief explanation about
the fuzzy numbers and the notations that we will use. In Section 3 we introduce the fuzzy Lp-spaces, some
basic definitions and main properties of these spaces is given in details and fuzzy Holder’s inequality, is
proved. Also the dual of these spaces are considered.

2. Preliminaries

In this section, the most basic notations, which are used in this paper will be introduced. We start with
the essential concepts of fuzzy set theory. The notion of a fuzzy set is an extension of the classical notion
of a set. In classical set theory, an element either belongs or does not belong to a given set. By contrast,
in fuzzy set theory, an element has a degree of membership, which is a real number from [0, 1], in a given
fuzzy set.
In the following definition the concept of fuzzy set is given:

Definition 2.1. The fuzzy set Ã in X is the set of ordered pairs Ã = {(x, µ)|x ∈ X}, where µ : X → [0, 1]
is called the membership function associated with the fuzzy set Ã. The values of µ represents the degree of
membership of x in Ã.

We now recall the definition of a fuzzy number.

Definition 2.2. A fuzzy number is a function u : R → [0, 1] satisfying the following properties.

a. u is upper semicontinuous on R,

b. u(x) = 0 outside of some interval [c, d],

c. there are the real numbers a, b : c ≤ a ≤ b ≤ d, such that u is increasing on [c, a], decreasing on [b, d] and
u(x) = 1 for each x ∈ [a, b],

d. u is fuzzy convex set (that is u(λx+ (1− λ)y) ≥ min{u(x), u(y)}, ∀x, y ∈ R, λ ∈ [0, 1]).

The set of all fuzzy numbers is denoted by RF .
Fuzzy number can also be represented via their α-cut as follows:

Definition 2.3. For any u ∈ RF the α-cut set of u, is denoted by [u]α, and is defined by
[u]α = {x ∈ R | u(x) ≥ α}, where 0 ≤ α ≤ 1. The notation,

[u]α = [uα, uα], α ∈ [0, 1],

denotes the lower and upper extremal value of the α-cuts, in the other words

uα = min[u]α, uα = max[u]α.

An arbitrary fuzzy number u is represented, in parametric form, by an ordered pair of functions u = (u, u),
which define the end points of the α-cut, satisfying the three conditions:

a. u is a bounded non-decreasing left continuous function on [0, 1],

b. u is a bounded non-increasing left continuous function on [0, 1],

c. u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary u = (u, u), v = (v, v), we define addition (u+ v) and multiplication by real k as

(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v(r),

ku = (ku, ku), k ≥ 0, ku = (ku, ku), k ≤ 0.
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Definition 2.4. For arbitrary fuzzy number u = (u, u), v = (v, v) the Hausdorff distance between these
fuzzy numbers given by D : RF × RF → R+ ∪ {0}

D(u, v) = sup
r∈[0,1]

max{| u(r)− v(r) |, | u(r)− v(r) |},

where D is a metric on RF and has the following properties(see [7]).

a. D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,

b. D(k ⊙ u, k ⊙ v) =| k | D(u, v),∀k ∈ R, u, v ∈ RF ,

c. D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ RF ,

d. (RF , D) is a complete metric space.

Definition 2.5. The function f : T ⊆ R → RF is called a fuzzy function, and the α-cut set of f is
represented by

f(t, α) = [f(t, α), f(t, α)], α ∈ [0, 1], t ∈ T,

where f(t, α) = f(t)α, f(t, α) = f(t)
α
.

A fuzzy function may have fuzzy domain and fuzzy range. So the function f : RF → RF is also a fuzzy
function. More details about the fuzzy function can be seen in [2].

Definition 2.6. Let f : R → RF be a fuzzy function. We say that f is continuous at t0 ∈ R, where we
consider the natural metric on R and the defined Hausdorff distance on RF as above, i.e. if for an arbitrary
ε > 0, there exists δ > 0 such that

| t− t0 |< δ ⇒ D(f(t), f(t0)) < ϵ.

Proposition 2.7. The fuzzy function f : R → RF is continuous if and only if f, f are uniformly continuous
functions respect to α.

Proof. Let f : R → RF be a fuzzy continuous function at a point t0 ∈ R, according to the definition, for an
arbitrary ε > 0, there exists δ > 0 such that

| t− t0 |< δ ⇒ D(f(t), f(t0)) < ϵ,

D(f(t), f(t0)) = sup
α∈[0,1]

max{| f(t, α)− f(t0, α) |, | f(t, α)− f(t0, α) |},

so we have,
sup

α∈[0,1]
| f(t, α)− f(t0, α) | ≤ D(f(t), f(t0)),

and
sup

α∈[0,1]
| f(t, α)− f(t0, α) | ≤ D(f(t), f(t0)).

And so f and similarly f are uniformly continuous functions on {(t0, α)|α ∈ [0, 1]}.
Now let f, f are uniformly continuous functions on {(t0, α)|α ∈ [0, 1]}. So for each ε > 0 there exists δ > 0
such that,

| t− t0 |< δ ⇒ sup
α∈[0,1]

| f(t, α)− f(t0, α) |< ϵ, sup
α∈[0,1]

| f(t, α)− f(t0, α) |< ϵ.

So,
max( sup

α∈[0,1]
| f(t, α)− f(t0, α) |, sup

α∈[0,1]
| f(t, α)− f(t0, α) |) < ϵ.

So we have,
D(f(t), f(t0)) < ϵ,

and the proof is complete.
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Definition 2.8. The fuzzy function f : R → RF is called to be fuzzy bounded, if there exists M > 0 such
that ∥f∥F.u := supu∈RD(f(u), 0̂) ≤ M.

Proposition 2.9. Let f : [a, b] ⊆ R −→ RF be a fuzzy continuous function. Then it is fuzzy bounded.

Boundedness of a fuzzy continuous function is trivial by the primary concepts of the metric spaces.
In the following we consider the concept of integral of a fuzzy function.

Definition 2.10. Let f : [a, b] → RF be a fuzzy function. For each partition p = {x1, x2, · · · , xm} of [a, b]
and for arbitrary xi−1 ≤ ξi ≤ xi, 2 ≤ i ≤ m, let RP =

∑m
i=2 f(ξi)(xi − xi−1). The define integral of f over

[a, b] is, ∫ b

a
f(x, α) = limRP , max | xi − xi−1 |→ 0,

provided that this limit exists in metric D.

If the function f is continuous, its define integral exists [2]. Furthermore:∫ b

a
f(x, α) =

∫ b

a
f(x, α),

and ∫ b

a
f(x, α) =

∫ b

a
f(x, α),

More details about the properties of the fuzzy integral are given in [2].

3. Fuzzy Lp-spaces

In this section, we will introduce the fuzzy Lp-spaces for 1 ≤ p ≤ ∞. Some basic definitions and
main properties of these spaces will be given. The suitable norm and the dual of such spaces will be also
considered.
Let X be a compact space, we define the set,

CF (X) =

{
f : X −→ RF ; f is continuous

}
.

Since, for f, g ∈ CF (X) and α ∈ R, αf + g is continuous, we could say that CF (X) is a linear space.
we define the fuzzy uniform norm as follows,

∥f∥F ·u = sup
ξ∈X

D(f(ξ), 0̂).

Since, each f ∈ CF (X) can be represented as f = (f, f) and as we proved before, the fuzzy function

f : X → RF is uniformly continuous, if and only if f, f are uniformly continuous functions on X× [0, 1]. So,

∥f∥F ·u = sup
ξ∈X

D(f(ξ), 0̂)

= sup
ξ∈X

sup
α∈[0,1]

max{| f(ξ, α)− 0) |, | f(ξ, α)− 0) |}

= sup
ξ∈X

sup
α∈[0,1]

max{| f(ξ, α) |, | f(ξ, α) |}

= max{(∥f∥u, ∥f∥u)}.

Thus, we have,
CF (X) = C(X × [0, 1])⊕c0 C(X × [0, 1]).

In the next theorem we show that CF (X) is a Banach space.



M. S. Yousefi, F. Farahrooz, Journal of Prime Research in Mathematics, 18(1) (2022), 28–37 32

Theorem 3.1. (CF (X), ∥.∥F ·u) is a Banach space.

Proof. The proof of this theorem has been given in [8].

Similarly, for a locally compact space X, we define the set,

Cc,F (X) = {f = (f, f), f : X → RF , f , f ∈ Cc(X × [0, 1])},

where Cc(X × [0, 1]) denotes all continuous compact support functions on X × [0, 1].
In the following the fuzzy Lp-spaces for 1 ≤ p ≤ ∞ are introduced. Throughout this section (X,µ) is a
Borel σ-finite measure space and λ is a Lebesgue measure on [0,1].
For 1 ≤ p ≤ ∞ consider the set,

Lp
F ((X,µ)) = {f = (f, f), f : X → RF , f , f ∈ Lp(µ× λ)}.

It is easy to see that Lp
F (X,µ) for 1 ≤ p ≤ ∞ is a vector space. Now we put norm as follows:

For 1 ≤ p < ∞ the fuzzy norm as follows:

∥f∥F ·p = (∥f∥pp + ∥f∥pp)
1
p ,

where,

∥f∥p =
(∫

|f |pd(µ× λ)

) 1
p

,

and

∥f∥p =
(∫

|f |pd(µ× λ)

) 1
p

.

For p = ∞, we define,
∥f∥F ·∞ = max{(∥f∥∞, ∥f∥∞)},

we can see that they are the normed vector spaces of fuzzy functionnand according to the definition it is
obvious that,

Lp
F (X,µ) = Lp(X × [0, 1])⊕lp Lp(X × [0, 1]).

∥ · ∥F ·p for 1 ≤ p ≤ ∞ has the properties of a usual norm on RF , i.e. ∥f∥F ·p ≥ 0 , ∥λf∥F ·p = |λ|∥f∥F ·p and
∥f + g∥F ·p ≤ ∥f∥F ·p + ∥g∥F ·p for any f, g ∈ Lp

F (X,µ).
So with the definition of norm as above we have,

(∥f∥pp + ∥f∥pp)
1
p ≤ (max{(∥f∥p, ∥f∥p)}p +max{(∥f∥p, ∥f∥p)}p)

1
p

= (2max{(∥f∥p, ∥f∥p)}p)
1
p

= 2
1
p (max{(∥f∥p, ∥f∥p)}).

So,

2
−1
p (∥f∥pp + ∥f∥pp)

1
p ≤ max{(∥f∥p, ∥f∥p)} ≤ (∥f∥pp + ∥f∥pp)

1
p .

Now in the next theorem we show that for 1 ≤ p < ∞, Cc,F (X) in ∥ · ∥F ·p is dense in Lp
F (X,µ).

Theorem 3.2. (Cc,F (X), ∥ · ∥F ·u) = Lp
F (X,µ) in ∥ · ∥F ·p

Proof. Let f ∈ Lp
F (X,µ), then it can be represented as f = (f, f) such that f, f ∈ Lp(µ×λ), so there exists

a sequence of compact support functions fn = (fn, fn), such that fn → f and fn → f in ∥ · ∥p, so for ε > 0,
there exists n ∈ N such that for n ≥ N we have

∥fn − f∥p <
ε

2
1
p

, ∥fn − f∥p <
ε

2
1
p

.
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So we have,

∥fn − f∥F.p = (∥fn − f∥pp + ∥fn − f∥pp)
1
p

< (
εp

2
+

εp

2
)
1
p

< ε.

Consequently, (fn, fn) → (f, f) with ∥ · ∥p. So we infer that Lp
F (X,µ) is a complete normed space, so

(Lp
F (X,µ), ∥ · ∥F.p) is a Banach space.

Now in the following theorem we show that L∞
F (X,µ) is a Banach space, as well.

Theorem 3.3. (L∞
F (X,µ), ∥ · ∥F.∞) is a Banach space.

Proof. Let {fn = f
n
, fn} be a cauchy sequence in L∞

F (X,µ). We claim that for some

f = (f, f), lim ∥f − fn∥F.∞ = 0. As we know that L∞(µ × λ) is a Banach space[9] so there exists some

f, f ∈ L∞(µ × λ) such that lim ∥f − fn∥∞ = 0 and lim ∥f − fn∥∞ = 0, since

lim ∥ f − fn∥F.∞ = max(∥f − fn∥∞, ∥f − fn∥∞), this shows that lim ∥ f − fn∥F.∞ = 0, and the proof
of the theorem is complete.

It is so important that the fuzzy Lp-spaces for 1 ≤ p ≤ ∞, can be defined directly by fuzzy integration.

Let f be a fuzzy function. So the fuzzy
∫
| f |p dµ is defined, that is a fuzzy number and D(

∫
| f |p dµ, 0̂)

1
p

can also be calculated. In the next theorem we show that if f is a fuzzy function in the fuzzy Lp-spaces,

then D(
∫
| f |p dµ, 0̂)

1
p is finite, and vice versa.

Theorem 3.4. f ∈ Lp
F (X,µ), if and only if D(

∫
| f |p dµ, 0̂)

1
p < ∞.

Proof. Let f ∈ Lp
F (X,µ). So f can be represented by f = (f, f) such that f, f ∈ Lp(µ × λ), therefore(∫

|f |pdµ× λ
) 1

p < ∞ and
(∫

|f |pdµ× λ
) 1

p < ∞. According to the definition the metric between fuzzy
numbers we have,

D(

∫
| f |p dµ, 0̂) = sup

α∈[0,1]
max{

∫
| f |p (x, α)dµ(x),

∫
| f |p (x, α)dµ(x)}.

Now it is enough to show that supα∈[0,1]
∫
| f |p (x, α)dµ(x) < ∞. It is known that, if we take the integral of

a function of two variable respect to one variable, then this integral is continuous respect to another variable
so
∫

| f |p (x, α)dµ(x),
∫

| f |p (x, α)dµ(x) are continuous respect to α ∈ [0, 1] and by the compactness of
[0, 1],

sup
α∈[0,1]

∫
| f |p (x, α)dµ(x) < ∞, sup

α∈[0,1]

∫
| f |p (x, α)dµ(x) < ∞.

And the result is achieved. Now let

D(

∫
| f |p dµ, 0̂)

1
p < ∞,

so

sup
α∈[0,1]

∫
| f |p (x, α)dµ(x) < ∞, sup

α∈[0,1]

∫
| f |p (x, α)dµ(x) < ∞.

Also, ∫ ∫
| f |p (x, α)dµ(x)dλ(α) ≤ sup

α∈[0,1]

∫
| f |p (x, α)dµ(x).λ(α) < ∞.

So,
(∫

|f |p(x, α)d(µ× λ)
)
< ∞. Similarly,

(∫
|f |p(x, α)d(µ× λ)

)
< ∞.

Consequently, f, f ∈ Lp(µ× λ) and f ∈ Lp
F (X,µ).
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As we know that,

∥f∥pp ≤ D(

∫
| f |p dµ, 0̂),

∥f∥pp ≤ D(

∫
| f |p dµ, 0̂),

(∥f∥pp + ∥f∥pp)
1
p ≤ 2

1
pD(

∫
| f |p dµ, 0̂)

1
p ,

∥f∥F.p ≤ 2
1
pD(

∫
| f |p dµ, 0̂)

1
p

2
−1
p ∥f∥F.p ≤ D(

∫
| f |p dµ, 0̂)

1
p .

On the other hand,

D(

∫
| f |p dµ, 0̂)

1
p ≤ ∥f∥F ·p.

So we have,

2
−1
p ∥f∥F.p ≤ D(

∫
| f |p dµ, 0̂)

1
p ≤ ∥f∥F ·p.

It means that the topology on the space of fuzzy integrable functions, inherited from the defined norm and
the natural metric above, are the same.

3.1. Duality in fuzzy Lp-spaces

Riesz Representation Theorem is known on Lp-spaces. It asserts that if T is a bounded linear functional
on Lp-space, 1 ≤ p < ∞, then there is a function t ∈ Lq, where

1
p+

1
q = 1, such that T (s) =

∫
st. In addition,

∥T∥ = ∥t∥q.The above integration are in the appropriate measure space. In slightly different terminology,
the Riesz Representation Theorem states that the dual space of Lp-spaces are Lq-spaces. In this section, for
1 < p < ∞, we discuss on the dual of fuzzy Lp-spaces. our claim is that the dual of fuzzy Lp-spaces is fuzzy
Lq-spaces, for dual scalars 1 < p, q < ∞.
In the next theorem an important inequality between Lp-norms in fuzzy spaces known as fuzzy Holder’s
inequality, is proved.

Lemma 3.5. Let 1 < p < ∞ and 1 < q < ∞ be such that 1
p + 1

q = 1. If f ∈ Lp
F (X,µ) and g ∈ Lq

F (X,µ),
then ∫

|f · g|d(µ× λ) +

∫
|f.g|d(µ× λ) ≤ ∥f∥F ·p.∥g∥F ·q.

Proof. If f = 0 a.e. or g = 0 a.e. then the inequality is trivial. So let f ̸= 0 a.e. and g ̸= 0 a.e. Then
∥f∥F ·p > 0 and ∥g∥F ·q > 0. Since,

|
∫

f · gd(µ× λ)|+ |
∫

f · gd(µ× λ)| ≤
∫

|f · g|d(µ× λ) +

∫
|f · g|d(µ× λ)

≤ ∥f∥p∥g∥q + ∥f∥p∥g∥q.

So we will get the result if we prove:

(∥f∥p∥g∥q + ∥f∥p∥g∥q) ≤ (∥f∥pp + ∥f∥pp)
1
p .(∥g∥qq + ∥g∥qq)

1
q .

Let a1 = ∥f∥p, b1 = ∥g∥q, a2 = ∥f∥p and b2 = ∥g∥q on the other hand it is enough to prove that

a1b1 + a2b2 ≤ (ap1 + ap2)
1
p · (bq1 + bq2)

1
q , (

1

p
+

1

q
= 1).
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Using the Young’s inequality, ab ≤ ap

p + bq

q , put

ã1 =
a1

(ap1 + ap2)
1
p

, ã2 =
a2

(ap1 + ap2)
1
p

,

b̃1 =
b1

(bq1 + bq2)
1
q

, b̃2 =
b2

(bq1 + bq2)
1
q

,

so,

(ã1)
p + (ã2)

p =
ap1

(ap1 + ap2)
+

ap2
(ap1 + ap2)

= 1.

Similarly,
(b̃1)

q + (b̃2)
q = 1,

withthe Young’s inequality,

ã1b̃1 ≤
ã1

p

p
+

b̃1
q

q
, ã2b̃2 ≤

ã2
p

p
+

b̃2
q

q
,

ã1b̃1 + ã2b̃2 ≤
ã1

p + ã2
p

p
+

b̃1
q
+ b̃2

q

q
=

1

p
+

1

q
= 1. (3.1)

With substituting ã1, b̃1, ã2 and b̃2 in relation 3.1 we have

a1

(ap1 + ap2)
1
p

· b1

(bq1 + bq2)
1
q

+
a2

(ap1 + ap2)
1
p

· b2

(bq1 + bq2)
1
q

=
a1b1 + a2b2

(ap1 + ap2)
1
p · (bq1 + bq2)

1
q

≤ 1.

We get a1b1 + a2b2 ≤ (ap1 + ap2)
1
p · (bq1 + bq2)

1
q so, the holder inequality is proved.

For each g = (g, g) ∈ Lq
F (X,µ) put,

Φg : Lp
F (X,µ) → R,

f = (f, f) →
∫

f · gd(µ× λ) +

∫
f · gd(µ× λ).

It is clear that Φg is a linear functional. Based on the definition of norm on Lp
F (X,µ) and the above

inequality, it can be drawn that ϕg is bounded. It means,

∥Φg∥ = sup
∥f∥F ·p≤1

∥Φg(f)∥ ≤ ∥g∥F ·q < ∞.

So we can consider the map:
Φ : Lq

F (X,µ) → (Lp
F (X,µ))∗,

g = (g, g) → Φg.

Consequently it is proved that (Lp
F (X,µ))∗ ⊇ Lq

F (X,µ). Now in the next theorem we show that
(Lp

F (X,µ))∗ = Lq
F (X,µ).

Theorem 3.6. The map ϕ defined above is an isometric isomorphism.

Proof. Linearly and the boundedness is proved. It is enough to show that (Lp
F (X,µ))∗ ⊆ Lq

F (X,µ). For this
purpose the basic idea is that, each functional on fuzzy Lp-space can be decompose into two functionals on
Lp-spaces. Consider the following functions,

π1 : L
p(X,µ) → Lp(X,µ)⊕lp Lp(X,µ),

f → (f, 0),
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π2 : L
p(X,µ) → Lp(X,µ)⊕lp Lp(X,µ),

f → (0, f),

In this case π1 and π2 are bounded, linear and one to one functions. Based on the definition of Φ, function

Φ(f, f) = Φ(f, 0) + Φ(0, f) = Φ ◦ π1(f) + Φ ◦ π2(f),

where Φ ◦ π1 and Φ ◦ π2 are also bounded and linear functions. According to the Riesz Representation
Theorem,

∃g∗, g∗∗ ∈ Lq(X,µ) s.t Φ ◦ π1(f) =
∫

fg∗d(µ× λ),

Φ ◦ π2(f) =
∫

fg∗∗d(µ× λ),

Let g = (g∗, g∗∗), so for f = (f, f)

Φ(f) = Φ(f, f) =

∫
fg∗d(µ× λ) +

∫
fg∗∗d(µ× λ) = Φ(g∗,g∗∗)(f),

in this case g ∈ Lq
F (X,µ). But we must show that ∥Φ∥ = ∥g∥F ·q. In other words ∥Φ∥ = (∥g∗∥q + ∥g∗∗∥q)

1
q .

By the fuzzy Holders inequality ∥Φ∥ ≤ (∥g∗∥q + ∥g∗∗∥q)
1
q .

Now let α∗ and α∗∗ be real numbers such that α∗g∗ = |g∗| and α∗∗g∗∗ = |g∗∗|. Now,

E∗
n = {x ∈ X, | g∗(x)| < n},

E∗∗
n = {x ∈ X, | g∗∗(x)| < n}.

Let f := χE∗
n
|g∗|q−1α∗, f := χE∗∗

n
|g∗∗|q−1α∗∗. In this way on En, |f |p = |g∗|q, |f |p = |g∗∗|q∫

E∗
n

|g∗|qdµ+

∫
E∗∗

n

|g∗∗|qdµ =

∫
fg∗d(µ× λ) +

∫
fg∗∗d(µ× λ) = Φ(f)

≤ ∥Φ∥∥f∥F ·p

= ∥Φ∥(
∫
E∗

n

|g∗|qdµ+

∫
E∗∗

n

|g∗∗|qdµ)
1
p ,

we have 1− 1
p = 1

q , so, (∫
E∗

n

|g∗|qdµ+

∫
E∗∗

n

|g∗∗|qdµ

) 1
q

≤ ∥Φ∥.

By taking limit on n and using the monotone convergence theorem, the left hand side increase to(∫
|g∗|qdµ+

∫
|g∗∗|qdµ

) 1
q

.

So we will have ∥g∥F ·q ≤ ∥Φ∥ and we can infer that ∥Φ∥ = ∥g∥F ·q. Consequently for 1 < p < ∞,
(Lp

F (X,µ))∗ = Lq
F (X,µ) in fuzzy spaces.

4. Conclusions

In this paper, the fuzzy Lp-Spaces are introduced. Properties of these spaces are given in details. The
suitable norm and the dual of such spaces are also considered.
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