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Abstract

In this paper, we introduce a trifunction split equilibrium problem using a generalized relaxed α-monotonicity
in the framework of p-uniformly convex and uniformly smooth Banach spaces. We develop an iterative
algorithm for approximating a common solution of split equilibrium problem and fixed point problem for
finite family of Bregman quasi-nonexpansive mappings. Using our iterative algorithm, we state and prove
a strong convergence theorem for approximating a common solution of the aforementioned problems. Our
iterative scheme is design in such a way that it does not require any knowledge of the operator norm. We
display a numerical example to show the applicability of our result. Our result extends and complements
some related results in literature.
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1. Introduction

Let E be a real Banach space with norm ||.|| and E∗ be the dual space of E. Let K(E) := {x ∈ E :
||x|| = 1} denote the unit sphere of E. The modulus of convexity is the function δE : (0, 2] → [0, 1] defined
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by

δE(ϵ) = inf
{
1− ||x+ y||

2
: x, y ∈ K(E), ||x− y|| ≥ ϵ

}
.

The space E is said to be uniformly convex, if δE(ϵ) > 0 for all ϵ ∈ (0, 2]. Let p > 1, then E is said to be
p-uniformly convex (or to have a modulus of convexity of power type p) if there exists cp > 0 such that
δE(ϵ) ≥ cpϵ

p for all ϵ ∈ (0, 2]. Note that every p-uniformly convex space is uniformly convex. The modulus
of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup
{ ||x+ τy + ||x− τy||

2
− 1 : x, y ∈ K(E)

}
.

The space E is said to be uniformly smooth, if ρE(τ)
τ → 0 as τ → 0. Let q > 1, then a Banach space E is said

to be q-uniformly smooth if there exists κq > 0 such that ρE(τ) ≤ κqτ
q for all τ > 0. Moreover, a Banach

space E is p-uniformly convex if and only if E∗ is q-uniformly smooth, where p and q satisfy 1
p +

1
q = 1, (see

[8]).
Let p > 1 be a real number, the generalized duality mapping Jp

E : E → 2E
∗
is defined by

Jp
E(x) = {x ∈ E∗ : ⟨x, x⟩ = ||x||p, ||x|| = ||x||p−1},

where ⟨., .⟩ denotes the duality pairing between elements of E and E∗. In particular, Jp
E = J2

E is called the
normalized duality mapping.
If E is p-uniformly convex and uniformly smooth, then E∗ is q-uniformly smooth and uniformly convex.
In this case, the generalized duality mapping Jp

E is one-to-one, single-valued and satisfies Jp
E = (Jq

E∗)−1,
where Jq

E∗ is the generalized duality mapping of E∗. Furthermore, if E is uniformly smooth then the duality
mapping Jp

E is norm-to-norm uniformly continuous on bounded subsets of E, (see [9] for more details).
Let f : E → (−∞,+∞] be a proper, lower semicontinuous and convex function, then the Frenchel conjugate
of f denoted as f∗ : E∗ → (−∞,+∞] is define as

f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of f be denoted as (domf) = {x ∈ E : f(x) < +∞}, hence for any x ∈ int(domf) and
y ∈ E, we define the right-hand derivative of f at x in the direction y by

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

Definition 1.1. [6] Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. The function
∆f : E × E → [0,+∞) defined by

∆f (x, y) := f(y)− f(x)− ⟨▽f(x), y − x⟩

is called the Bregman distance with respect of f .

It is well-known that Bregman distance ∆f does not satisfy the properties of a metric because ∆f fail
to satisfy the symmetric and triangular inequality property. Moreover, it is well known that the duality
mapping Jp

E is the sub-differential of the functional fp(.) = 1
p ||.||

p for p > 1, see [7]. Then, the Bregman
distance ∆p is defined with respect to fp as follows:

∆p(x, y) =
1

p
||y||p − 1

p
||x||p − ⟨Jp

Ex, y − x⟩

=
1

q
||x||p − ⟨Jp

Ex, y⟩+
1

p
||y||p

=
1

q
||x||p − 1

q
||y||p − ⟨Jp

Ex− Jp
Ey, y⟩. (1.1)
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Let Fix(T ) denotes the set of fixed points of a mapping T from C into itself. That is Fix(T ) = {x ∈ C :
Tx = x}. A point p ∈ C is said to be an asymptotic fixed point of T , if C contains a sequence {xn}∞n=1

which converges weakly to p and limn→∞ ||xn − Txn|| = 0. We denote by ˆFix(T ), the set of asymptotic
fixed points of T . Moreso, a mapping T : C → int(domf) is said to be
(i) Bregman relatively nonexpansive, if

ˆFix(T ) = Fix(T ) and ∆p(p, Tx) ≤ ∆p(p, x), ∀ x ∈ C, p ∈ Fix(T ).

(ii) Bregman quasi-nonexpansive, if

Fix(T ) ̸= ∅ and ∆p(p, Tx) ≤ ∆p(p, x), ∀ x ∈ C, p ∈ Fix(T ).

Definition 1.2. A function F : C × C × C → R is said to be generalized relaxed α-monotone if for any
x, y ∈ C, we have

F (y, x, y)− F (y, x, x) ≥ α(x, y), (1.2)

where limt→0
α(x,ty+(1−t)x)

t = 0.

Remark 1.3. If α ≡ 0 in (1.2), we say that F is a generalized monotone mapping. Also, if α(x, y) = β(y−x),
where β : C → R with β(t) = tβ(z), for t > 0, p ≥ 1, then we say that F is a relaxed β-monotone mapping.

Recall that a metric projection PC from E onto C satisfies the following property:

||x− PCx|| ≤ inf
y∈C

||x− y||, ∀ x ∈ E.

It is well known that PCx is the unique minimizer of the norm distance. Moreover, PCx is characterized by
the following properties:

⟨Jp
E(x− PCx), y − PCx⟩ ≤ 0, ∀ y ∈ C. (1.3)

The Bregman projection from E onto C denoted by ΠC also satisfies the property

∆p(x,ΠC(x)) = inf
y∈C

∆p(x, y), ∀ x ∈ E. (1.4)

Also, if C is a nonempty, closed and convex subset of a p-uniformly convex and uniformly smooth Banach
space E and x ∈ E. Then the following assertions holds:
(i) z = ΠCx if and only if

⟨Jp
E(x)− Jp

E(z), y − z⟩ ≤ 0, ∀ y ∈ C; (1.5)

(ii)

∆p(ΠCx, y) + ∆p(x,ΠCx) ≤ ∆p(x, y), ∀ y ∈ C. (1.6)

When considering the p-uniformly convex space, the Bregman distance and the metric distance have the
following relation, (see [16]).

τ ||x− y||p ≤ ∆p(x, y) ≤ ⟨x− y, Jp
E(x)− Jp

E(y)⟩, (1.7)

where τ > 0 is some fixed number.
Let C be a nonempty, closed and convex subset of a Banach space E. The Equilibrium Problem (EP )
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which was introduced by Blum and Oettli [5] is a generalization of optimization and variational inequality
problems. Given a bifunction F : C × C → R, the EP is to find x ∈ C such that

F (x, y) ≥ 0, ∀ y ∈ C. (1.8)

We denote by EP (F ), the solution set of EP (1.8).
The EP has a great impact in the study of problems which arise in economics, finance, network, optimization,
image reconstruction and operation research in a general unified ways. Many authors have considered the
EP together with the fixed point problem (see [1, 2, 3, 4, 5, 10, 14] and the references contained in).
In 2013 Kazmi and Rizvi [11] introduced the the following Split Equilibrium Problem (SEP ) in real Hilbert
spaces: Let H1 and H2 be real Hilbert spaces, C and Q be nonempty, closed and convex subsets of H1 and
H2 respectively, let F1 : C × C → R, F2 : Q×Q → R be two nonlinear bifunctions and A : H1 → H2 be a
bounded linear operator, then the SEP is to find x∗ ∈ C such that

F1(x
∗, x) ≥ 0, ∀ x ∈ C; (1.9)

and such that

y∗ = Ax∗ ∈ Q solves F2(y
∗, y) ≥ 0, ∀ y ∈ Q. (1.10)

They [11] introduced an iterative algorithm to approximate a common solution of SEP together with a
variational inequality problem and fixed point problem of nonexpansive mapping in real Hilbert spaces.
In 2018 Abass et. al. [1] introduced a viscosity-type algorithm to approximate a common solution of SEP
and fixed point problem of an infinite family of quasi-nonexpansive mappings in real Hilbert spaces. They
proved the following strong convergence theorem:

Theorem 1.4. Let H1 and H2 be two real Hilbert spaces, C and Q be nonempty, closed and convex subsets
of H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator and D be a strongly positive
bounded linear operator on H1 with coefficient τ > 0. Let Ti : C → K(C), i = 1, 2, 3, ..., be an infinite
family of quasi-nonexpansive multi-valued mappings and F1 : C × C → R, F2 : Q ×Q → R be bifunctions,
where F2 is upper semi-continuous in the first argument. Suppose Γ :=

⋂∞
i=1 Fix(Ti)

⋂
SEP ̸= ∅ and f is a

contraction mapping with coefficient µ ∈ (0, 1). Let the sequences {un}, {yn} and {xn} be generated by
un = TF1

rn (xn + ξnA
∗(TF2

rn − I)Axn);

yn = λ0un +
∑∞

i=1 λiz
i
n;

xn+1 = γnτf(xn) + (I − γnD)yn, ∀ n ≥ 1;

where zin ∈ Tiun, rn ∈ (0,∞) and the step size ξn is chosen in such a way that for some ϵ > 0,

ξn ∈
(
ϵ,

||(TF2
rn − I)Axn||2

||A∗(TF2
rn − I)Axn||2

− ϵ

)
;

for all TF2
rn Axn ̸= Axn and ξn = ξ, otherwise (ξ being any nonnegative real number) with the sequence γn

and rn satisfying the following conditions:
(i) limn→∞ γn = 0 and

∑∞
n=1 γn = ∞;

(ii) γn ∈ (0, 1), 0 < τ < τ
µ and 0 < γn < 2µ;

(iii) λ0, λi ∈ (0, 1) such that
∑∞

i=0 λi = 1. Then, the sequence {xn} converges strongly to q ∈ Γ which solves
the variational inequality

⟨(D − τf)q, q − p⟩ ≤ 0, ∀ p ∈ Γ.

Very recently, Mahato et. al. [13] proved the existence results for Trifunction Equilibrium Problem (TEP )
which was introduced by Prada et. al. [15] in Banach space. The TEP for the function F : C ×C ×C → R
is to find x ∈ C such that

F (y, x, x) ≥ 0, ∀ y ∈ C; (1.11)

where C is a nonempty, closed and convex subset of a Banach space E.
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If F (x, y, z) = ⟨Az, x − y⟩, where A : C → E∗ is a mapping. Then (1.11) reduces to the classical
variational inequality problem, which is to find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀ y ∈ C. (1.12)

They [13] introduced the following Hybrid iterative algorithm for approximating a common element of
solutions of a system of TEP and the set of fixed points of an infinite family of quasi-ϕ-nonexpansive
mappings in a uniformly smooth and uniformly convex Banach space as follows:

x0 = x ∈ C,C0 = C, Q0 = C;

zn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJTixn);

yn = J−1(δnJxn + (1− δn)Jzn);

un = TFm
rm,n

· · ·TFm−1
rm−1,n · · ·TF2

r2,nT
F1
r1,nyn;

where TFm
rj,nyn = {z ∈ C : Fj(y, z, z) +

1
rj,n

⟨y − z, Jz − Jyn⟩ ≥ 0,∀ y ∈ C},
Cn = {w ∈ Cn−1 : G(w, Jun) ≤ G(w, Jyn) ≤ G(w, Jxn)}, n ≥ 1;

Qn = {w ∈ Qn−1 : ⟨xn − w, Jx− Jxn⟩+ ρf(w)− ρf(xn) ≥ 0}, n ≥ 1;

xn+1 = Πf
Cn∩Qn

x;

where J : E → E∗ is the normalized duality mapping, C is a nonempty, bounded, closed and convex subset
of a uniformly convex and uniformly smooth Banach space E, {δn} and {αn} are sequences in [0, 1] such
that

(i)
∞∑
i=0

αn,i = 1, ∀ n ≥ 0;

(ii) lim sup
n→∞

δn < 1;

(iii) lim inf
n→∞

αn,0αn,i > 0, ∀ i;

(iv) {rj,n} ⊂ [ϵ,∞) for some ϵ > 0.

Motivated by the works of Abass et. al. [1], Mahato et. al. [13], Kazmi and Rizvi [11], we introduce a Split
Trifunction Equilibrium Problem (STEP ) as follows: Let E1 and E2 be two Banach spaces, C and Q be
nonempty, closed and convex subsets of E1 and E2 respectively. Let F1 : C×C×C → R, F2 : Q×Q×Q → R
be two nonlinear trifunctions and A : E1 → E2 be a bounded linear operator, then the STEP is to find
x∗ ∈ C such that

F1(y, x
∗, x∗) ≥ 0, ∀ y ∈ C; (1.13)

and such that

y∗ = Ax∗ ∈ Q solves F2(z, y
∗, y∗) ≥ 0, ∀ z ∈ Q. (1.14)

The inequalities (1.13) and (1.14) constitute a pair of TEP whose image (y∗ = Ax∗) of solution of (1.13)
in E1 under a given bounded linear operator A, is the solution of (1.14) in E2. We denote by Ω := {p ∈
TEP (F1) : Ap ∈ TEP (F2)} the set of solution of STEP (1.13)-(1.14).
We introduce an Halpern-type algorithm to approximate a common solution of STEP (1.13)-(1.14) together
with a fixed point problem of a finite family of Bregman quasi-nonexpansive mappings in the framework of
p-uniformly convex and uniformly smooth Banach spaces. A strong convergence result of the aforementioned
problems was obtained and the iterative algorithm employed is design in such a way that it does not require
any knowledge of the operator norm. We apply our result to solve optimization problem and also display
a numerical example to show the applicability of our result. The result present in this paper extends and
complements the results of [1], [11] and other related results in literature.
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2. Preliminaries

We state some known and useful results which will be needed in the proof of our main theorem. In the
sequel, we denote strong and weak convergence by ”→” and ”⇀”, respectively.

Lemma 2.1. [7] Let E be a Banach space and x, y ∈ E. If E is q-uniformly smooth, then there exists
Cq > 0 such that

||x− y||q ≤ ||x||q − q⟨JE
q (x), y⟩+ Cq||y||q.

Lemma 2.2. [12] Let E be a real p-uniformly convex and uniformly smooth Banach space. Let z, xk ∈

E (k = 1, 2, ..., N) and αk ∈ (0, 1) with
N∑
k=1

αk = 1. Then, we have

∆p(J
E∗
q (

N∑
k=1

αkJ
E
p (xk)), z) ≤

N∑
k=1

αk∆p(xk, z)− αiαjg
∗
r (||JE

p (xi)− JE
p (xj)||),

for all i, j ∈ 1, 2, ..., N and g∗r : R+ → R+ being a strictly increasing function such that g∗r (0) = 0.

Lemma 2.3. [17] Let E be a real p-uniformly convex and uniformly smooth Banach space. Let Vp : E
∗×E →

[0,+∞) be defined by

Vp(x
∗, x) =

1

q
||x∗||q − ⟨x∗, x⟩+ 1

p
||x||p, ∀ x ∈ E, x∗ ∈ E.

Then the following assertions hold:
(i) Vp is nonnegative and convex in the first variable.
(ii) ∆p(J

E∗
q (x∗), x) = Vp(x

∗, x), ∀ x ∈ E, x∗ ∈ E.

(iii) Vp(x
∗, x) + ⟨y∗, JE∗

q (x∗)− x⟩ ≤ Vp(x
∗ + y∗, x), ∀ x ∈ E, x∗, y∗ ∈ E.

Lemma 2.4. [8] Let E be a real p-uniformly convex and uniformly smooth Banach space. Suppose that
{xn} and {yn} are bounded sequences in E. Then the following assertions are equivalent:
(i) limn→∞∆p(xn, yn) = 0;
(ii) limn→∞ ||xn − yn|| = 0.

Let D be a nonempty bounded, closed, convex and bounded subset of a smooth strictly convex and
reflexive Banach space E. For r > 0 and z ∈ D, consider the following problems: find x ∈ D such that

F (y, x, x) +
1

r
⟨y − x, Jx− Jy⟩ ≥ 0, ∀ y ∈ D; (2.1)

and find x ∈ D such that

F (y, x, y) +
1

r
⟨y − x, Jx− Jy⟩ ≥ α(x, y), ∀ y ∈ D. (2.2)

Lemma 2.5. [13] Let D be a nonempty bounded, closed, convex and bounded subset of a smooth strictly
convex and reflexive Banach space E. Assume F : D ×D ×D → R, z ∈ D be such that:
(i) F (y, x, .) is hemicontinuous;
(ii) F (., x.z) is convex;
(iii) F (x, x, z) = 0;
(iv) F is generalized relaxed α-monotone;
(v) α(., y) is lower semicontinuous. Then the problems (2.1) and (2.2) are equivalent and have solutions.
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Lemma 2.6. [13] Let D be a nonempty closed and convex subset of a smooth strictly convex and reflexive
Banach space E. Let F : D ×D ×D → R with z ∈ D and r > 0. Let all assumptions of Lemma 2.5 hold
with α(x, y) + α(y, x) ≥ 0, ∀ x, y ∈ D. Define a mapping Tr : E → D as follows:

Trx = {z ∈ D : F (y, z, z) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀ y ∈ D}, ∀ x ∈ E. (2.3)

Then, the following holds:
(i) Trx is nonempty and single-valued;
(ii) ⟨Trx− Try, JTrx− Jx⟩ ≤ ⟨Trx− Try, JTry − Jy⟩;
(iii) Fix(Tr) = EP (F );
(iv) ∆p(q, Trx) + ∆p(Trx, x) ≤ ∆p(q, x), ∀ q ∈ Fix(Tr), x ∈ E;
(v) EP (F ) is closed and convex.

Lemma 2.7. [18] Assume {an} is a sequence of nonnegative real sequence such that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that
(i)

∑∞
n=1 σn = ∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |σnδn| < ∞.
Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let D and G be nonempty bounded closed convex subsets of uniformly convex and uniformly
smooth Banach spaces E1 and E2 respectively, and A : E1 → E2 be a bounded linear operator with A∗ :
E∗

2 → E∗
1 being the adjoint of A. Let F1 : D×D×D → R, F2 : G×G×G → R be trifunctions satisfying the

assumptions of Lemma 2.5 and Lemma 2.6 with F1 and F2 being continuous. Let {Ti}Ni=1 be a finite family
of Bregman quasi-nonexpansive mapping such that Γ :=

⋂N
i=1 Fix(Ti)

⋂
Ω ̸= ∅, then the sequences {un} and

{xn} are generated iteratively by{
un = TF1

rn (Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn]);

xn+1 = Jq
E∗

1
[βnJ

p
E1
(u) + (1− βn)(αn,0J

p
E1
(un) +

∑N
i=1 αn,iJ

p
E1
Tiun)], n ≥ 1,

(3.1)

where {αn,0}, {αn,i} and {βn} are sequences in (0, 1) such that
∑N

i=0 αn,i = 1, rn ⊂ (0,∞) and the step
size tn is chosen in such a way that if n ∈ Θ := {n : (TF2

rn − I)Axn ̸= 0}, then

tq−1
n ∈

(
0,

q||(TF2
rn − I)Axn||p

Cq||A∗Jp
E2
(TF2

rn − I)Axn||q

)
, (3.2)

where Cq is the constant of smoothness of E1. Otherwise, tn = t (t being any nonnegative real number) with
the sequences {αn,0}, {αn,i}, {βn} and {rn} satisfying the following conditions:
(i) limn→∞ βn = 0 and

∑∞
n=1 βn = ∞;

(ii) lim infn→∞ rn > 0;
(iii) lim infn→∞ αn,0αn,i > 0, for all i. Then {xn} converges strongly to x ∈ ΠΓu.
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Proof. Let x ∈ Γ, then from Lemma 2.1, (1.11) and (3.1), we have that

∆p(un, x) = ∆p[T
F1
rn (Jp

E∗
1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn), x]

≤ ∆p(J
q
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn )Axn], x)

=
1

q
||Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn||q − ⟨Jp
E1
(xn), x⟩

+ tn⟨A∗Jp
E2
(TF2

rn − I)Axn, x⟩+
1

p
||x||p

≤ 1

q
||Jp

E1
(xn)||q − tn⟨xn, A∗Jp

E2
(TF2

rn − I)Axn⟩+
Cq

q
tqn||A∗Jp

E2
(TF2

rn − I)Axn||q

+
||x||p

p
− ⟨Jp

E1
(xn), x⟩+ tn⟨A∗Jp

E2
(TF2

rn − I)Axn, x⟩

=
||xn||p

q
− ⟨Jp

E1
(xn), x⟩+

||x||p

p
− tn⟨xn − x,A∗Jp

E2
(TF2

rn − I)Axn⟩

+
Cq

q
tqn||A∗Jp

E2
(TF2

rn − I)Axn||q

= ∆p(xn, x)− tn⟨Axn −Ax, Jp
E2
(TF2

rn − I)Axn⟩+
Cq

q
tqn||A∗Jp

E2
(TF2

rn − I)Axn||q. (3.3)

But

⟨Axn −Ax, Jp
E2
(TF2

rn − I)Axn⟩ = ||TF2
rn Axn −Axn||p + ⟨Jp

E2
((TF2

rn − I)Axn), Ax− TF2
rn (Axn)⟩

≥ ||TF2
rn Axn −Axn||p. (3.4)

On substituting (3.4) into (3.3), we have that

∆p(un, x) ≤ ∆p(xn, x)− tn||(TF2
rn − I)Axn||p +

Cq

q
tqn||A∗Jp

E2
(TF2

rn − I)Axn||q

= ∆p(xn, x)− tn

[
||(TF2

rn − I)Axn||p −
Cq

q
tq−1
n ||A∗Jp

E2
(TF2

rn − I)Axn||q
]
. (3.5)

Using the choice of tn in (3.5), we have that

∆p(un, x) ≤ ∆p(xn, x). (3.6)

Let yn = αn,0J
p
E1
(un) +

∑N
i=1 αn,iJ

p
E1
Tiun, then we have from Lemma 2.2 and (3.6) that

∆p(yn, x) = ∆p(J
p
E∗

1
[αn,0J

p
E1
(un) +

N∑
i=1

αn,iJ
p
E1
Tiun], x)

≤ αn,0∆p(un, x) +

N∑
i=1

αn,i∆p(Tiun, x)

− αn,0αn,ig
∗
r (||J

p
E1
(un)− Jp

E1
(Tiun)||)

≤ αn,0∆p(un, x) +

N∑
i=1

αn,i∆p(un, x)

− αn,0αn,ig
∗
r (||J

p
E1
(un)− Jp

E1
(un)||)

≤ ∆p(un, x)

≤ ∆p(xn, x). (3.7)
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From (3.1) and (3.7), we have that

∆p(xn+1, x) = ∆p(J
q
E∗

1
[βnJ

p
E1
(u) + (1− βn)J

p
E1
yn], x)

≤ βn∆p(u, x) + (1− βn)∆p(yn, x)

≤ βn∆p(u, x) + (1− βn)∆p(xn, x) (3.8)

≤ max{∆p(u, x),∆p(xn, x)}
...

≤ max{∆p(u, x), ∆p(x1, x)}.

Therefore, we conclude that ∆p(xn, x) is bounded. Consequently, ∆p(un, x) and ∆p(yn, x) are bounded.
From (3.1), Lemma 2.3 and (3.7), we have that

∆p(xn+1, x) = ∆p(J
q
E∗

1
[βnJ

p
E1
(u) + (1− βn)(yn)], x)

= Vp(βnJ
p
E1
(u) + (1− βn)J

p
E1
(yn), x)

≤ Vp(βnJ
p
E1
(u) + (1− βn)J

p
E1
(yn)− βn(J

p
E1
(u)− Jp

E1
(x), x))

− ⟨−βn(J
p
E1
(u)− Jp

E1
(x)), Jq

E∗
1
[βnJ

p
E1
(u) + (1− βn)J

p
E1
(yn)]− x⟩

= Vp(βnJ
p
E1
(x) + (1− βn)J

p
E1
(yn), x) + βn⟨Jp

E1
(u)− Jp

E1
(x), xn+1 − x⟩

≤ βnVp(J
p
E1
(x), x) + (1− βn)Vp(J

p
E1
(yn), x) + βn⟨Jp

E1
(u)− Jp

E1
(x), xn+1 − x⟩

= βn∆p(x, x) + (1− βn)∆p(yn, x) + βn⟨Jp
E1
(u)− Jp

E1
(x), xn+1 − x⟩

≤ (1− βn)∆p(un, x)− αn,0αn,ig
∗
r (||J

p
E1
(un)− Jp

E1
(Tiun)||) + βn⟨Jp

E1
(u)− Jp

E1
(x), xn+1 − x⟩

≤ (1− βn)∆p(xn, x)− αn,0αn,i(1− βn)g
∗
r (||J

p
E1
(un)− Jp

E1
(un)||)

− tn(1− βn)

[
||(TF2

rn − I)Axn||p −
Cq

q
tq−1
n ||A∗Jp

E2
(TF2

rn − I)Axn||q
]
+ βn⟨Jp

E1
(u)− Jp

E1
(x), xn+1 − x⟩.

(3.9)

We now divide our proof into two cases:

CASE 1: Suppose ∆p(xn, x) is monotone non-increasing, then ∆p(xn, x) is convergent. Hence,

lim
n→∞

(∆p(xn, x)−∆p(xn+1, x)) = 0.

From (3.9), it follows that

tn(1− βn)

[
||(TF2

rn − I)Axn||p −
Cq

q
tq−1
n ||A∗Jp

E2
(TF2

rn − I)Axn||q
]
≤ (1− βn)∆p(xn, x)−∆p(xn+1, x)

+ βn⟨Jp
E1
(u)− Jp

E1
(x), xn+1 − x⟩ → 0, as n → ∞.

(3.10)

By the choice of the stepsize tn, there exists a very small number ϵ > 0 such that

0 < tq−1
n ≤

q||(TF2
rn − I)Axn||p

Cq||A∗Jp
E2
(TF2

rn − I)Axn||q
− ϵ,

this implies that

tq−1
n ≤ [Cq||A∗Jp

E2
(TF2

rn − I)Axn||q] ≤ q||(TF2
rn − I)Axn||p − ϵ[Cq||A∗Jp

E2
(TF2

rn − I)Axn||q]. (3.11)
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Therefore, we have from (3.11) that

lim
n→∞

Cq||A∗Jp
E2
(TF2

rn − I)Axn||q = 0. (3.12)

This implies that

lim
n→∞

||A∗Jp
E2
(TF2

rn − I)Axn||q = 0. (3.13)

Also, from (3.10), we have that

lim
n→∞

||(TF2
rn − I)Axn||q = 0. (3.14)

Also, from (3.9), (3.12), (3.13) and condition (i) and (iii) of (3.1), we have that

αn,0αn,i(1− βn)g
∗
r (||J

p
E1
(un)− Jp

E1
(un)||) ≤ (1− βn)∆p(xn, x)−∆p(xn+1, x) + βn⟨Jp

E1
(u)− Jp

E1
(x), xn+1 − x⟩

− tn(1− βn)

[
||(TF2

rn − I)Axn||p −
Cq

q
tq−1
n ||A∗Jp

E2
(TF2

rn − I)Axn||q
]
→ 0

as n → ∞. (3.15)

Hence, we obtain that

lim
n→∞

(||Jp
E1
(un)− Jp

E1
(un)||) = 0. (3.16)

Since Jq
E∗

1
is norm-to-norm uniformly continuous on bounded subset of E∗

1 , we have

lim
n→∞

||un − Tiun|| = 0. (3.17)

From (3.17) and condition (i) of (3.1), we have that

∆p(yn, un) =

N∑
i=1

αn,i∆p(un, Tiun) → 0 as n → ∞. (3.18)

From (3.8) and condition (i) of (3.1), we have that

∆p(xn+1, yn) ≤ βn∆p(u, yn) → 0 as n → ∞. (3.19)

Now, let an = Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn], following the same approach as in (3.5), we obtain

∆p(an, x) ≤ ∆p(xn, x). (3.20)

From the definition of an, we obtain that

0 ≤ ||Jp
E1
(an)− Jp

E1
(xn)||

≤ tn||A∗||||Jp
E2
((TF2

rn − I)Axn)||
= tn||A∗||||((TF2

rn − I)Axn)||p−1 → 0 as n → ∞.

Hence,

lim
n→∞

∆p(an, xn) → 0 = lim
n→∞

||an − xn||. (3.21)
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Also, from the definition of an and (3.1), (3.6), (3.8), (3.20) and condition (i) of (3.1), we have that

∆p(un, an) = ∆p(an, T
F1
rn an)

≤ ∆p(an, x)−∆p(T
F1
rn an, x)

= ∆p(an, x)−∆p(un, x)

= ∆p(an, x)−∆p(xn+1, x) + ∆p(xn+1, x)−∆p(un, x)

≤ ∆p(xn, x)−∆p(xn+1, x) + βn∆p(u, x) + (1− βn)∆p(un, x)−∆p(un, x).

Hence, from condition (i) of (3.1), we obtain that

lim
n→∞

∆p(un, an) = 0 = lim
n→∞

||un − an||. (3.22)

From (3.21) and (3.22), we obtain that

lim inf
n→∞

∆p(un, xn) = 0 = lim
n→∞

||un − xn||. (3.23)

From (3.18) and (3.23), we have that

lim
n→∞

∆p(yn, xn) = 0 = lim
n→∞

||yn − xn||. (3.24)

From (3.19) and (3.24), we obtain that

lim
n→∞

∆p(xn+1, xn) = 0 = lim
n→∞

||xn+1 − xn||. (3.25)

Since {xn} is bounded in E1, there exists a subsequence {xnj} which converges weakly to x∗. Since

∩N
i=1Fix(Ti) = ∩N

i=1
ˆFix(Ti), we have from (3.17) that x∗ ∈ ∩N

i=1Fix(Ti). Next, we show that x∗ ∈ Ω.
Since un = TF1

rn (Jq
E∗

1
(Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn)), and {rn} ⊂ (0,∞), we have from Lemma 2.6 that

F1(y, un, un) +
1

rn
⟨y − un, J

p
E1
un − xn − tnA

∗Jp
E2
(TF2

rn − I)Axn⟩ ≥ 0,

for all y ∈ C, which implies that

F1(y, un, un) +
1

rn
⟨y − un, J

p
E1
un − Jp

E1
xn⟩ −

1

rn
⟨y − un, J

p
E1
tnA

∗Jp
E2
(TF2

rn − I)Axn⟩ ≥ 0,

for all y ∈ C. Using generalized relaxed α-monotonicity of F1, we have

1

rn
⟨y − un, J

p
E1
un − Jp

E1
xn⟩ −

1

rn
⟨y − un, J

p
E1
tnA

∗Jp
E2
(TF2

rn − I)Axn⟩ ≥ −F1(y, un, un)

≥ α(un, y)− F1(y, un, y)

for all y ∈ C.
Using (3.13), (3.23) and condition (ii) of (3.1) in the above inequality, we obtain that

α(un, y)− F1(y, un, y) ≤ 0, ∀ y ∈ C. (3.26)

Since {un} is bounded, it converges weakly to x∗ ∈ C, hence we have from (3.26)

α(x∗, y)− F1(y, x
∗, y) ≤ 0, ∀ x∗ ∈ C.

For any t ∈ (0, 1] and y ∈ C, let yt = ty + (1− t)x∗. Since yt ∈ C, hence we have that

α(x∗, yt)− F1(yt, x
∗, yt) ≤ 0, (3.27)
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this implies that

α(x∗, yt) ≤ F1(yt, x
∗, yt)

≤ tF1(y, x
∗, yt) + (1− t)F1(x

∗, x∗, yt)

= tF1(y, x
∗, yt)

=⇒ F1(y, x
∗, yt) ≥

α(x∗, yt)

t
. (3.28)

Since F1(y, x, ..) is hemicontinuous, taking t → 0, we obtain

F1(y, x
∗, x∗) ≥ 0. (3.29)

This implies that x∗ ∈ SEP (F1). Since A is a bounded linear operator, Axnj ⇀ Ax∗. From (3.14), we have
that

TF2
rnj

Axnj ⇀ Ax∗, (3.30)

as j → ∞. By the definition of TF2
rnj

Axnj , we have

F2(y, Trnj
, y) +

1

rnj

⟨y − TF2
rnj

Axnj , J
p
rnj

Axnj −Axnj ⟩ ≥ 0, (3.31)

for all y ∈ C. Since F2 is upper-hemicontinuous in the first argument and from (3.30), it follows that

F2(y,Ax
∗, Ax∗) ≥ 0, ∀ y ∈ C.

This implies that Ax∗ ∈ SEP (F2), hence x∗ ∈ Γ.
Next, we show that {xn} converges strongly to x∗. From (3.9), we have

∆p(xn+1, x) ≤ (1− βn)∆p(xn, x) + βn⟨Jp
E1
(u)− Jp

E1
(x), xn+1 − x⟩. (3.32)

Now, we show that lim supn→∞⟨Jp
E1
(u) − Jp

E1
(x), xn+1 − x⟩ ≤ 0. Since {xn} is bounded, we choose a

subsequence {xnj} of {xn} such that {xnj} converges weakly to x∗. Using (3.25), we also have that xn+1

converges weakly to x∗. Hence,

lim sup
n→∞

⟨Jp
E1
(u)− Jp

E1
(x), xn+1 − x⟩ = lim

nj→∞
⟨Jp

E1
(u)− Jp

E1
(x), xnj+1 − x⟩

= ⟨Jp
E1
(u)− Jp

E1
(x), x∗ − x⟩ ≤ 0. (3.33)

Using Lemma (2.7) in (3.32), we have that ∆p(xn, x
∗) → 0, n → ∞. Therefore, xn −→ x∗.

Case 2: Assume that {∆p(xn, x)}n∈N is not monotonically decreasing sequence. Let τ : N → N be a mapping
for all n ≥ n0 (for some n0 large enough) by

τ(n) := max{j ∈ N : j ≤ n,∆p(xnj ) ≤ ∆p(xnj+1)}.

Obviously, τ is a non-decreasing sequence, such that τ(n) → ∞asn → ∞, then

0 ≤ ∆p(xτ(n), x
∗) ≤ ∆p(xτ(n)+1, x

∗), ∀ n ≥ n0. (3.34)

Following the same approach as in (3.9), it is easy to see that

lim
τ(n)→∞

||A∗Jp
E2
(TF2

rn − I)Axτ(n)|| = 0
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Also, from (3.25) and (3.33)

lim
τ(n)→∞

||xτ(n)+1 − xτ(n)|| = 0, (3.35)

and

lim
τ(n)→∞

⟨Jp
E1
(u)− Jp

E1
(x), xτ(n)+1 − x⟩ ≤ 0. (3.36)

Using (3.9), we have that

lim
τ(n)→∞

∆p(uτ(n), Tiuτ(n)) = 0. (3.37)

From (3.8), we have that

∆p(xτ(n)+1, x
∗) ≤ (1− βτ(n))∆p(xτ(n), x

∗) + βτ(n)⟨J
p
E1
(u)− Jp

E1
(x∗), xτ(n)+1 − x∗⟩.

This implies that

lim sup
τ(n)→∞

∆p(xτ(n), x
∗) ≤ 0.

Hence,

lim
τ(n)→∞

∆p(xτ(n), x
∗) = 0.

Therefore, it follows from (1.7) that

0 ≤ ∆p(xτ(n)+1, x
∗) ≤ ⟨xτ(n)+1 − x∗⟩, Jp

E1
(xτ(n)+1)− Jp

E1
(x∗)⟩

≤ ||xτ(n)+1 − x∗|| ||Jp
E1
(xτ(n)+1)− Jp

E1
(x∗)|| → 0, n → ∞.

Moreso, for n ≥ n0, it is easy to see that ∆p(xτ(n), x
∗) ≤ ∆p(xτ(n)+1, x

∗) if n ̸= τ(n) (that is τ(n) < n),
because ∆p(xnj , x

∗) ≥ ∆p(xnj+1, x
∗) for τ(n) + 1 ≤ j ≤ n. Hence, we obtain for all n ≥ n0,

0 ≤ ∆p(xn, x
∗) ≤ max{∆p(xτ(n), x

∗), ∆p(xτ(n)+1, x
∗)}.

= ∆p(xτ(n)+1, x
∗).

Hence, lim
n→∞

∆p(xn, x
∗) = 0, which implies that {xn}n∈N converges strongly to x∗. This completes the

proof.

Remark 3.2.

1. The iterative scheme considered in this article has an advantage over the one considered in [13] in
the sense that we do not use any projection of a point on the intersection of closed and convex sets
which creates some difficulties in a practical calculation of the iterative sequence. The Halpern itera-
tion considered in this article provides more flexibility in defining the algorithm parameters which is
important for the numerical implementation perspective.

2. The result discussed in this article extends and generalizes the results of [1, 2] from Hilbert spaces to
p-uniformly convex Banach spaces which are also uniformly smooth.

We give the following consequence of our main result as follows:.
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Corollary 3.3. Let D and G be nonempty bounded closed convex subsets of uniformly convex and uniformly
smooth Banach spaces E1 and E2 respectively, and A : E1 → E2 be a bounded linear operator with A∗ :
E∗

2 → E∗
1 being the adjoint of A. Let F1 : D×D×D → R, F2 : G×G×G → R be trifunctions satisfying the

assumptions of Lemma 2.5 and Lemma 2.6 with F1 and F2 being continuous. Let T be a Bregman relatively
nonexpansive mapping such that Γ := Fix(T )

⋂
Ω ̸= ∅, then the sequences {un} and {xn} are generated

iteratively by {
un = TF1

rn (Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn]);

xn+1 = Jq
E∗

1
[βnJ

p
E1
(u) + (1− βn)(αnJ

p
E1
(un) + (1− αn)J

p
E1
Tun)], n ≥ 1,

(3.38)

where {αn} and {βn} are sequences in (0, 1) such that rn ⊂ (0,∞) and the step size tn is chosen in such a
way that if n ∈ Θ := {n : (TF2

rn − I)Axn ̸= 0}, then

tq−1
n ∈

(
0,

q||(TF2
rn − I)Axn||p

Cq||A∗Jp
E2
(TF2

rn − I)Axn||q

)
, (3.39)

where Cq is the constant of smoothness of E1. Otherwise, tn = t (t being any nonnegative real number) with
the sequences {αn}, {βn} and {rn} satisfying the following conditions:

(i) lim
n→∞

βn = 0 and
∞∑
n=1

βn = ∞;

(ii) lim inf
n→∞

rn > 0;

(iii) lim inf
n→∞

αn(1− αn) > 0. Then {xn} converges strongly to x ∈ ΠΓu.

Corollary 3.4. Let D be a nonempty bounded closed convex subset of a uniformly convex and uniformly
smooth Banach space E and let F : D ×D ×D → R be a trifunction satisfying the assumptions of Lemma
2.5 and Lemma 2.6 with F1 being continuous. Let T be a Bregman relatively nonexpansive mapping such
that Γ := Fix(T )

⋂
EP (F ) ̸= ∅, then the sequences {un} and {xn} are generated iteratively by{

un = Jq
E∗

1
TF
rn ;

xn+1 = Jq
E∗

1
[βnJ

p
E1
(u) + (1− βn)(αnJ

p
E1
(un) + (1− αn)J

p
E1
Tun)], n ≥ 1,

(3.40)

where {αn} and {βn} are sequences in (0, 1) such that rn ⊂ (0,∞), where the sequences {αn}, {βn} and
{rn} satisfying the following conditions:

(i) lim
n→∞

βn = 0 and
∞∑
n=1

βn = ∞;

(ii) lim inf
n→∞

rn > 0;

(iii) lim inf
n→∞

αn(1− αn) > 0. Then {xn} converges strongly to x ∈ ΠΓu.

We also consider a bifunction equilibrium problem.

Corollary 3.5. Let D and G be nonempty bounded closed convex subsets of uniformly convex and uniformly
smooth Banach spaces E1 and E2 respectively, and A : E1 → E2 be a bounded linear operator with A∗ :
E∗

2 → E∗
1 being the adjoint of A. Let F1 : D × D → R, F2 : G × G → R be bifunctions satisfying the

assumptions of Lemma 2.5 and Lemma 2.6 with F1 and F2 being continuous. Let {Ti}Ni=1 be a finite family
Bregman quasi nonexpansive mapping such that Γ := Fix(T )

⋂
Ω ̸= ∅, then the sequences {un} and {xn}

are generated iteratively by{
un = TF1

rn (Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn]);

xn+1 = Jq
E∗

1
[βnJ

p
E1
(u) + (1− βn)(αnJ

p
E1
(un) + (1− αn)J

p
E1
Tun)], n ≥ 1,

(3.41)
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where {αn} and {βn} are sequences in (0, 1) such that rn ⊂ (0,∞) and the step size tn is chosen in such a
way that if n ∈ Θ := {n : (TF2

rn − I)Axn ̸= 0}, then

tq−1
n ∈

(
0,

q||(TF2
rn − I)Axn||p

Cq||A∗Jp
E2
(TF2

rn − I)Axn||q

)
, (3.42)

where Cq is the constant of smoothness of E1. Otherwise, tn = t (t being any nonnegative real number) with
the sequences {αn}, {βn} and {rn} satisfying the following conditions:

(i) lim
n→∞

βn = 0 and
∞∑
n=1

βn = ∞;

(ii) lim inf
n→∞

rn > 0;

(iii) lim inf
n→∞

αn(1− αn) > 0. Then {xn} converges strongly to x ∈ ΠΓu.

All codes were written on a personal laptop HP ENVY core i5-5200U with MATLAB 2019b.

4. Numerical Example

Example 4.1. Let E1 = E2 = R and D = G = R. Let F1(x, y) = −15x2 + xy + 14y2, then we derive our
resolvent function TF1

r , using Lemma 2.6 as follows:

F1(x, y) +
1

r
(y − x)(x− t) ≥ 0

⇔ −15rx2 + rxy + 14ry2 + xy − yt− x2 + xt ≥ 0

⇔ 14ry2 + rxy + xy − yt− 15rx2 − x2 + xt ≥ 0

⇔ 14ry2 + (rx+ x− t)y − (15rx2 + x2 − xt) ≥ 0.

Let Q(y) = 14ry2 + (rx+ x− t)y − (15rx2 + x2 − rt). Then, Q is a quadratic function of y with coefficient
a = 14r, b = rx+ x− t, c = −15rx2 − x2 + rt. We compute the discriminant of Q(y) as follows:

△ = b2 − 4ac = (rx+ x− t)2 − 4(14r)(−15rx2 − x2 + rt)

= r2x2 + rx2 − rxt+ rx2 + x2 − xt− rxt− xt

+ t2 + 840r2x2 + 56rx2 − 56rxt

= 841r2x2 + 58rx2 − 58rxt− 2xt+ x2 + t2

= t2 − 58rxt− 2xt+ 841r2x2 + 58rx2 + x2

= t2 − 2((29r + 1)x)t+ x2 + 841r2x2 + 58rx2

= t2 − 2((29r + 1)x)t+ ((29r + 1)x)2 ≥ 0.

Thus, △ ≥ 0 ∀ t ∈ R and it has at most one solution in R, then △ ≤ 0, TF1
rn (t) = t

29rn+1 . Let F2(x, y) =

−19x2 + xy + 18y2, Ax = x and A∗x = x. Following the same process used in obtaining TF1
rn , we have that

TF2
rn (t) =

t

37rn + 1
.

Furthermore, define T : R → R by T = x
3 ,∀ x ∈ R. Let tn = 1, rn = 1

2 , αn = n
3n+5 and βn = 1

2n+1 . Then
(3.41) becomes {

un = TF1
rn [Jp

E1
(xn)− tnA

∗Jp
E2
(TF2

rn − I)Axn]

xn+1 = Jq
E∗

1
[ 1
2n+1J

p
E1
(u) + 2n

2n+1(
n

3n+5J
p
E1
(un) +

2n+5
3n+5J

p
E1

x
3un)].

Case 1: x1 = (0.9) and u = 0.7.
Case 2: x1 = (0.5) and u = 0.4.
Case 3: x1 = (0.8) and u = 0.5.
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Figure 1: Example 4.1. Top left: Case 1, Top right: Case 2, Bottom: Case 3.
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Example 4.2. Let E1 = E2 = D = G = R3. Define the trifunctions F1 : D × D × D → R and F2 :
G×G×G → R3 respectively by

F1(x, y, z) = ⟨ATAz, x− y⟩, ∀ x, y, z ∈ R3,

where

A =

 2 −1 1
−1 2 −1
1 −1 2


and AT is the transpose of matrix of A and

F2(x, y, z) = ⟨BTBz, x− y⟩, ∀ x, y, z ∈ R3,

where

B =

 2 −1 3
−1 2 3
1 −1 3


and BT is the transpose of matrix of B. From the definitions of F1 and F2 we see that

u = TF1
r (x) =

x

I + rAtA

and
v = TF2

r (y) =
y

I + rBtB
,

respectively for u and v in D and G. Let N = 1 and define the mapping T : R3 → R3 by T (x) =
(12x1, x2, sinx3), ∀ x = (x1, x2, x3)

T . Let i = 1 and choose 0.5, tn = 1, rn = 1
2 , αn = n

3n+5 and βn = 1
2n+1 .

The results of this experiment for initial values of x1 are displayed below as cases

(I) x1 = [2, 3, 5]T ;

(II) x1 = [10, 20, 10]T ;

(III) x1 = [0.5, 0.2, 0.125]T ;

(IV) x1 = [−10, 15,−20]T .

5. Acknowledgements:

The first author acknowledge with thanks the bursary and financial support from Department of Sci-
ence and Technology and National Research Foundation, Republic of South Africa Centre of Excellence in
Mathematical and Statistical Sciences (DSI-NRF CoE-MaSS) Post-Doctoral Bursary. Opinions expressed
and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS.

References

[1] H. A. Abass, F. U. Ogbuisi and O. T. Mewomo, Common solution of split equilibrium problem with no prior
knowledge of operator norm, U. P. B Sci. Bull., Series A, 80:1 (2018), 175–190. 1, 1, 1, 1, 2

[2] H. A. Abass, C. C. Okeke and O. T. Mewomo, On Split Equality Mixed Equilibrium Problem and Fixed Point
Problem of Generalized Ki-Strictly Pseudocontractive Multi-valued Mappings, Dyn. Contin. Discrete Impuls.,
Series B: Applications and Algorithms, 25:6 (2018), 369–395. 1, 2



Abass et al., Journal of Prime Research in Mathematics, 18(2) (2022), 23–41 40

0 20 40 60 80 100 120 140 160 180
10-5

10-4

10-3

10-2

10-1

100

101

0 20 40 60 80 100 120 140 160 180
10-5

10-4

10-3

10-2

10-1

100

101

102

0 20 40 60 80 100 120 140 160 180
10-5

10-4

10-3

10-2

10-1

100

0 20 40 60 80 100 120 140 160 180
10-5

10-4

10-3

10-2

10-1

100

101

102

Figure 2: Example 4.2. Top left: I, Top right: II, Bottom left: III, Bottom right IV.

[3] H. A. Abass, K. O. Aremu, L. O. Jolaoso and O.T. Mewomo, An inertial forward-backward splitting method for
approximating solutions of certain optimization problem, J. Nonlinear Funct. Anal., 2020 (2020), Article ID 6. 1

[4] H. A. Abass, G. C. Godwin, O. K. Narain and V. Darvish, Inertial Extragradient Method for Solving Variational
Inequality and Fixed Point Problems of a Bregman Demigeneralized Mapping in a Reflexive Banach Spaces.
Numerical Functional Analysis and Optimization, 42:8 (2022), 933–960. 1

[5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63
(1994), 123–145. 1, 1

[6] L. M. Bregman, The relaxation method for finding the common point of convex sets and its application to solution
of problems in convex programming, U.S.S.R Comput. Math. Phys., 7 (1967), 200–217. 1.1

[7] C. E Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series, Lecture
Notes in Mathematics, ISBN 978-1-84882-189-7 (2009). 1, 2.1

[8] P. Cholamjiak and P. Sunthrayuth, A Halpern-type iteration for solving the split feasibility problem and fixed
point problem of Bregman relatively nonexpansive semigroup in Banach spaces, Filomat, 32:9 (2018), 3211–3227.
1, 2.4

[9] I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlineqar Problems, Kluwer Academic, Dor-
drecht (1990). 1

[10] F. O. Isiogugu, P. Pillay and D. Baboolal, Approximation of common element of the set of fixed points of multi-
valued type-one demicontractive mappings and the set of solutions of an equilibrium problem in Hilbert space. J.
Nonlinear and Convex Anal., 17 (2016), 1181–1197. 1

[11] K. R. Kazmi and S. H. Rizvi, Iterative approximation of a common solution of a split equilibrium problem,



Abass et al., Journal of Prime Research in Mathematics, 18(2) (2022), 23–41 41

variational inequality problem and a fixed point problem, J. Egypt. Math. Soc., 21 (2013), 44–51. 1, 1, 1, 1
[12] L. W. Kuo and D. R. Sahu, Bregman distance and strong convergence of proximal-type algorithms, Abstr. Appl.

Anal., (2013), Article ID 590519, 12 pages. 2.2
[13] N. H. Mahato, M. A. Noor and N. K. Sahu, Existence results for trifunction equilibrium problem and fixed point

problem, Anal. Math. Phys., 9 (2019), 323–347. 1.4, 1, 2.5, 2.6, 1
[14] F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of common solution of certain nonlinear problems, Fixed

Point Theory, 19:1 (2018), 335–358. 1
[15] V. Preda, M. Beldiman and A. Balatorescu, On variational-like inequalities with generalized monotone mappingsz

in generalized convexity and related topics, Lecture notes in Economics and Mathematical Systems, 583, Springer,
Berlin (2007), 415–431. 1.4

[16] F. Schopfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution of split feasibility
problem in Banach spaces, Invers. Probl., 24, Article ID 055008, (2008), 20 pp. 1

[17] Y. Shehu, F. U. Ogbuisi and O. S. Iyiola, Convergence analysis of an iterative algorithm for fixed point problems
and split feasibility problems in certain Banach spaces, Optimization, 65 (2016), 299–323. 2.3

[18] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66:1 (2002), 240–256. 2.7


	1 Introduction
	2 Preliminaries
	3 Main results
	4 Numerical Example
	5 Acknowledgements:

