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Abstract

One of the fundamental issues in engineering, computer graphics, data visualization, interpolation and many
more areas is to create a shape preserving surface from supplied data points. Data can be characterized
as convex, monotone and positive. This research focuses on developing new smooth and efficient shape
preserving schemes for convex, monotone and positive 3D data set positioned on a rectangular mesh. For
this purpose, a GC1 continuous cubic function with two free parameters have been advanced to GC1 bi-
cubic coons surface patches. There are eight free shape parameters in each rectangular patch which are
constrained to ascertain these intrinsic data attributes that is convexity, positivity and monotonicity. The
proposed interpolant governs the shape of data locally and data dependent constraints on shape parameters
manage the shape preservation. Moreover, proposed scheme is verified and demonstrated graphically.
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2010 MSC: 65D05, 65D07.

1. Introduction and Preliminaries

Shape preservation plays a vital role in countless fields such as medical imaging, computer graphics, re-
verse engineering, automotive, video gaming, object designing, aerospace industries and atmospheric science.
Demographic inflation, measure of downpour, distribution of probability, volumetric mass of a substance,
height of a person are some examples where data values are always positive. Monotone data arise from phe-
nomenon such as empirical option pricing model in finance [2], hemoglobin level in blood, age of a person
over time and credit card screening application. Convexity, another prime characteristic of data is visible
in problems like non linear programming, optimal control and architecture. Shape conserving interpolation
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refers to interpolating schemes that mimics the intrinsic attribute of data in visual display. Thus, it is
indispensable to formulate computationally efficient and attractive visualizations for data stemming from
different scientific phenomena or mathematical functions.

Shape-preserving techniques are also extensively employed in a wide variety of domains, including
robotics, chemical processes, and software design for machines. A lathe is used to create ornaments, cut
wood for wooden furniture, make ceramics, and other things. Use of shape-preserving software is required
for the lathe path design. The robots’ paths are planned using shape-preserving interpolation methods,
which are also used in chemistry. For PARFAC modelling of the fluorescence data, they are employed in
chemistry. Applications for signal processing, manipulating photogrammetric data, etc. are more numerous.

Shape preserving interpolation of convex, positive and monotone data has been researched by several
authors [1]- [20] in recent past. Duan et al. [13] investigated a method called point-control for reshaping
the interpolating surfaces by choosing appropriate properties of bivariate rational cubic spline such that the
interpolation data is not altered. Han [20] established C1 piecewise function of the form quartic/quadratic
and put constraints on shape parameters in its description. Hussain and Bashir [5] suggested a rational,
C1 bi-cubic shape-preserving algorithm to retain the positive and monotone form of the 3D data. Data
dependent constraints are developed to withhold the shape of the monotone, constrained and positive data
given on rectangular grids. Hussain et al. [10] advanced geometric C1 continuous, quadratic trigonometric
functions to bi cubic partially blended function, comprises of four free parameters. Hussain et al. [4]
presented C1, local rational bi-cubic interpolating function with eight free parameters for conserving the
positive, monotone and convex forms of surface data. Data dependent constraints are implemented among
four of these parameters. The remaining are the uncontrolled ones, hence free to acquire the smoothest
surface. Sarfraz and Hussain [9] designed a smoother piecewise rational cubic function to retain the positive,
monotone and convex features of data. Sarfraz et al. [8] contributed in developing a piecewise rational cubic
function which is constructed with the aid of four free parameters in each of its interval. The resulting 2D
data is graphically displayed. The authors used four free parameter; two for conserving geometric feature
of data while two were set free for the enhancement of the interpolating curves. Sarfraz et al. [7] focused
on evolving a novel curve interpolation scheme and visualized the data configured. The authors proposed
schemes to preserve convexity, positivity and monotonicity of the intrinsic shaped data. Also, a strategy
for the data lying above the line for shape preservation was introduced. This paper extends the work done
by Hussain et al. [2], in which authors have constructed a GC1 cubic interpolant consisting of two free
parameters in Ball form. In [2], authors had put forth three schemes through which the shapes of positive,
monotone and convex 2D data was preserved by adding constraints to the free parameters. This article
further builds up the positivity, monotonicity and convexity preserving schemes to interpolate 3D positive
data, 3D monotone data and 3D convex data respectively. The proposed interpolating technique has a
unique degree on each rectangular mesh.
The proposed algorithm has been compared with existing schemes in literature and its advantages are as
follows:
• Positive and monotone shape of 3D regular data is preserved in [19] by developing conditions on partial
derivatives which fails to retain the inherent shape of data with derivatives. The proposed GC1 scheme can
be applied to both data with derivatives and data as it restricts parameters for shape preservation.
• The monotonicity preserving scheme in [12] derive constraints on the degree of the interpolating function
whereas the proposed scheme are of unique degree for the entire domain.
• In [5] and [11], shape conserving techniques were rational but the proposed schemes here in this paper are
integral and less expensive computationally. Comparative analysis of CPU time is encapsulated in Table 1
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Table 1: Comparative Analysis of CPU Time

Case Proposed Schemes [10] [5] [11]

Example 1 0.87s 0.9600s 1.0700s 1.1632s
Example 2 0.97s 1.1832s 1.2300s 1.4130s
Example 3 1.132s 1.232s 1.324s 1.433s

• The proposed shape preserving GC1 interpolation schemes are local.

The paper is carried forward in such a manner that Section 2 reviews the geometric C1(GC1) continuous
function of cubic form [2]. This function [2] is advanced to geometric C1 continuous partially blended bi-
cubic function positioned on a rectangular grid in Section 3. Moreover, shape preserving constraints have
also been developed in this section. Section 4 exhibits verification of suggested algorithm with the help of
few examples. Finally, Section 5 summarizes the research work and completes the paper.

2. GC1 Continuous Cubic Function

Let ζ1 = ϱ0 < ϱ1 < ϱ2 < · · · < ϱn = ζ2 be the partition of the interval [ζ1, ζ2] for the set of data points
{(ϱi, σi) , i = 0, 1, . . . n} . The piecewise GC1 continuous cubic function [2] involving two free parameters αi

and βi is specified on each subinterval [ϱi, ϱi+1] , i = 0, 1, . . . n− 1 as

S (ϱ) ≡ Si (ϱ) = Â0(1− θ)2 + Â1(1− θ)2θ + Â2 (1− θ) θ2 + Â3θ
2, (1)

where

Â0 = σi, Â1 = 2σi +
hi d̃i
αi

, Â2 = 2σi+1 −
hid̃i+1

βi
, Â3 = σi+1,

hi = ϱi+1 − ϱi, θ = ϱ−ϱi
hi

.The free parameters αi and βi are assumed positive real numbers. The GC1 cubic
interpolant (1) has the following properties:

S (ϱi) = σi, S (ϱi+1) = σi+1,

S(1) (ϱi) =
d̃i
αi

, S(1) (ϱi+1) =
d̃i+1

βi
.

Here S(1) = dS
dϱ and d̃i denotes the derivatives at knots ϱi. It is to be noted that when αi = 1 and βi = 1,

the cubic function (1) reduces to Cubic Hermite Spline.

3. Bi-Cubic Coons Surface Patch

The piecewise GC1 Cubic Function [2] is advanced to the Bi-cubic GC1Function S(ϱ, σ) over rectangular
domain D = [ϱ0, ϱm]× [σ0,σn] .
Let{(ϱk, σl, Zk,l); k = 0, 1, 2, ...,m, l = 0, 1, 2, ..., n} be 3D data set positioned over a rectangular mesh and
ω: ζ1=ϱ0< ϱ1 < · · · < ϱm = ζ2 be segregation of [ζ1, ζ2]
and ω̂ : ξ1 = ρ0 < ρ1 < · · · < ρn = ξ2 be segregation of [ξ1, ξ2]
A Bi-Cubic GC1 Function is positioned on a rectangular region Ri,j = [ϱk, ϱk+1] × [σl , σl+1] ; k =
{0, 1 . . .m− 1} , l = {0, 1, . . . n− 1} as:

S (ϱ, σ) = −AFBT , (2)

where F =

 0 S (ϱ, σl) S (ϱ, σl+1)
S (ϱk, σ) S (ϱk, σl) S (ϱk, σl+1)
S (ϱk+1, σ) S (ϱk+1, σl) S (ϱk+1, σl+1)

,
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A =
[
−1 ∈k

0,3(ϱ) ∈k
3,3(ϱ)

]
,

B =
[
−1 ∈l

0,3(σ) ∈l
3,3(σ)

]
,

∈k
0,3 (ϱ) , ∈k

3,3(ϱ), ∈l
0,3(σ) and ∈l

3,3(σ) are cubic Hermite blending functions.
On the boundary of each rectangular patch,

Ri,j = [ϱk, ϱk+1]× [σl , σl+1] ,

GC1Cubic Functions (2) are defined as S (ϱ, σl), S (ϱ, σl+1) , S (ϱk, σ) and S(ϱk+1, σ).
where

S (ϱ, σl) = µ0(1− θ)2 + µ1(1− θ)2θ + µ2 (1− θ) θ2 + µ3θ
2, (3)

and
µ0 = Zk,l,

µ1 = 2Zk,l +
hkZ

ϱ
k,l

αi,j
,

µ2 = 2Zk+1,l −
hkZ

ϱ
k+1,l

βk,l
,

µ3 = Zk+1,l,

with θ = ϱ−ϱk
hk

, hk = ϱk+1 − ϱk

S (ϱ, σl+1) = δ0(1− θ)2 + δ1(1− θ)2θ + δ2 (1− θ) θ2 + δ3θ
2, (4)

and
δ0 = Zk,l+1,

δ1 = 2Zk,l+1 +
hkZ

ϱ
k,l+1

αk,l+1
,

δ2 = 2Zk+1,l+1 −
hkF

ϱ
k+1,l+1

βk,l+1
,

δ3 = Zk+1,l+1,

S (ϱk, σ) = τ0 (1− ϕ)2 + τ1 (1− ϕ)2ϕ+ τ2 (1− ϕ)ϕ2 + τ3ϕ
2, (5)

and
τ0 = Zk,l,

τ1 = 2Zk,l +
ĥlZ

σ
k,l

α̂k,l
,

τ2 = 2Zk,l+1 −
ĥlZ

σ
k,l+1

β̂k,l
,

τ3 = Zk,l+1,
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with ϕ = σ−σl

ĥl
, ĥl = σl+1 − σl

S (ϱk+1, σ) = ω0 (1− ϕ)2 + ω1 (1− ϕ)2ϕ+ ω2 (1− ϕ)ϕ2 + ω3ϕ
2, (6)

and
ω0 = Zk+1,l,

ω1 = 2Zk+1,l +
ĥlZ

σ
k+1,l

α̂k+1,l
,

ω2 = 2Zk+1,l+1 −
ĥlZ

σ
k+1,l+1

β̂k+1,l

,

ω3 = Zk+1,l+1,

3.1. Positivity Preserving GC1 Surface

Let {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}} be the set of given positive data points described
over rectangular patch

Ri,j = [ϱk, ϱk+1]× [σl , σl+1] ; k = {0, 1 . . .m− 1} , l = {0, 1, . . . n− 1 } ,

such that Zk,l > 0, ∀ k, l.

The GC1 Bi-cubic surface (2) preserves positivity if the boundary curves S (ϱ, σl), S (ϱ, σl+1) , S (ϱk, σ) and
S(ϱk+1, σ) defined in (3), (4), (5) and (6) are positive.
Now, S (ϱ, σl) > 0 if φ0 (1− θ)2 + φ1 (1− θ)2θ + φ2 (1− θ) θ2 + φ3θ

2 > 0 ,
which is realizable if φ0, φ1, φ2, φ3 are all positive and this yields the following constraints on free

parameter αk,l > −hkZ
ϱ
k,l

2Zk,l
and βk,l >

hkZ
ϱ
k+1,l

2Zk+1,l
where hk = ϱk+1 − ϱk

Also, S (ϱ, σl+1) > 0 if δ0(1− θ)2 + δ1(1− θ)2θ + δ2 (1− θ) θ2 + δ3θ
2 > 0 ,

which is possible if δ0, δ1, δ2, δ3 are all positive and this confers the following condition

αk,l+1 > −
hkZ

ϱ
k,l+1

2Zk,l+1
and βi,j+1 >

hkZ
ϱ
k+1,l+1

2Zk+1,l+1
.

Likewise, S (ϱk, σ) > 0 if σ0 (1− ϕ)2 + σ1 (1− ϕ)2ϕ+ σ2 (1− ϕ)ϕ2 + σ3ϕ
2 > 0 ,

which enforces σ0, σ1, σ2,σ3 to be positive and this delivers the following constraints

α̂i,j > − ĥlZ
σ
k,l

2Zk,l
and β̂i,j >

ĥlZ
σ
k,l+1

2Zk,l+1
, where ĥl = ĥl+1 − ĥl.

Moreover,S (ϱk+1, σ) > 0 if ω0 (1− ϕ)2 + ω1 (1− ϕ)2ϕ+ ω2 (1− ϕ)ϕ2 + ω3ϕ
2 > 0,

which means ω0, ω1, ω2, ω3 are all positive and this gives the following conditions

α̂k+1,l > −
ĥlZ

σ
k+1,l

2Zk+1,l
and β̂k+1,l >

ĥlZ
σ
k+1,l+1

2Zk+1,l+1
.

The content presented above can be concluded as:
Theorem 1 The sufficient conditions for a piecewise bi-cubic function to be positive over a rectangular
grid Ri,j = [ϱk, ϱk+1]×

[
σl , ϱl+1

]
; k = {0, 1 . . .m− 1} , l = {0, 1, . . . n− 1 } in (2) are:

αk,l > Max

{
0,−

hkZ
ϱ
k,l

2Zi,j

}
, βk,l > Max

{
0,

hkZ
ϱ
k+1,l

2Zk+1,l

}
,

αk,l+1 > Max

{
0,−

hkZ
ϱ
k,l+1

2Zk,l+1

}
, βk,l+1 > Max

{
0,

hkZ
ϱ
k+1,l+1

2Zk+1,l+1

}
,
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α̂k,l > Max

{
0,−

ĥlZ
σ
k,l

2Zk,l

}
, β̂k,l > Max

{
0,

ĥlZ
σ
k,l+1

2Zk,l+1

}
,

α̂k+1,l > Max

{
0,−

ĥlZ
σ
k+1,l

2Zk+1,l

}
, β̂k+1,l > Max

{
0,

ĥlZ
σ
k+1,l+1

2Zk+1,l+1

}
.

The above conditions can be rearranged as:

αk,l = rk,l +Max

{
0,−

hkZ
ϱ
k,l

2Zk,l

}
, rk,l > 0, βk,l = sk,l +Max

{
0,

hkZ
ϱ
k+1,l

2Zk+1,l

}
, sk,l > 0,

αk,l+1 = tk,l +Max

{
0,−

hkZ
ϱ
k,l+1

2Zk,l+1

}
, tk,l > 0, βk,l+1 = uk,l +Max

{
0,

hkZ
ϱ
k+1,l+1

2Zk+1,l+1

}
, uk,l > 0,

α̂k,l = r̂k,l +Max

{
0,−

ĥlZ
σ
k,l

2Zk,l

}
, r̂k,l > 0, β̂k,l = ŝk,l +Max

{
0,

ĥlZ
σ
k,l+1

2Zk,l+1

}
, ŝk,l > 0,

α̂k+1,l = t̂k,l +Max

{
0,−

ĥlZ
σ
k+1,l

2Zk+1,l

}
, t̂k,l > 0, β̂k+1,l = ûk,l +Max

{
0,

ĥlZ
σ
k+1,l+1

2Zk+1,l+1

}
, ûk,l > 0.

Algorithm
Step 1. Take the positive data set {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}}.
Step 2. Estimate the derivatives Zϱ

k,l, Z
σ
k,l, Z

ϱσ
k,l by arithmetic mean method.

Step 3.Apply Theorem 1 to calculate the values of free parameters.
Step 4. Substitute the data set, {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}} and values of free
parameter in (2) to interpolate and visualize positive data.

3.2. Monotonicity Preserving GC1 Surfaces

Let(ϱk, σl, Zk,l), k = 0, 1, . . . ,m, l = 0, 1, . . . , n be the given set of monotone data points defined over
rectangular patch

Rk,l = [ϱk, ϱk+1]× [σl,σl+1]; k = {0, 1 . . .m− 1}, l = 0, 1, . . . n− 1

s.t.Zk,l < Zk+1,l, Zk,l < Zk,l+1,

Zϱ
k,l > 0, Zσ

k,l > 0,
∆k,l > 0,∆k,l > 0.

where ∆k,l =
Zk+1,l−Zk,l

hk
,∆k,l =

Zk,l+1−Zk,l

ĥl

The GC1 bi-cubic surface patches (2) inherit all the properties of network of the boundary curves
S(ϱ, σl), S(ϱ, σl+1), S(ϱk, σ) and S(ϱk+1, σ) defined in (7), (8), (9) and (10). The GC1 bi-cubic surface patch
(2) preserves monotonicity if the boundary curves as defined are monotone.

S(ϱ, fj) is monotone if S(1)(ϱ, σl) > 0 i.e.
S(1)(ϱ, σl) =

∑2
p=0 θ

pξ̇p (7)

where

ξ̇0 =
Zϱ
k,l

αk,l
,

ξ̇1 = 6∆k,l − 4
Zϱ
k,l

αk,l
− 2

Zϱ
k+1,l

βk,l
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ξ̇2 = −6∆k,l + 3
Zϱ
k,l

αk,l
+ 3

Zϱ
k+1,l

βk,l

S(1)(ϱ, σl) > 0 if∑2
p=0 θ

pξ̇p > 0∑2
p=0 θ

pξ̇p > 0 if
ξp > 0, p = 0, 1, 2.

ξ̇p > 0, p = 0, 1, 2 if

αk,l >
Zϱ
k,l

∆k,l
andβk,l >

Zϱ
k+1,l

∆k,l

S(ϱ, σl+1) is monotone if S(1)(ϱ, σl+1) > 0 i.e.
S(1)(ϱ, σl+1) =

∑2
q=0 θ

q ξ̈q (8)

where

ξ̈0 =
F ϱ
k,l+1

αk,l+1
,

ξ̈1 = 6∆k,l+1 − 4
Zϱ
k,l+1

αk,l+1 − 2
Zϱ
k+1,l+1

βk,l+1

ξ̈2 = −6∆i,j+1 + 3
Zϱ
i,j+1

αi,j+1 + 3
Zϱ
i+1,j+1

βi,j+1

S(1)(ϱ, σl+1) > 0 if∑2
q=0 θ

q ξ̈q > 0∑2
q=0 θ

q ξ̈q > 0 if

ξ̈q > 0, q = 0, 1, 2.

ξ̈q > 0, q = 0, 1, 2 if

αk,l+1 >
Zϱ
k,l+1

∆k,l+1
andβk,l+1 >

Zϱ
k+1,l+1

∆k,l+1

S(ϱi, σ) is monotone if S(1)(ϱi, σ) > 0 i.e.
S(1)(ϱi, σ) =

∑2
r=0 φ

rη̇r (9)

where
η̇0 =

Zσ
k,l

αk,l
,

η̇1 = 6∆k,l − 4
Zσ
k,l

αk,l
− 2

Zσ
k,l+1

βk,l

η̇2 = −6∆k,l + 3
Zσ
k,l

αk,l
+ 3

Zσ
k,l+1

βk,l

S(1)(ϱk, σ) > 0if∑2
r=0 φ

rη̇r > 0∑2
r=0 φ

rη̇r > 0if
η̇r > 0, r = 0, 1, 2.

η̇r > 0, r = 0, 1, 2 if
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αk,l >
Fσ
k,l

∆k,l
andβk,l >

Fσ
k,l+1

∆k,l

S(ϱk+1, σ) is monotone if S(1)(ϱk+1, σ) > 0 i.e.
S(1)(ϱk+1, σ) =

∑2
s=0 φ

sη̈s (10)

where
η̈0 =

Zσ
k+1,l

αk+1,l
,

η̈1 = 6∆k+1,l − 4
Zσ
k+1,l

αk+1,l
− 2

Fσ
k+1,l+1

βk+1,l

η̈2 = −6∆k+1,l + 3
Zσ
k+1,l

αk+1,l
+ 3

Zσ
k+1,l+1

βk+1,l

S(1)(ϱi+1, σ) > 0if∑2
s=0 φ

sη̈s > 0∑2
s=0 φ

sη̈s > 0if
η̈s > 0, s = 0, 1, 2.

η̈s > 0, s = 0, 1, 2if

αk+1,l >
Zσ
k+1,l

∆k+1,l
andβk+1,l >

Zσ
k+1,l+1

∆k+1,l

The content presented above can be stated as:

Theorem 2
The sufficient conditions for a piecewise bi-cubic function to be monotone over a rectangular grid Rk,l =

[ϱi, ϱi+1]× [σi,σj+1] ; k = [0, 1, . . . ,m− 1], l = 0, 1, . . . , n− 1 in (2) are:

αk,l > Max{0, Zϱ
k,l

∆k,l
}, βk,l > Max{0, Z

ϱ
k+1,l

∆k,l
}

αk,l+1 > Max{0, Zϱ
k,l+1

∆k,l+1
}, βk,l+1 > Max{0, Z

ϱ
k+1,l+1

∆k,l+1
}

αk,l > Max{0, Zσ
k,l

∆k,l
}, βk,l > Max{0, Z

σ
k,l+1

∆k,l
}

αk+1,l > Max{0, Zσ
k+1,l

∆k+1,l
}, βk+1,l > Max{0, Z

σ
k+1,l+1

∆k+1,l
}

which is equivalent to following set of conditions:

αk,l = rk,l +Max{0, Zϱ
k,l

∆k,l
}, rk,l > 0, βk,l = sk,l +Max{0, Z

ϱ
k+1,l

∆k,l
}, sk,l > 0,

αk,l+1 = tk,l +Max{0, Zϱ
k,l+1

∆k,l+1
}, tk,l > 0, βk,l+1 = uk,l +Max{0, Z

ϱ
k+1,l+1

∆k,l+1
}, uk,l > 0,

αk,l = rk,l +Max{0, Zσ
k,l

∆k,l
}, rk,l > 0, βk,l = sk,l +Max{0, Z

σ
k,l+1

∆k,l
}, sk,l > 0,

αk+1,l = tk,l +Max{0, Zσ
k+1,l

∆k+1,l
}, tk,l > 0, βk+1,l = uk,l +Max{0, Z

σ
k+1,l+1

∆k+1,l
}, uk,l > 0.

Algorithm
Step 1. Take the monotone data set {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}}.
Step 2. Estimate the derivatives Zϱ

k,l, Z
σ
k,l, Z

ϱσ
k,l by arithmetic mean method.

Step 3.Apply Theorem 2 to calculate the values of free parameters.
Step 4. Substitute the data set, {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}} and values of free
parameter in (2) visualize monotone surface stemming from monotone data.
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3.3. Convexity Preserving GC1 Surfaces

Let(ϱk, σl, Zk,l), k = 0, 1, . . . ,m, l = 0, 1, . . . , n be the given set of convex data points defined over rect-
angular patch

Rk,l = [ϱk, ϱk+1]× [σl,σl+1]; k = {0, 1 . . .m− 1}, l = 0, 1, . . . n− 1 such that

Zϱ
k,l < ∆k,l < Zϱ

k+1,l, Z
ϱ
k,l+1 < ∆k,l+1 < Zϱ

k+1,l+1, ∆k,l < ∆k+1,l

Zσ
k,l < ∆̂k,l < Zσ

k,l+1, Z
σ
k+1,l < ∆̂k+1,l < Zσ

k+1,l+1, ∆̂k,l < ∆̂k,l+1

where
∆k,l =

Zk+1,l−Zk,l

hi
, ∆̂k,l+1 =

Zk+1,l+1−Zk,l+1

hi

hk = ϱk+1 − ϱk, ĥl = σl+1 − σl.

The GC1 bi-cubic surface patches (2) inherit all the properties of network of the boundary curves S(ϱ, σl)
, S(ϱ, σl+1), S(ϱk, σ) and S(ϱk+1, σ) defined in (11), (12), (13) and (14). The GC 1 bi-cubic surface patch
(2) preserves convexity if the boundary curves as defined are convex.

S(ϱ, σl) is convex if S(2)(ϱ, σl) > 0 i.e.

S(2)(ϱ, σl) = 2Θµ̇1 + µ̇0 (11)

where

µ̇0 = 6∆k,l − 4
Zϱ
k,l

αk,l
− 2

Zϱ
k+1,l

βk,l
, µ̇1 = −6∆k,l + 3

Zϱ
k,l

αk,l
+ 3

F ϱ
k+1,l

βk,l

S(2)(ϱ, σl) > 0if
2Θµ̇1 + µ̇0 > 0

For this µ̇1, µ̇0 > 0 and this imposes following constraints

αk,l >
Zϱ
k,l+Zϱ

k+1,l

2∆k,l
, βk,l >

Zϱ
k,l+Zϱ

k+1,l

2∆k,l

S(ϱ, σj+1) is convex if S(2)(ϱ, σl+1) > 0 i.e.

S2(ϱ, σl+1) = 2Θν1 + ν0 (12)

where

ν0 = 6∆k,l+1 − 4
Zϱ
k,l+1

αk,l+1
− 2

Zϱ
k+1,l+1

βk,l+1
, ν1 = −6∆k,l+1 + 3

Zϱ
k,l+1

αk,l+1
+ 3

Zϱ
k+1,l+1

βk,l+1

Now, S(2)(ϱ, σl+1) > 0if
2Θν1 + ν0 > 0

and 2Θν1 + ν0 > 0 if ν0, ν1 > 0, this results following

αk,l+1 >
Zϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1
, βk,l+1 >

Zϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1

S(ϱk, σ) is convex if S(2)(ϱk, σ) > 0 i.e.

S(2)(ϱk, σ) = 2Θγ1 + γ0 (13)

where

γ0 = 6∆k,l − 4
Zσ
k,l

αk,l
− 2

Zσ
k,l+1

βk,l
, γ1 = −6∆k,l + 3

Zσ
k,l

αk,l
+ 3

Zσ
k,l+1

βk,l

S(2)(ϱi, σ) > 0if2Θγ1 + γ0 > 0 and this implies γ1, γ0 > 0.

Consequently, αk,l >
Zσ
k,l+Zσ

k,l+1

2∆k,l
, βk,l >

Zσ
k,l+Zσ

k,l+1

2∆k,l
.

S(ϱk+1, σ) is convex if S(2)(ϱk+1, σ) > 0 i.e.
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S(2)(ϱk+1, σ) = 2Θλ1 + λ0 > 0 (14)

where λ0 = 6∆k+1,l − 4
Zσ
k+1,l

αk+1,l
− 2

Zσ
k+1,l+1

βk+1,l
, λ1 = −6∆k+1,l + 3

Zσ
k+1,l

αk+1,l
+ 3

Zσ
k+1,l+1

βk+1,l

thus , αk+1,l >
Zσ
k+1,l+Zσ

k+1,l+1

2∆k+1,l
, βk+1,l >

Fσ
k+1,l+Fσ

k+1,l+1

2∆k+1,l

The above discussion can be briefed as:

Theorem 3
The sufficient conditions for a piecewise bi-cubic function to be convex over a rectangular gridRk,l =

[ϱk, ϱk+1]× [σl,σl+1]; k = [0, 1, . . . ,m− 1], l = [0, 1, . . . , n− 1]in (2) are:

αk,l > Max{0, Z
ϱ
k,l+F ϱ

k+1,l

2∆k,l
}, βk,l > Max{0, F

ϱ
k,l+F ϱ

k+1,l

2∆k,l
},∆k,l ̸= 0,

αk,l+1 > Max{0, Z
ϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1
}, βk,l+1 > Maz{0, Z

ϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1
},∆k,l+1 ̸= 0.

αk,l > Max{0, Z
σ
k,l+Fσ

k,l+1

2∆k,l
}, βk,l > Max{0, Z

σ
k,l+Zσ

k,l+1

2∆k,l
},∆k,l ̸= 0.

αk+1,l > Max{0, Z
σ
k+1,l+Zσ

k+1,l+1

2∆k+1,l
}, βk+1,l > Max{0, F

σ
k+1,l+Fσ

k+1,l+1

2∆k+1,l
},∆k+1,l ̸= 0.

Equivalently,

αk,l = ṙk,l +Max{0, Z
ϱ
k,l+F ϱ

k+1,l

2∆k,l
}, βk,l = ṡk,l +Max{0, F

ϱ
k,l+F ϱ

k+1,l

2∆k,l
},

αk,l+1 = ṫk,l +Max{0, Z
ϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1
}, βk,l+1 = u̇k,l +Max{0, Z

ϱ
k,l+1+Zϱ

k+1,l+1

2∆k,l+1
},

αk,l = rk,l +Max{0, Z
σ
k,l+Fσ

k,l+1

2∆k,l
}, βk,l = sk,l +Max{0, Z

σ
k,l+Zσ

k,l+1

2∆k,l
},

αk+1,l = tk,l +Max{Zσ
k+1,l+Zσ

k+1,l+1

2∆k+1,l
}, βk+1,l = uk,l +Max{Fσ

k+1,l+Fσ
k+1,l+1

2∆k+1,l
}.

where ṙk,l, ṡk,l, ṫk,l, u̇k,l, rk,l, sk,l, tk,l, uk,l > 0,and
∆k,l,∆k,l+1,∆k,l,∆k+1,l ̸= 0.

Algorithm
Step 1. Take the convex data set {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}}.
Step 2. Estimate the derivatives Zϱ

k,l, Z
σ
k,l, Z

ϱσ
k,l by arithmetic mean method.

Step 3.Apply Theorem 3 to calculate the values of free parameters.
Step 4. Substitute the data set, {(ϱk, σl, Zk,l) , k = {0, 1, . . . ,m}, l = {0, 1, . . . , n}} and values of free
parameter in (2) visualize monotone surface stemming from monotone data.

4. Numerical Example

Example 1. The positive function:

F (ϱ, σ) =
ϱσ(ϱ2 − σ2)

(ϱ2 + σ2)
+ 100

induced the positive data set, truncated to four decimal places, as shown in Table 4.1.
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Table 4.1 A positive data set

ϱ

σ
-6 -4 -2 2 4 6

-6 100.0000 109.2308 109.6000 90.4000 90.7692 100.0000

-4 90.7692 100.0000 104.8000 95.2000 100.0000 109.2308

-2 90.4000 95.2000 100.0000 100.0000 104.8000 109.6000

2 109.6000 104.8000 100.0000 100.0000 95.2000 90.4000

4 109.2308 100.0000 95.2000 104.8000 100.0000 90.7692

6 100.0000 90.7692 90.4000 109.6000 109.2308 100.0000

Adopting the scheme developed in section 3.1, Figure 1 corresponds to the positive 3D model which is
produced from data set in Table 4.1. Figures 2 and 3 being the visual models of Figure 1 in ϱz and σz-planes
respectively.

Figure 1: The positive GC1 Bi-cubic function.
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Figure 2: ϱz view of Figure 1.

Figure 3: σz view of Figure 1.

Example 2. The function

F (ϱ, σ) =
1

40
ϱ2 − 1

2
σ + 100

induced the monotone data set, truncated to four decimal places, as shown in Table 4.2.
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Table 4.2 A monotone data set

σ
ϱ

10 20 30 40 50 60

10 97.5000 92.5000 87.5000 82.5000 77.5000 72.5000

20 105.0000 100.0000 95.0000 90.0000 85.0000 80.0000

30 117.5000 112.5000 107.5000 102.5000 97.5000 92.5000

40 135.0000 130.0000 125.0000 120.0000 115.0000 110.0000

50 157.5000 152.5000 147.5000 142.5000 137.5000 132.5000

60 185.0000 180.0000 175.0000 170.0000 165.0000 160.0000

Adopting the scheme developed in section 3.2, Figure 4 corresponds to the monotone 3D model which
is produced from data set in Table 4.2. Figures 5 and 6 being the visual models of Figure 4 in ϱz and σz
-planes respectively.

Example 3. The function
F (ϱ, σ) = σ2 + 5ϱ2 − 26

induced the convex data set, reduced to four decimal places, as shown in Table 4.3.

Table 4.3 A convex data set

σ
ϱ

-3 -2 -1 0 1 2 3

-3 28.0000 23.0000 20.0000 19.0000 20.0000 23.0000 28.0000

-2 3.0000 -2.0000 -5.0000 -6.0000 -5.0000 -2.0000 3.0000

-1 -12.0000 -17.0000 -20.0000 -21.0000 -20.0000 -17.0000 -12.0000

0 -17.0000 -22.0000 -25.0000 -26.0000 -25.0000 -22.0000 -17.0000

1 -12.0000 -17.0000 -20.0000 -21.0000 -20.0000 -17.0000 -12.0000

2 3.0000 -2.0000 -5.0000 -6.0000 -5.0000 -2.0000 3.0000

3 28.0000 23.0000 20.0000 19.0000 20.0000 23.0000 28.0000
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Figure 4: The monotone GC1 Bi-cubic function.

Figure 5: ϱz view of Figure 3.
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Figure 6: σz view of Figure 3.

Adopting the scheme developed in section 3.3, Figure 7 corresponds to the convex 3D data in Table 4.3
is visualized. Figures 8 and 9 provide ϱz view and σz view respectively.

Figure 7: The convex GC1 Bi-cubic function.
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Figure 8: ϱz view of Figure 6.

Figure 9: σz view of Figure 6.

5. Conclusion

This study proposes alternate techniques to conserve the monotone, positive and convex shapes of the
3D surface data arranged over a rectangular grid. The developed schemes use GC1 bi-cubic interpolating
function for visualization. Free parameters have been constrained and a range of values on those parame-
ters have been operated to maintain the inherent shape characteristic of data. Here, the suggested shape
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preserving interpolating techniques are local, GC1 and applicable to uniform and non-uniform data. The
interpolant used in this paper has a unique degree over the entire domain. The computational cost of the
proposed algorithm has also been compared with existing schemes in literature and has been encapsulated
in Table 1. The proposed scheme, however, does not use free parameters, which provide users minimal
flexibility to change the shape of the data as they desire.
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