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Abstract

In this paper, authors have established Chen’s inequalities for the submanifolds of quaternionic Kaehler
manifolds characterized by Ricci quarter-symmetric metric connection. Other than these inequalities, gen-
eralized normalized Casorati curvature inequalities have been derived.
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1. Introduction

To provide the answers to Chern’s open problem concerning the existence of minimal immersions into
Euclidean space of arbitrary dimension, Chen established the famous invariant, ′δ′ [2], [26]. The equation
involving this invariant, ′δ′ for the Riemannian manifold, M is given as:

δM = τ(p)− inf(K)(p), (1.1)

where, ′τ(p)′ is the scalar curvature of M and ′K(p)′ is the sectional curvature.
The inequality for the same ′δ′ for any Riemannian manifold, M is given as [? ]:

δM ≤ n2(n− 1)

2(n− 1)
∥H∥2 + 1

2
(n+ 1)(n− 2)c, (1.2)
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where ′c′ is the constant sectional curvature and ′H ′ is the mean curvature vector for this n-dimensional
manifold.
Chen also derived an inequality which establishes a relationship between the extrinsic (K and τ) and intrinsic
invariants (squared mean curvature, H) of the submanifold. The same inequality is given as: [3]

H2 ≥ 4

n2
{Ric(X)− (n− 1)c}, (1.3)

where Ric(X) is Ricci curvature of M at X.
With the basic insight provided by Chen, these inequalities were further extended to different manifolds

under various metric and non-metric connections. Chen and Dillen studied the inequalities for Lagrangian
submanifolds in complex space forms [4]. For Sasakian manifolds, the inequalities were studied by Mihai
[11]. Arslan et al. studied the inequalities in contact manifolds [13]. The study on Lorentzian manifolds
was done by Gulbahar et al. 15. Mihai and Ozgur [1] studied Chen inequalities on Riemannian manifolds
with semi-symmetric metric connection while Zhang et al. [18], [19] studied geometric inequalities for the
submanifolds of Riemannian manifolds of quasi-constant curvature with semi-symmetric metric connection.
Inequalities for the submanifolds of real space forms with Ricci quarter-symmetric metric connection were
studied by Nergis and Halil [17]. The inequalities of submanifolds in quaternionic space forms were studied
by Yoon [8].
Another solution to the problem of establishing relationship between the main extrinsic and intrinsic invari-
ants is given by inequalities involving Casorati Curvatures. Casorati Curvature was originally established for
the surfaces in Euclidean 3-space [9] as a normalized sum of squared principal curvatures. It was extended
to general case of a submanifold of a Riemannian manifold as the normalized square of the length of second
fundamental form of the submanifold by Decu et al.[21], [22]. The inequalities involving this curvature have
been studied for various submanifolds. Vilcu [10] obtained an optimal inequality for Casorati Curvature
in Lagrangian submanifolds in complex space forms. Brubaker and Suceava [16] obatained the geometrical
interpretation of Cauchy-Schwarz inequality in terms of Casorati Curvature. Lee et al. [5], [6] established
Casorati curvature for the submanifolds in generalized space forms endowed with semi-symmetric metric
connection and Kenmotso space forms. The study of Casorati Curvature on holomorphic statistical mani-
folds of constant holomorphic curvature was done by Decu et al. [23]. Similarly, the inequalities on slant
submanifolds in metallic Riemannian space forms were established by Chaudhary and Blaga [14].
The concept of Ricci Quarter-symmetric metric connection was established by Golab [24] and further devel-
oped by Mishra and Pandey [20] and Kamilya and De [7].
In this paper, authors have derived the optimal inequalities for the submanifolds of quaternionic Kaehler
manifolds endowed with Ricci quarter-symmetric metric connection.

2. Preliminaries

Let M
′
be any 4m-dimensional Riemannian manifold. This M

′
is called Quaternionic Kaehler manifold

if there exists 3-dimensional vector space of tensors of type (1, 1) with the local basis of almost Hermitian
structure, ψ1,ψ2 and ψ3 such that:

ψ2
i = −I, (2.1)

ψiψi+1 = ψi+2 = −ψiψi+1, (2.2)

where I is the identity transformation of tangent space TpX at point p for the vector X of M
′
.

And
∇‘

Xψi = qi+2(X)ψi+1 − qi+1(X)ψi+2, (2.3)

with qi as the local one-form.
If X is any unit vector on M

′
, then X, ψ1(X), ψ2(X) and ψ3(X) form the orthonormal frame on M ‘. Let

the plane spanned by these vectors be Q(X). If X, Y are two unit vectors in M
′
and let the plane spanned
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by these vectors be denoted by π(X,Y ) then this plane is called Quaternionic plane in Q(X). The sectional
curvature of this plane is called as quaternionic sectional curvature. If the sectional curvature is constant
say, 4c, then the quaternionic Kaehler manifold is called as quaternionic space form. Quaternionic Kaehler
manifold is called quaternionic space form if and only if its curvature tensor follows the equation as: [25]

R∗(X,Y ;Z) = c{g(Y,Z)X − g(X,Z)Y +
3∑

i=1

(g(ψiY,Z)ψiX − g(ψiX,Z)ψiY − 2g(ψiX,Y )ψiZ)}, (2.4)

where X,Y and Z are tangent vectors and g is the Riemannian metric of M
′
.

For this manifoldM
′
, if ∇” is its linear connection then this connection is known as Ricci quarter symmetric

metric connection if the torsion tensor, T
′
satisfies the following equation:

T
′
= η(Y )LX − η(X)LY, (2.5)

where η is a 1-form and L is a (1, 1) Ricci tensor defined by:

g(LX, Y ) = S(X,Y ), (2.6)

with S as Ricci tensor of M
′
.

With ∇∗ as Levi-Civita connection with respect to metric g, the Ricci quarter symmetric metric connection
is given by [? ]:

∇”
XY = ∇∗

XY + η(Y )LX − S(X,Y )P, (2.7)

where X and Y are vectors in M
′
with the unit vector field, P defined as:

g(P,X) = η(X). (2.8)

Let N
′
be any n-dimensional submanifold immersed in Riemannian manifold, M

′
, then there exist Ricci

quarter-symmetric metric connection, ∇ and Levi-Civita metric connection, ∇′
which are induced on this

submanifold, N
′
. Let R” and R∗ be curvature tensors associated with ∇” and ∇∗, respectively. Similarly,

let R and R
′
be curvature tensors associated with ∇ and ∇′

, respectively.

For this manifold, M
′
, the curvature tensor with respect to Ricci quarter-symmetric metric ∇” connec-

tion is given as:

R”(X,Y ;Z) = R∗(X,Y ;Z)−M(Y, Z)LX +M(X,Z)LY − S(Y, Z)QX + S(X,Z)QY

+ η(z)[(∇∗
XL)Y − (∇∗

Y L)X]− [(∇∗
XS)(Y,Z)− (∇∗

Y S)(X,Z)]P, (2.9)

where X,Y and Z are tangent vectors in M
′
and M is a tensor field of type (0, 2) defined by;

M(X,Y ) = g(QX,Y ) = (∇∗
Xη)Y − η(Y )η(LX) +

1

2
η(P )S(X,Y ). (2.10)

In the above equation, Q is a tensor field of type (2, 1) defined by,

QX = ∇∗
XP − (η)(LX)P +

1

2
η(P )LX. (2.11)

If N
′
is assumed to be Einstein manifold, then the Ricci curvature S for the linear connection ∇∗ is given

as: [17]

S(X,Y ) =
τ

′

n
g(X,Y ), (2.12)
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with τ
′
as the scalar curvature.

Let π be any two dimensional plane of TpN
′
generated by {ei, ej} at point p, then the sectional curvature

of the section is given by:

Kij =
g(R(ei, ej ; ej , ei)

g(ei, ei)g(ej , ej)− g2(ei, ej)
, (2.13)

where ei, ej are orthonormal vectors in TpN
′
.

If (e1, ..., en) is the orthonormal basis of TpN
′
, then at any point p, scalar curvature, τ is given as:

τ(p) =
∑

1≤i<j≤n

Kij . (2.14)

For N
′
, the normalized scalar curvature, ρ is given as:

ρ =
2τ

n(n− 1)
. (2.15)

Using the equation (2.12) and the fact that connection is metric connection in equation (2.9), we get:

R”(X,Y ;Z) = R∗(X,Y ;Z) − τ
′

n
{M(Y,Z)X − M(X,Z)Y + g(Y,Z)QX − g(X,Z)QY }. (2.16)

Contracting the above equation with respect to X, we get:

S”(Y,Z) =
τ

′

n
[g(Y,Z)− {(n− 2)M(Y,Z) +mg(Y,Z)}], (2.17)

where S” is the Ricci tensor of ∇” and m is the trace of M(Y,Z).
Taking Y = Z = ei in the above equation, we get,

τ” =
τ

′

n
[n− 2m(n− 1)]. (2.18)

Now from the equation (2.4), value of τ
′
is given as :

τ
′
= c{

∑
1≤i<j≤n

g(ej , ej)g(ei, ei)−g(ei, ej)g(ej , ei)+
3∑

k=1

∑
1≤i<j≤n

(g(ψkej , ej)g(ψkei, ei)−g(ψkei, ej)g(ψkej , ei)

− 2g(ψkei, ej)g(ψkej , ei))}. (2.19)

For any p∈ N
′
and X ∈ TpN

′
, we have ψiX = Pi X+ Fi X where Pi ∈ TpN

′
and Fi ∈ T⊥

p .
Using this fact in equation (2.18), we get:

τ
′
= c{n(n− 1) + 3

3∑
k=1

∥Pk∥2}, (2.20)

where ∥Pk∥2=
∑n

i,j=1 g
2(Pkei, ej).

The mean curvature vector H of N ′ in M
′
is given as:

H(p) =
1

n

n∑
i=1

h(ei, ei), (2.21)

where h is the second fundamental form of N
′
in M

′
.

Also, set;
hαij = g(h(ei, ej), eα), (2.22)
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where i, j ∈ {1, ..., n} and α ∈ {n+ 1, ..., 4m}.

The Casorati curvature for the submanifold N
′
is given as:

C =
1

n

4m∑
α=n+1

n∑
i,j=1

(
hαij
)2
. (2.23)

If V is an r-dimensional subspace of TpN
′
, and let {e1, ..., er} be an orthonormal basis of V, then we have;

C(V ) =
1

r

4m∑
α=n+1

r∑
i,j=1

(
hαij
)2
. (2.24)

The generalized normalized δ-Casorati curvatures δC(r;n−1) and ̂δC(r;n− 1) for any positive real number,
r are given as: [21]

[δC(r;n− 1)]p = rCp + (n−1)(n+r)(n2−n−r)
r(n) inf{C(V)| V is a hyperplane of TpN

′},

if 0 < r < n2 − n.

[ ̂δC(r;n− 1)]p = rCp − (n−1)(n+r)(r−n2+n)
r(n) sup{C(V)| V is a hyperplane of TpN

′},

if r > n2 − n.

The normalized δ-Casorati curvatures δC(n− 1) and ̂δC(n− 1) are given as:

[δC(n− 1)]p = 1
2Cp + n+1

2(n) inf{C(V)| V is a hyperplane of TpN
′}.

[ ̂δC(n− 1)]p = 2Cp − 2n−1
2(n) sup{C(V)| V is a hyperplane of TpN

′}.

The above equations imply that normalized δ- Casorati curvature equalities can be obtained from gen-
eralized normalized equalities by providing suitable value to the positive number, ′r′ [19].

Before establishing the main theorems, we will establish the famous lemma of Chen. [2]

Lemma 2.1: If n > k ≥ 2 and a1, a2, ...an, a are real numbers such that:(
n∑
i

ai

)2

= (n− k + 1)

(
n∑

i=1

(ai)
2 + a

)
. (2.25)

Then,

2
∑

1≤i≤j≤k

aiaj ≥ a, (2.26)

with equality holding if and only if;

a1 + a2 + ...+ ak = ak+1 = ... = an. (2.27)
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3. Results

(A) Chen invariant, Scalar curvature and Ricci curvature inequalities:

Theorem 3.1: Let N
′
be any n-dimensional submanifold of quaternionic space form, M

′
endowed with

Ricci quarter-symmetric connection ∇, then τ follows the inequality as :

τ(p) ≤ (n− 1)

2

(
n∥H∥2 + c{(n− 1) + 3

3∑
k

∥Pk∥2

n
} [n− 2m(n− 1)]

(n− 1)

)
. (3.1)

Proof: For M
′
and N

′
, the Gauss equation is given as:

R”(X,Y ;Z,W ) = R(X,Y ;Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z)). (3.2)

Here ’h’ is the second fundamental form of N
′
.

Using above equation and equation (2.9), we get the scalar curvature as:

2τ = c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)] + n2∥H∥2 − ∥h∥2, (3.3)

where H= 1
n

∑n
i,j=1 h(ei, ej) for any orthonormal basis {e1, e2, ..., en} of the tangent space TpM

′
.

And, ∥h∥2 =
∑n

i,j=1 g(h(ei, ej), h(ei, ej).

The equation (3.3) can be simplified as:

n2∥H∥2 = 2τ + c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[2m(n− 1)− n] + ∥h∥2. (3.4)

Let p ∈ N
′
and e1, ..., en, ...e4m be orthonormal basis at p such that en+1 is parallel to mean curvature

vector, H, then the shape operators are given by:

Aen+1 =


a1 0 · · · o
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 (3.5)

Aer = hrij , i, j = 1, ...., n; r = n+ 2, ...., 4m; trace(Ar) = 0.

Considering the equation (3.4) and the above operators, we get:

n2∥H∥2 = 2τ(p) +

n∑
i=2

a2i +
4m∑

r=n+2

n∑
i,j=1

(hrij)
2 + c{(n − 1) + 3

3∑
k

∥Pk∥2

n
}[2m(n − 1) − n]. (3.6)

From the algebra, we have: ∑
i<j

(ai − aj)
2 = (n− 1)

∑
i

a2i − 2
∑
i<j

aiaj , (3.7)

=⇒ n2∥H∥2 =

(∑
i

a2i

)2

=
∑
i

a2i + 2
∑
i<j

aiaj ≤ n
n∑

i=1

a2i . (3.8)
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Using above inequality in equation (3.6), we get:

n(n− 1)∥H∥2 ≥ 2τ(p) +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2 + c{(n− 1) + 3

3∑
k

∥Pk∥2

n
}[2m(n− 1)− n], (3.9)

or,

τ(p) ≤ (n− 1)

2

(
n∥H∥2 + c{(n− 1) + 3

3∑
k

∥Pk∥2

n
} [n− 2m(n− 1)]

(n− 1)

)
. (3.10)

In the above inequality, the equality is established only when a1=a2=...=an and Aer=0.
=⇒ p is totally umbilical point.

Remark: For the real space forms, the part involving Pk will be equal to zero as such the inequality
will be same as established in [17].

Lemma 3.2: Let ζ(x1, x2,...xn) be a function in Rn defined by

ζ(x1, x2, ...xn) = x1

n∑
i=2

xi. (3.11)

If x1 + x2 + ...+ xn = 2µ , then ζ ≤ µ2.
Proof: From the hypothesis, we have,

ζ = x1(2µ− x1), (3.12)

=⇒ ζ = −(x1 − µ)2 + µ2, (3.13)

=⇒ ζ ≤ µ2. (3.14)

It follows from the equation (3.13) that equality is established only when x1 = µ.

Theorem 3.3: If N
′
is n-dimensional submanifold of 4m-dimensional quaternionic space form endowed

with Ricci quarter-symmetric connection, then for each unit vector X ∈ TpN
′
, the inequality for Ricci

curvature, Ric(X), is given as:

Ric(X) ≤ c{(n− 1)+3
3∑
k

n∑
j=2

g2(ϕkX, ej)}− c{(n− 1)+3
3∑
k

∥Pk∥2

n
}[m+(n− 2)M(X,X)]+

n2∥H∥2

4
.

(3.15)

Proof: Let {e1, e2, ..., en} be the orthonormal basis of TpN
′
at any point p.

Using our assumption that N
′
is Einstein manifold and the equations (3.2) (Gauss Equation) and (2.16),

we get;

R(e1, ej ; ej , e1) = R∗(e1, ej ; ej , e1)−
τ ′

n
{M(ej , ej)g(e1, e1)−M(e1, ej)g(ej , e1)

+ g(ej , ej)M(e1, e1)− g(e1, ej)M(e1, ej)}+
4m∑

r=n+1

[hr11h
r
jj − (hr1j)

2], (3.16)

with g(QX,W ) =M(X,W ).
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If e1=X, then the Ricci curvature is defined and given as :

Ric(X) =
n∑

i=2

R(e1, ej , ej , e1) = c{(n−1)+3
3∑
k

g2(ϕkX, ej)}−c{c(n−1)+3
3∑
k

∥Pk∥2

n
}[m+(n−2)M(X,X)]

+
4m∑

r=n+1

n∑
2

[hr11h
r
jj ]. (3.17)

The above equation implies;

Ric(X) ≤ c{(n−1)+3
3∑
k

g2(ϕkX, ej)}−c{(n−1)+3
3∑
k

∥Pk∥2

n
}[m+(n−2)M(X,X)]+

4m∑
r=n+1

n∑
2

[hr11h
r
jj ].

(3.18)

Considering the last term of above inequality, we can make a quadratic form given by:

ζ(hr11, h
r
22, ..., h

r
nn) =

n∑
i=2

hr11h
r
ii. (3.19)

Using the Lemma 3.2, we have;

ζ(hr11, h
r
22, ..., h

r
nn) ≤

U2
r

4
, (3.20)

where Ur = hr11 + hr22 + ...+ hrnn.
Using this value and the definition of H in equation (3.18) we have;

Ric(X) ≤ c{(n− 1)+3
3∑
k

n∑
j=2

g2(ϕkX, ej)}− c{(n− 1)+3
3∑
k

∥Pk∥2

n
}[m+(n− 2)M(X,X)]+

n2∥H∥2

4
.

(3.21)

For the condition of equality to hold we should have;

hr1i = 0, (3.22)

where i ̸= 1 and ∀ r.
The another condition follows from the Lemma 3.2, which gives,

hr11 = hr22 + hr33 + ....+ hrnn. (3.23)

If the equality holds for all unit vectors X in TpN
′, then above inequalities are given as;

hrij = 0, i ̸= j, (3.24)

2hii = h11 + h22 + ....+ hnn, i ∈ {1, ..., n}, (3.25)

=⇒ 2h11 = 2h22 = ... = 2hnn = h11 + h22 + ....+ hnn, i ∈ {1, ..., n}, (3.26)

=⇒ (n− 2)(h11 + h22 + ...+ hnn) = 0. (3.27)

For n ̸= 2,
hrij = 0, i, j = 1, 2, ..., n, r = n+ 1, ..., 4m. (3.28)
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Also,
hrii = 0, (3.29)

which means the point, p is totally geodesic point.
For n = 2,

hr11 = hr22, r = 3, ..., 4m, (3.30)

which means that the point, p is totally umbilical.

Remark: If N(p)={X ∈ TpN
′
: h(X,Y ) = 0 ∀ Y ∈ TpN

′}, then the above inequality is satisfied by a
tangent vector X with H(p) = 0.

Theorem 3.3: Let N
′
be n-dimensional submanifold of 4m-dimensional quaternionic space form, M

′
with

constant sectional curvature given by 4c. For this submanifold, N
′
which is characterized by Ricci quarter-

symmetric metric connection, the inequality between sectional curvature, K and scalar curvature, τ at any
point p ∈ N

′
and section plane π is given as:

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + c

2
{(n− 1) + 3

3∑
k

∥Pk∥2

n
}[n+ 2mn− 2trace(mπ⊥

k
)]− c{3

3∑
k=1

βk(π) + 1).

(3.31)

Proof: Let (e1, e2, ..., en) be the orthonormal basis of TpN
′
and (en+1, ..., e4m) be that of T⊥

p N
′
at any

point p such that the section plane π is spanned by (e1, e2). The mean curvature vector H is taken to be
parallel to en+1. Then by the equation of Gauss (3.2), we have:

K(π) = K(e1 ∧ e2) = c(1 + 3

3∑
k=1

βk(π)) + c{(n− 1) + 3

3∑
k=1

∥Pk∥2

n
)(trace(mπ⊥

k
)−m)

+ hn+1
11 hn+1

22 +
∑

r≥n+2

hr11h
r
22 −

(
hn+1
12

)2 − ∑
r≥n+2

(hr12)
2 , (3.32)

where m is the trace ofM , trace(mπ⊥
k
) is equal to (m−M(e1, e1)−M(e2, e2)) and βk(π)=

∑
1≤i≤j≤2 g

2(Pkei, ej)

with k = 1, 2, 3.

If we assume;

µ = 2τ − c((n− 1) + 3
3∑
k

∥Pk∥2

n
)[n− 2m(n− 1)]− n2(n− 2)

n− 1
∥H∥2. (3.33)

Then equation (3.3) and above equation gives;

n2∥H∥2 = (n− 1)(µ+ ∥h∥2). (3.34)

The above implies; (
n∑

i=1

hn+1
ii

)2

= (n− 1)

 n∑
i=1

(hn+1
ii )2 +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2 + µ

 . (3.35)

Using Lemma 2.1,we get;

2
∑

1≤i≤j≤k

hn+1
ii hhn+1

jj ≥ µ+
∑
i ̸=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2. (3.36)
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Using these values in the equation involving K(π), we get;

K(π) ≥ c(1 + 3
3∑

k=1

βk(π)) + c{(n− 1) + 3
3∑

k=1

∥Pk∥2

n
}(trace(mπ⊥

k
)−m) +

µ

2

+

4m∑
r=n+1

∑
j>2

((hr1j)
2 + (hr2j)

2) +
1

2

∑
i ̸=j>2

((hn+1
ij )2 +

1

2

4m∑
r=n+2

∑
i,j>2

((hrij)
2

+
1

2

4m∑
r=n+2

(hr11 + hr22)
2. (3.37)

On solving above inequality we get,

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + c

2
{(n− 1) + 3

3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)]

− c{1 + 3

3∑
k=1

βk(π))− c{3
3∑

k=1

∥Pk∥2

n
+ (n− 1)}(trace(mπ⊥

k
)−m). (3.38)

In the above inequality, the equality condition holds if the terms involving hrij is equal to zero and as such
we have;

hn+1
1j = hn+1

2j = 0,

hn+1
ij = 0; i ̸= j > 2,

hr1j = hr2j = ... = hrij ; r = n+ 2, ....4m; i, j > 3,

hr11 + hr22 = 0; r = n+ 2, ..., 4m.

Choose e1 and e2 such that hn+1
12 = 0. Also by Chen’s Lemma 2.1, we have;

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

The above equations imply that the shape operator take the form as :

Aen+1 =


T 0 · · · 0 0
0 U · · · 0 0
0 0 I · · · 0
...

...
. . .

...
0 0 · · · 0 I

 (3.39)

Aer =

Tr Ur 0
Ur −Ur 0
0 0 04m−2

 (3.40)

where T + U = I and Tr, Ur ∈ R.

Theorem 3.4: If N
′
is n-dimensional submanifold of 4m-dimensional quaternionic projective space

M
′
(c > 0) with constant quaternionic sectional curvature given by 4c and endowed with Ricci quarter-

symmetric connection, then for any plane π ∈ TpN
′
, the inequality for Chen’s invariant δ is given as:

δN ′ ≤ n2(n− 2)

2(n− 1)
∥H∥2 + c

2
(n+ 8)(n+ 2mn− 2trace(mπ⊥

k
))− c, (3.41)
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with the equality holding if and only if N
′
is invariant.

Proof: For the positive sectional curvature(c > 0), we have to maximize the term 3c(n−1)
2

∑3
k=1

∥Pk∥2
n (n +

2mn− 2trace(mπ⊥
k
))− 3c

2

∑3
k=1 βk(π) of inequality (61).

For constant c, m and trace(mπ⊥
k
), the maximum value can be achieved if ∥Pk∥2 =n and βk(π) = 0.

Using these values, we get the required inequality.

Remark: The condition, ∥Pk∥2 = n and βk(π) = 0 implies N
′
is invariant.

Remark: If M(X,Y ) = 0, we get the inequality as in [8].

Theorem 3.5: If N
′
is n-dimensional submanifold of 4m-dimensional quaternionic hyperbolic space M

′

(c < 0) with constant quaternionic sectional curvature given by 4c and endowed with Ricci quarter-symmetric
connection, then for any plane π ∈ TpN

′
, the inequality for Chen’s invariant δ is given as:

δN ′ ≤ n2(n− 2)

2(n− 1)
∥H∥2 + c

2
(n− 1)(n+ 2mn− 2trace(mπ⊥

k
))− c, (3.42)

With the equality holding if and only if N
′
is anti quasi-invariant.

Proof: For c < 0, the estimate for δN ′ can be obtained by minimizing the term 3c(n−1)
2

∑3
k=1

∥Pk∥2
n (n +

2mn− 2trace(mπ⊥
k
))− 3c

2

∑3
k=1 βk(π) of inequality (3.31).

By simplification it follows that ∥Pk∥2 =0 and βk(π) = 0.

The above conclusion exhibits that span of π = span(e1, e2) is orthogonal to span of {span(ϕkei |i = 3, ..., n}.

(B) Casorati curvature Inequalities:

Theorem 3.6: If N
′
is n-dimensional submanifold of 4m-dimensional quaternionic Kaehler manifold,

M
′
. Then:

(i). The generalized normalized δ-Casorati curvature δC(r, n− 1) satisfies;

δC(r, n− 1) ≥ n(n− 1)ρ− c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)]. (3.43)

(ii). The generalized normalized δ-Casorati curvature ̂δC(r, n− 1) satisfies;

̂δC(r,m) ≥ n(n− 1)ρ− c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)]. (3.44)

In the inequality (3.43) , the equality holds if and only if the submanifold N
′
is invariantly quasi-umbilical

with trivial normal connection in M
′
, such that the shape operator Aei with i ∈ {n+1, ..., 4m} with respect

to suitable orthonormal tangent frame {e1, ..., en} and normal orthonormal frame {en+1, ..., e4m} takes the
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form as:

Aen+1 =



u 0 0 · · · 0 0
0 u 0 · · · 0 0
0 0 u · · · 0 0
...

...
. . .

...
0 0 0 · · · u 0

0 0 0 · · · 0 n(n−1)
r u


(3.45)

Aen+2 = ...,= Ae4m = 0. (3.46)

Proof: By equation (3.3) we have;

2τ = c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)] + n2∥H∥2 − ∥h∥2, (3.47)

where H= 1
n

∑n
i,j=1 h(ei, ej) for any orthonormal basis {e1, e2, ..., en} of the tangent space, TpM

′
and m is

the trace of M(X,Y ).

Now, consider the function T which is associated with the following polynomial in the components (hαij), i, j =

1, ..., n;α = n+ 1, ..., 4m of second fundamental form h of N
′
in M

′
:

T = rC +
(n− 1)(n+ r)(n2 − n− r)

rn
C(L)− 2τ

+ c{(n− 1) + 3
3∑
k

∥Pk∥2

n
}[n− 2m(n− 1)], (3.48)

where L is the hyperplane of TpN
′
.

If L is assumed to be spanned by e1, ..., en−1, then we have:

T =
r

n

4m∑
α=n+1

n∑
i,j=1

(hij)
2+

(n+ r)(n2 − n− r)

rn

4m∑
α=n+1

n∑
i,j=1

(hij)
2−2τ+c{(n−1)+3

3∑
k

∥Pk∥2

n
}[n−2m(n−1)].

(3.49)

Using equation (3.47) we get;

T =
n+ r

n

4m∑
α=n+1

n∑
i,j=1

(hij)
2 +

(n+ r)(n2 − n− r)

rn

4m∑
α=n+1

n∑
i,j=1

(hij)
2 −

4m∑
α=n+1

(
n∑

i+1

hαii

)2

. (3.50)

The above equation can be written as:

T =
4m∑

α=n+1

n−1∑
i=1

[
(n− 1)2 + (n− 1)(r + 1)− r)

r
(hαii)

2 +
2(n+ r)

n
(hαi(n−1)+1)

2

]

+

4m∑
α=n+1

2(n− 1)(n+ r)

r

∑
1≤i<j≤m−1

(hαij)
2 − 2

∑
1≤i<j≤n

hαiih
α
jj


+
r

n

4m∑
α=n+1

(hαnn)
2. (3.51)
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Hence T is a quadratic polynomial in the components of the second fundamental form. From (3.51), we
deduce the critical points, hc=

[
hn11, h

n+1
12 , ..., hn+1

nn , ..., h4m11 , h
4m
12 , ..., h

4m
nn

]
of T are the solutions of the following

system of linear homogeneous equations:

∂T

∂hαii
=

2(n− 1)(n+ r)

r
hαii − 2

n∑
k=1

hαkk = 0, (3.52)

∂T

∂hαnn
=

2r

n
hαn − 2

n∑
k=1

hαkk = 0, (3.53)

∂T

∂hαij
=

4(n− 1)(n+ r)

r
hαij = 0, (3.54)

∂T

∂hαin
=

4(n+ r)

n
hαin = 0, (3.55)

with i, j ∈ {1, ..., n− 1}, i ̸= j and α ∈ {n+ 1, ..., 4m}.

The above system of equations shows that every solution, hc has hαij = 0 for i ̸= j. The Hessian ma-
trix can be computed as:

H(p) =

H1 0 0
0 H2 0
0 0 H3

 (3.56)

Here H1 is given as:

H1 =



2(n−1)(n+r)
r − 2 −2 −2 · · · −2 −2

−2 2(n−1)(n+r)
r − 2 −2 · · · −2 −2

−2 −2 2(n−1)(n+r)
r − 2 · · · −2 −2

...
...

. . .
...

−2 −2 −2 · · · 2(n−1)(n+r)
r − 2 −2

−2 −2 −2 · · · −2 2r
n


(3.57)

H2 = diag
(
4(n−1)(n+r)

r , 4(n−1)(n+r)
r , ..., 4(n−1)(n+r)

r

)
,

H3 = diag
(
4(n+r)

n , 4(n+r)
n , ..., 4(n+r)

n

)
.

It can be found by direct computation that the Hessian matrix H(T ) of T has the eigenvalues as fol-
lows:

λ11 = 0, λ22 =
2(n−1)n2+r2)

rn , λ33 = ...,= λm+1m+1 =
2(n−1)(n+r)

r ,

λij =
4(n−1)(n+r)

r ,λi(n−1)+1 =
4(n+r)

n ;, ∀ i,j ∈ {1, ..., n− 1}, i ̸= j.

It follows that the Hessian matrix is positive semi-definite and admits one eigenvalue equal to zero. Hence,
we can see that T is parabolic and reaches a minimum at hc. In fact, at the critical point hc, the function
T reaches the global minimum. So, we have T (hc) = 0. Therefore, we deduce T ≥ 0 and this implies;

2τ ≤ rC +
(n− 1)(n+ r)(n2 − n− r)

rn
C(L) + c{(n − 1) + 3

3∑
k

∥Pk∥2

n
}[n − 2m(n − 1)]. (3.58)
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We know that normalized scalar curvature ρ is given as:

ρ =
2τ

n(n− 1)
. (3.59)

Using this value in above equation we get;

ρ ≤ r

n(n− 1)
C +

(n+ r)(n2 −m− r)

rn2
C(L) + c{(n − 1) + 3

3∑
k

∥Pk∥2

n
} [n− 2m(n− 1)]

n(n− 1)
. (3.60)

The above statement is equivalent to;

rC +
(n− 1)(n+ r)(n2 −m− r)

rn
C(L) ≥ n(n − 1)ρ − c{(n − 1) + 3

3∑
k

∥Pk∥2

n
}[n − 2m(n − 1)]. (3.61)

The required inequalities follow by taking the infimum and supremum respectively, over all the tangent
hyperplanes TpN

′
.

On the other hand, it is clear that the equality sign follows if and only if; hαij = 0, ∀ i,j ∈ {1, ..., n},
i ̸= j:
and

hαnn =
n(n− 1)

r
hα11 =, ...,

n(n− 1)

r
hαn−1n−1, (3.62)

for all α ∈ {n+ 1, ..., 4m}.

Since, h(ei, ζp) ̸= 0, we have that the equality holds only when the submanifold is invariantly quasi-umbilical
and shape operator takes the form given in equations (3.45) and (3.46).
Similarly, inequality (3.44) can be proved.

Corollary 3.7: If N
′
is n-dimensional submanifold of 4m-dimensional quaternionic Kaehler manifold, M

′
.

Then:

(i). The normalized δ-Casorati curvature δC(n− 1) satisfies;

δC(n− 1) ≥ ρ− c{(n− 1) + 3
3∑
k

∥Pk∥2

n
} [n− 2m(n− 1)]

n(n− 1)
. (3.63)

(ii). The normalized δ-Casorati curvature ̂δC(n− 1) satisfies;

̂δC(n− 1) ≥ ρ− c{(n− 1) + 3

3∑
k

∥Pk∥2

n
} [n− 2m(n− 1)]

n(n− 1)
. (3.64)

In the inequalities (3.63) and (3.64) , the equality holds if and only if the submanifold, N
′
is invariantly quasi-

umbilical with trivial normal connection in M
′
, such that the shape operator Aei with i ∈ {n + 1, ..., 4m}

with respect to suitable orthonormal tangent frame {e1, ..., en} and normal orthonormal frame {en+1, ..., e4m}
takes the form as:

Aen+1 =



u 0 0 · · · 0 0
0 u 0 · · · 0 0
0 0 u · · · 0 0
...

...
. . .

...
0 0 0 · · · u 0
0 0 0 · · · 0 2u


(3.65)
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Aen+2 = ...,= Ae4m = 0. (3.66)

and

Aen+1 =



2u 0 0 · · · 0 0
0 2u 0 · · · 0 0
0 0 2u · · · 0 0
...

...
. . .

...
0 0 0 · · · 2u 0
0 0 0 · · · 0 u


(3.67)

Aen+2 = ...,= Ae4m = 0 (3.68)

Proof: It can be easily seen that:

[δC(
n(n− 1)

2
,m)]p = n(n− 1)[δC(n− 1)]p, (3.69)

and,

[ ̂δC(2n(n− 1),m)]p = n(n− 1)[ ̂δC(n− 1)]p. (3.70)

The proof follows by putting r = n(n−1)
2 in (3.43) and r = 2n(n−1) in (3.44) and using above two equations.
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