
Available online at http://jprm.sms.edu.pk/
Journal of Prime Research in Mathematics, 18(2) (2022), 88–99

New results on periodic solutions for a nonlinear
fourth-order iterative differential equation

Rabah Khemisa,∗, Ahlème Bouakkaza

aLaboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), University of 20 August 1955 Skikda,
Algeria.

Abstract

The key task of this paper is to investigate a nonlinear fourth-order delay differential equation. By virtue
of the fixed point theory and the Green’s functions method, we establish some new results on the existence,
uniqueness and continuous dependence on parameters of periodic solutions. In addition, an example is given
to corroborate the validity of our main results. Up to now, no work has been carried out on this topic. So,
the findings of this paper are new and complement the available works in the literature to some degree.
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1. Introduction

Our principal purposes in the present work is to establish the existence, uniqueness and continuous de-
pendence on parameters of periodic solutions for the following nonlinear fourth-order iterative differential
equation:

x(4) (t) + px(2) (t) + qx (t) = x (t)
n∑

k=1

ck (t)x
[k] (t) +H (t) , (1.1)

where p = β2
1 + β2

2 , q = β2
1β

2
2 , β1, β2 are non-zero constants and x[m] (t) is the m th iterate of the function

x(t), i.e. x[2] (t) = x (t) ◦ x (t) , ..., x[n] (t) = x (t) ◦ x[n−1] (t).
We may encounter fourth-order differential equations in many practical and real situations such as

viscoelastic and inelastic flows, deflection patterns in physics, deformation of elastic beams in structures
such as aircraft, buildings and ships, vibrational motion in bridges, heartbeats in physiology, soil settlement,
the folding of rock layers and electric circuits (we refer the reader to the paper [6] and the book [15] and
references therein). However, in practice, many fourth-order differential equations whether with or without
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delays can be deduced from partial differential equations such as in studying the beam equation which serves
as a model of an elastic bar with nonconvex stored energy density, the model of water driven capillarity-
gravity waves and also in the investigation of stationary solutions for the extended Fisher-Kolmogorov
equation and the Swift–Hohenberg equation that describes the formation and evolution of patterns in a
wide range of systems. For example (but not limited to), the authors of [15] revealed that the use of
an argument based on the center manifold theorem, a system of partial differential equations modeling
gravity-capillary water waves can be reduced to the following fourth-order ordinary differential equation:

x(4) (t) + px(2) (t) + x (t) = x2 (t) .

As another important example is the famous Swift–Hohenberg equation

x(4) (t) + px(2) (t) + r (t) f (x (t)) = 0,

which models the formation and evolution of patterns.
In the last decades, periodic solutions for such equations with delays have received considerable portion

of attention of many researchers. In fact, it is very crucial both in theory and practice to prove the existence
theorems of periodic solutions of fourth order differential equations describing the formation of periodic
patterns (beams), oscillatory phenomena occurring in bridges and periodic waves. Moreover, the reliance
on the past occurs usually in the aforementioned applications where the delay plays a prominent role in
gleaning a better understanding of the underlying mechanisms that lead to the formation and evolution of
patterns, the deformation of beams and the formation of waves. In what follows, we review some motivating
works for the current paper.

In [3], Balamuralitharan employed the coincidence degree continuation theorem for studying the existence
of positive periodic solutions for the following fourth-order differential equation with time-varying delay:

x(4) (t) + ax(3) (t) + λf
(
x′′ (t− τ (t))

)
+ λg

(
x′ (t− τ (t))

)
+ h (x (t− τ (t))) = λp (t) .

Tunç [17] used the Liapunov functional approach to study the asymptotic stability of zero solution of the
following class of fourth-order non-linear differential equations with constant delay:

x(4) (t) + φ
(
x′′ (t)

)
x(3) (t) + h

(
x′ (t)

)
x′′ (t) + ϕ

(
x′ (t− r)

)
+ f (x (t− r)) = 0.

By means of Krasnoselskii’s fixed point theorem, the authors of [14] established the existence of positive
periodic solutions for the following class of fourth-order nonlinear neutral equations:

d4

dt4
(x (t)− c (t)x (t− τ (t))) = a (t)x (t)− f (t, x (t− τ (t))) .

Iterations in equation (1.1) result from time and state dependent delays such as the time taken for the
observation to be available for use in control, delayed feedback control of piezoelectric elastic beams and so
on and so forth.

To the best of the author’s knowledge, iterative problems were initiated by Babbage [2], Schröder [16]
and Abel [1] in the early of the last century. They can be regarded as a special type of the so-called differ-
ential equations with time and state-dependent delays resulting from many factors such as the competition
for food and habitat during larval stage in insect populations and the dependence on the history of the
mature cell population in hematopoiesis models and so on. Such equations which appear in the modeling of
many real phenomena such as infectious disease transmission models and the two-body problem of classical
electrodynamics, were and still are deemed unpopular subject among scholars. Perhaps this is due to the
fact that the study of such equations has often been hampered by a lack of theoretical basis and also by
the existence of the iterative terms which obstruct the application of several methods. For this, there exist
only very few results about this type of equations for instance, first and second order iterative differential
equations have been investigated only by a few researchers (see for example [5, 7, 9, 12, 18, 19]) while there
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are only our three works [8, 10, 13] that investigated third order iterative differential equations. However, as
far as we know, no papers have appeared in the literature that focussed on fourth-order iterative differential
equations except the very recent work of the first author.

Filling this gap is a top priority for us. For this reason and motivated by the previously mentioned works
and applications, it is highly desirable to establish some criteria that guarantee the existence, uniqueness
and continuous dependence on parameters of periodic solutions for equation (1.1) which implicitly involves
multiple time and state-dependent delays leading to the appearance of the iterates. The technique used in
this paper consists in applying the Krasnoselskii’s fixed point theorem for a sum of two mappings and the
contraction mapping principle together with some constructed properties of an obtained Green’s function
(for more details about Green’s functions for linear fourth order differential equations and their properties,
one can refer to our paper [4]).

The main contributions of this article are summarized as follows:
- We presented a model including iterative terms which involve implicitly complex delays depending on

time and state.
- We constructed some interesting properties of the Green’s function needed to reach our goals and also

can be used to investigate many other problems.
- This work is a continuation of our recent papers on iterative problems. Up to now there are no

publications on fourth order iterative differential equations except our recent paper [6].
- Our approach will provide a good reference to study other iterative problems. It is based on the

construction of an appropriate Banach space and a subset of it that ensure the belongingness of the iterates
to them, the conversion of the iterative problem into an equivalent integral equation whose kernel is a Green’s
function, the establishment of some useful properties of this kernel and also the choice of the suitable fixed
point theorem.

The rest of the paper is organized as follows: In the beginning of this paper, we introduce some definitions
and preliminary results needed to understand the subsequent sections. Furthermore, we state and prove
some of the properties of a Green’s kernel for a linear fourth order differential equation. In the third section,
by using the Krasnoselskii’s fixed point theorem for a sum of two mappings and some constructed properties
of the obtained Green’s function, we establish some sufficient conditions which allow us to achieve our goals.
In the fourth section, we present an illustrative example to demonstrate the feasibility of our obtained
findings. Finally, the conclusion is drawn to end this article in the last section.

2. Preliminaries

For w > 0 and L, M ≥ 0, let
Pw = {x ∈ C (R,R) , x (t) = x (t+ w)} ,

equipped with the norm
∥x∥ = sup

t∈R
|x (t)| = sup

t∈[0,w]
|x (t)| ,

and
Pw (L,M) = {x ∈ Pw, ∥x∥ ≤ L, |x (t2)− x (t1)| ≤ M |t2 − t1| , ∀t1, t2 ∈ R} .

Then (Pw, ∥.∥) is a Banach space and Pw (L,M) is a closed convex and bounded subset of Pw.
Furthermore we assume that β1 ̸= β2, wβ1 ̸= 2kπ and wβ2 ̸= 2kπ, k ∈ Z.

Lemma 2.1. For h ∈ Pw the equation{
x(4) (t) +

(
β2
1 + β2

2

)
x(2) (t) + β2

1β
2
2x (t) = h(t),

x(k)(0) = x(k)(w), k ∈ {0, 1, 2, 3} , (2.1)

has a unique w−periodic solution

x(t) =

∫ t+w

t
G(t, s)h (s) ds,
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where s ∈ [t, t+ w] and

G (t, s) =
1

β1 (2 coswβ1 − 2)

sinβ1 (s− t) + sinβ1 (t− s+ w)

β2
1 − β2

2

− 1

β2 (2 coswβ2 − 2)

sinβ2 (s− t) + sinβ2 (t− s+ w)

β2
1 − β2

2

. (2.2)

Proof. The associated homogeneous equation of (2.1) is

x(4) (t) +
(
β2
1 + β2

2

)
x(2) (t) + β2

1β
2
2x (t) = 0, (2.3)

where its characteristic equation is

λ4 +
(
β2
1 + β2

2

)
λ2 + β2

1β
2
2 = 0,

and the roots of this last characteristic equation are λ1 = iβ1, λ2 = −iβ1, λ3 = iβ2 and λ4 = −iβ2, so, the
solution of the homogeneous equation (2.3) is

u (t) = c1e
λ1t + c2e

λ2t + c3e
λ3t + c4e

λ4t.

The only periodic solution of the associated homogeneous problem (2.1) with the periodic properties is the
trivial solution.
For the nonhomogeneous problem (2.1) with the periodic properties, we use the method of variation of
parameters, to arrive at

c
′
1 (t) = ih (t)

e−tλ1

2β3
1 − 2β1β2

2

, c
′
2 (t) = −ih (t)

e−tλ2

2β3
1 − 2β1β2

2

,

c
′
3 (t) = ih (t)

e−tλ3

2β3
2 − 2β2

1β2
, c

′
4 (t) = −ih (t)

e−tλ4

2β3
2 − 2β2

1β2
,

and hence

c1 (t+ w) = c1 (t) +

∫ t+w

t
i

e−sλ1

2β3
1 − 2β1β2

2

h (s) ds,

c2 (t+ w) = c2 (t)−
∫ t+w

t
i

e−sλ2

2β3
1 − 2β1β2

2

h (s) ds,

c3 (t+ w) = c3 (t) +

∫ t+w

t
i

e−sλ3

2β3
2 − 2β2

1β2
h (s) ds,

c4 (t+ w) = c4 (t)−
∫ t+w

t
i

e−sλ4

2β3
2 − 2β2

1β2
h (s) ds.

Since we are looking for w-periodic solutions of (2.1), we get

c1 (t) = −
∫ t+w

t
i

e−λ1(s−w)

2β1 (ewλ1 − 1)
(
β2
1 − β2

2

)h (s) ds,
c2 (t) =

∫ t+w

t
i

e−λ2(s−w)

2β1 (ewλ2 − 1)
(
β2
1 − β2

2

)h (s) ds,
c3 (t) =

∫ t+w

t
i

e−λ3(s−w)

2β2 (ewλ3 − 1)
(
β2
1 − β2

2

)h (s) ds,
c4 (t) = −

∫ t+w

t
i

e−λ4(s−w)

2β2 (ewλ4 − 1)
(
β2
1 − β2

2

)h (s) ds.
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Therefore,

u (t) = c1 (t) e
λ1t + c2 (t) e

λ2t + c3 (t) e
λ3t + c4 (t) e

λ4t

=

∫ t+w

t
G (t, s)h (s) ds.

This completes the proof of Lemma 2.1.

Lemma 2.2. Function G (t, s) satisfies ∫ t+w

t
G (t, s) ds =

1

β2
1β

2
2

, (2.4)

and
|G (t, s)| ≤ A,

where

A =
1∣∣β2

1 − β2
2

∣∣
(

1

|β1| |cos (wβ1)− 1|
+

1

|β2| |cos (wβ2)− 1|

)
. (2.5)

Proof. Let

g1 (t, s) =
1

β1 (2 coswβ1 − 2)

sinβ1 (s− t) + sinβ1 (t− s+ w)

β2
1 − β2

2

,

and

g2 (t, s) = − 1

β2 (2 coswβ2 − 2)

sinβ2 (s− t) + sinβ2 (t− s+ w)

β2
1 − β2

2

.

We have ∫ t+w

t
g1 (t, s) ds = − 1

β2
1

(
β2
1 − β2

2

) and

∫ t+w

t
g2 (t, s) ds =

1

β2
2

(
β2
1 − β2

2

) .
So ∫ t+w

t
G (t, s) ds = − 1

β2
1

(
β2
1 − β2

2

) +
1

β2
2

(
β2
1 − β2

2

) =
1

β2
1β

2
2

.

On the other hand

|G (t, s)| ≤ 1

|β1 (2 cos (wβ1)− 2)|
|sinβ1 (s− t) + sinβ1 (t− s+ w)|∣∣β2

1 − β2
2

∣∣
+

1

|β2 (2 cosw (β2)− 2)|
|sinβ2 (s− t) + sinβ2 (t− s+ w)|∣∣β2

1 − β2
2

∣∣
≤ 1∣∣β2

1 − β2
2

∣∣
(

1

|β1| |cos (wβ1)− 1|
+

1

|β2| |cos (wβ2)− 1|

)
,

which completes the proof.

Lemma 2.3. [19] For any φ, θ ∈ Pw (L,M) ,

∥∥∥φ[m] − θ[m]
∥∥∥ ≤

m−1∑
j=0

M j ∥φ− θ∥ , m = 1, 2, ...

Lemma 2.4. [18] It holds that

Pw (L,M) = {x ∈ Pw, ∥x∥ ≤ L, |x (t2)− x (t1)| ≤ M |t2 − t1| , ∀t1, t2 ∈ [0, w]} .
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Lemma 2.5. [5] For any φ, θ ∈ Pw (L,M) ,

∥∥∥φ× φ[i] − θ × θ[i]
∥∥∥ ≤ L

1 +
i−1∑
j=0

M j

 ∥φ− θ∥ , i = 1, 2, ...

Theorem 2.6. (Krasnoselskii’s fixed point theorem). Let M be a closed convex nonempty subset of a Banach
space (B, ∥.∥). Suppose that A and B map M into B such that
(i) x, y ∈ M, implies Ax+ By ∈ M ,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.
Then there exists z ∈ M with z = Az + Bz.

3. Main results

Lemma 3.1. x ∈ Pw (L,M) ∩ C4 (R,R) is a solution of (1.1) if and only if x ∈ Pw (L,M) is a solution of
the following integral equation:

x (t) =
n∑

k=1

∫ t+w

t
G (t, s)x (s) ck (s)x

[k] (s) ds+

∫ t+w

t
G (t, s)H (s) ds. (3.1)

Proof. Thanks to Lemma 2.1, we can convert equation (1.1) into the integral equation (3.1).

3.1. Existence of periodic solutions

In this section, we will apply the Krasnoselskii’s fixed point theorem for a sum of contraction and compact
mappings to show the existence of at least one periodic solution of (1.1). To this end and from Lemma 3.1,
we define two operators N1, N2 : Pw (L,M) → Pw as follows:

(N1φ) (t) =
n∑

k=1

∫ t+w

t
G (t, s)φ (s) ck (s)φ

[k] (s) ds, (3.2)

and

(N2φ) (t) =

∫ t+w

t
G (t, s)H (s) ds. (3.3)

Remark 3.2. The condition ∥x∥ ≤ L in the definition of Pw (L,M) shows that this subset is uniformly
bounded and from the condition |x (t2)− x (t1)| ≤ M |t2 − t1| , ∀t1, t2 ∈ R, it follows that Pw (L,M) is
equicontinuous. Consequently, the Arzelà-Ascoli theorem guarantees that Pw (L,M) is a compact subset of
C ([0, w] ,R).

Lemma 3.3. If ck ∈ Pw (Lck ,Mck) , k = 1, n, then operator N1 defined by (3.2) is continuous and compact
on Pw (L,M).

Proof. Let φ, θ ∈ Pw (L,M) and ck ∈ Pw (Lck ,Mck) , k = 1, n. From Lemma 2.2, we have

|(N1φ) (t)− (N1θ) (t)| ≤
n∑

k=0

∫ t+w

t
G (t, s) |ck (s)|

∣∣∣φ (s)φ[k] (s)− θ (s) θ[k] (s)
∣∣∣ ds

≤ A
n∑

k=1

Lck

∫ t+w

t

∣∣∣φ (s)φ[k] (s)− θ (s) θ[k] (s)
∣∣∣ ds.

Using Lemma 2.5, we obtain

|(N1φ) (t)− (N1θ) (t)| ≤ ALw

n∑
k=0

Lck

1 +

k−1∑
j=0

M j

 ∥φ− θ∥ ,
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which proves the continuity of N1.
According to Remark 3.2, since N1 is a continuous operator and since any continuous operator maps compact
sets into compact sets, the compactness of the operator N1 follows immediately from its continuity.

Lemma 3.4. If N2 is given by (3.3), then N2 is a contraction mapping on Pw (L,M) .

Proof. For φ, θ in Pw (L,M) , we have

|(N2φ) (t)− (N2θ) (t)| ≤
∫ t+w

t
|G (t, s)H (s)−G (t, s)H (s)| ds = 0,

so

∥N2φ−N2θ∥ = sup
t∈[0,w]

|(N2φ) (t)− (N2θ) (t)|

≤ Γ ∥φ− θ∥ ,

for any Γ ∈ [0, 1[ . Consequently, N2 is a contraction mapping on Pw (L,M) .

Lemma 3.5. If t1, t2 ∈ [0, w] with t1 ≤ t2, then∫ t1+w

t1

|G (t1, s)−G (t2, s)| ds ≤ µ |t2 − t1| , (3.4)

where

µ =
w∣∣β2

1 − β2
2

∣∣
(

1

|cos (wβ1)− 1|
+

1

|cos (wβ2)− 1|

)
.

Proof. We have∫ t1+w

t1

|G (t1, s)−G (t2, s)| ds

≤ 1

2 |β1|
∣∣β2

1 − β2
2

∣∣ |cos (wβ1)− 1|

∫ t1+w

t1

|sinβ1 (s− t1)− sinβ1 (s− t2)| ds

+
1

2 |β1|
∣∣β2

1 − β2
2

∣∣ |cos (wβ1)− 1|

∫ t1+w

t1

|sinβ1 (t1 − s+ w)− sinβ1 (t2 − s+ w)| ds

+
1

2 |β2|
∣∣β2

1 − β2
2

∣∣ |cos (wβ2)− 1|

∫ t1+w

t1

|sinβ2 (s− t1)− sinβ2 (s− t2)| ds

+
1

2 |β2|
∣∣β2

1 − β2
2

∣∣ |cos (wβ2)− 1|

∫ t1+w

t1

|sinβ2 (t1 − s+ w)− sinβ2 (t2 − s+ w)| ds

≤ w∣∣β2
1 − β2

2

∣∣ |cos (wβ1)− 1|
|t2 − t1|

+
w∣∣β2

1 − β2
2

∣∣ |cos (wβ2)− 1|
|t2 − t1|

=
w∣∣β2

1 − β2
2

∣∣
(

1

|cos (wβ1)− 1|
+

1

|cos (wβ2)− 1|

)
|t1 − t2| .

The proof is completed.

Lemma 3.6. Let φ, θ ∈ Pw (L,M), ck ∈ Pw (Lck ,Mak) with k = 1, n,and H ∈ Pw (LH ,MH). If

Aw

L2
n∑

k=1

Lck

1 +

k−1∑
j=0

M j

+ LH

 ≤ L, (3.5)

then
|(N1φ) (t) + (N2θ) (t)| ≤ L.
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Proof. We have

|(N1φ) (t) + (N2θ) (t)| ≤ |(N1φ) (t)|+ |(N2θ)|

≤
n∑

k=1

∫ t+w

t
G (t, s) |ck (s)|

∣∣∣φ (s)× φ[k] (s)
∣∣∣ ds

+

∫ t+w

t
G (t, s) |H (s)| ds.

From Lemma 2.5, we obtain

∥∥∥φ× φ[k]
∥∥∥ ≤ L

1 +

k−1∑
j=0

M j

 ∥φ∥ ≤ L2

1 +

k−1∑
j=0

M j

 . (3.6)

Using Lemma 2.2 and (3.6), we get

|(N1φ) (t) + (N2θ) (t)| ≤ L2Aw
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

+AwLH

= Aw

L2
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

+ LH

 .

Thanks to condition (3.5), we can obtain the desired estimate.

Lemma 3.7. Let t1, t2 ∈ [0, w] with t2 > t1. IfL2
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

+ LH

 (2A+ µ) ≤ M, (3.7)

then
|((N1φ) (t2) + (N2θ) (t2))− ((N1φ) (t1) + (N2θ) (t1))| ≤ M |t2 − t1| , ∀φ, θ ∈ Pw (L,M) .

Proof. For all t1, t2 ∈ [0, w] and φ, θ ∈ Pw (L,M) , we get

|((N1φ) (t2) + (N2θ) (t2))− ((N1φ) (t1) + (N2θ) (t1))|
≤ |(N1φ) (t2)− (N1φ) (t1)|+ |(N2θ) (t2)− (N2θ) (t1)| .

We have

|(N1φ) (t2)− (N1φ) (t1)|

=

∣∣∣∣∣
n∑

k=1

∫ t2+w

t2

G (t2, s) ck (s)φ (s)φ[k] (s) ds−
n∑

k=1

∫ t1+w

t1

G (t1, s) ck (s)φ (s)φ[k] (s) ds

∣∣∣∣∣
≤

n∑
k=1

∫ t1

t2

G (t2, s) |ck (s)|
∣∣∣φ (s)φ[k] (s)

∣∣∣ ds+ n∑
k=1

∫ t2+w

t1+w
G (t2, s) |ck (s)|

∣∣∣φ (s)φ[k] (s)
∣∣∣ ds

+

n∑
k=1

∫ t1+w

t1

|ck (s)|
∣∣∣φ (s)φ[k] (s)

∣∣∣ |G (t2, s)−G (t1, s)| ds.
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By using (3.6) and Lemmas 2.2 and 3.5, we arrive at

|(N1φ) (t2)− (N1φ) (t1)| ≤ 2AL2
n∑

k=1

Lck

1 +

k−1∑
j=0

M j

 |t2 − t1|

+ µL2
n∑

k=1

Lck

n∑
k=1

1 +
k−1∑
j=0

M j

 |t2 − t1|

= (2A+ µ)L2
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

 |t2 − t1| .

On the other hand, we get

|(N2θ) (t2)− (N2θ) (t1)| =
∣∣∣∣∫ t2+w

t2

G (t2, s)H (s) ds−
∫ t1+w

t1

G (t1, s)H (s) dsds

∣∣∣∣
≤

∫ t1

t2

G (t2, s) |H (s)| ds+
∫ t2+w

t1+w
G (t2, s) |H (s)| ds

+

∫ t1+w

t1

|H (s)| |G (t2, s)−G (t1, s)| ds.

It follows from Lemma 2.2 that

|(N2θ) (t2)− (N2θ) (t1)| ≤ 2ALH |t2 − t1|+ µLH |t2 − t1|
= LH (2A+ µ) |t2 − t1| .

Consequently

|((N1φ) (t2) + (N2θ) (t2))− ((N1φ) (t1) + (N2θ) (t1))|

≤

L2
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

+ LH

 (2A+ µ) |t2 − t1| .

From (3.7), we have

|((N1φ) (t2) + (N2θ) (t2))− ((N1φ) (t1) + (N2θ) (t1))| ≤ M |t2 − t1| .

The lemma is proved.

Theorem 3.8. If ck ∈ Pw (Lck ,Mck) , k = 1, n and H ∈ Pw (LH ,MH), then (1.1) has at least one solution
x in Pw (L,M) .

Proof. From Lemma 3.1, fixed points of N1+N2 are solutions of (1.1) and vice versa. By virtue of Lemmas
2.4, 3.3, 3.4, 3.6 and 3.7, all the hypotheses of the Krasnoselskii’s fixed point theorem are satisfied. Thus, we
can conclude that the operator N1+N2 has at least one fixed point in Pw (L,M) which shows that equation
(1.1) has at least one periodic solution in Pw (L,M) .

3.2. Uniqueness of periodic solutions

Theorem 3.9. Let ck ∈ Pw (Lck ,Mck) , k = 1, n and H ∈ Pw (LH ,MH). If

LAw

n∑
k=0

Lck

1 +

k−1∑
j=0

M j

 < 1, (3.8)

then (1.1) has a unique solution x in Pw (L,M) .
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Proof. For φ, θ ∈ Pw (L,M) , ck ∈ Pw (Lck ,Mck) with k = 1, n and H ∈ Pw (LH ,MH) , we have

|(N1 +N2) (φ) (t)− (N1 +N2) (θ) (t)| = |(N1φ) (t)− (N1θ) (t)| .

Similarly to the proof of Lemma 3.3, we arrive at

|(N1 +N2) (φ) (t)− (N1 +N2) (θ) (t)| ≤ LAw

n∑
k=0

Lck

1 +

k−1∑
j=0

M j

 ∥φ− θ∥ .

From (3.8) and by the help of the contraction mapping principle, N1 + N2 has a unique fixed point in
Pw (L,M) and from Lemma 3.1, this fixed point is the unique solution of ( 1.1).

3.3. Continuous dependence on parameters of the periodic solution

Theorem 3.10. The solution obtained in Theorem 3.9 depends continuously upon the functions ck, k = 1, n
and the function H.

Proof. Under the assumptions of Theorem 3.9, since x is a solution of (1.1), so it satisfies the integral
equation (3.1), i.e.

x (t) =

n∑
k=1

∫ t+w

t
G (t, s)x (s) ak (s)x

[k] (s) ds+

∫ t+w

t
G (t, s)H1 (s) ds.

Let y be a solution of the perturbed equation with small perturbations in functions ck, k = 1, n and H that
satisfy the conditions of Theorem 3.9. Then y satisfies the following integral equation:

y (t) =
n∑

k=1

∫ t+w

t
G (t, s) y (s) bk (s) y

[k] (s) ds+

∫ t+w

t
G2 (s, t)H2 (s) ds,

where ak, bk ∈ Pw (Lck ,Mck) , k = 1, n.
Estimating the difference between solutions x and y, we have

|x (t)− y (t)| ≤
n∑

k=1

∫ t+w

t
G (t, s)

∣∣∣x (s) ak (s)x[k] (s)− y (s) bk (s) y
[k] (s)

∣∣∣ ds
+

∫ t+w

t
G (t, s) |H1 (s)−H2 (s)| ds

≤
n∑

k=1

∫ t+w

t
G (t, s)

∣∣∣x (s) ak (s)x[k] (s)− y (s) ak (s) y
[k] (s)

∣∣∣ ds
+

n∑
k=1

∫ t+w

t
G (t, s)

∣∣∣y (s) ak (s) y[k] (s)− y (s) bk (s) y
[k] (s)

∣∣∣ ds
+

∫ t+w

t
G (t, s) |H1 (s)−H2 (s)| ds.

By using the same technique as that in the proof of Lemma 3.3, and by taking into account (3.6), we get

|x (t)− y (t)| ≤ LAw
n∑

k=0

Lck

1 +
k−1∑
j=0

M j

 ∥x− y∥

+Aw
n∑

k=1

L2

1 +
k−1∑
j=0

M j

 ∥ak − bk∥+Aw ∥H1 −H2∥ .
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It follows from (3.8) that

∥x− y∥ ≤ Aw

∑n
k=1 L

2

1 +

k−1∑
j=0

M j

+ ∥H1 −H2∥

1− LAw
∑n

k=0 Lck

1 +
k−1∑
j=0

M j

 .

This completes the proof.

4. Example

We consider the following equation:

x(4) (t) +
5

2
π2x(2) (t) +

9

16
π4x (t) =

1

5
x2 (t) sin 2πt+

1

7
x (t)x[2] (t) sin 2πt+

1

3
sin 2πt, (4.1)

where

β1 =
π

2
, β2 =

3

2
π,

c1 (t) =
1

5
sin 2πt ∈ P1

(
1

5
,
2

5
π

)
,

c2 (t) =
1

7
sin 2πt ∈ P1

(
1

7
,
2

7
π

)
,

H (t) =
1

3
sin 2πt ∈ P1

(
1

3
,
2

3
π

)
.

Equation (4.1) can be found in studying the extended Fisher–Kolmogorov and Swift–Hohenberg equations
with forcing terms and can also generalize many delay models such as those describing water waves driven
by gravity and capillarity and those modeling the deflection patterns of elastic struts resting on elastic
foundations where x in the last model stands for the deflection, p is the compressive axial load, H (t) is the
forcing term, the nonlinearity f

(
t, x (t) , x2 (t)

)
= qx (t) − c1 (t)x

2 (t) − c1 (t)x (t)x
[2] (t) is introduced as

the resisting force per unit length of the foundation but in this case t is the spatial coordinate (see [11] and
[15]).

By taking w = 1, L = π and M = 2π, we find

A =
4

3π3
, µ =

1

π2
,

Aw

L2
n∑

k=1

Lck

1 +
k−1∑
j=0

M j

+ LH

 ≃ 0.6863 ≤ L = π,

L2
n∑

k=1

Lck

1 +

k−1∑
j=0

M j

+ LH

 (2A+ µ) ≃ 2.9897 ≤ M = 2π,

LAw
n∑

k=0

Lck

1 +
k−1∑
j=0

M j

 ≃ 0.2139 < 1.

All conditions of Theorems 3.8, 3.9 and 3.10 are satisfied and consequently (4.1) has a unique solution in
Pw (π, 2π) depends continuously on the functions c1 (t), c2 (t) and H (t) .
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5. Conclusion

With the help of the Krasnoselskii’s fixed point theorem for a sum of 2 mappings, the contraction
mapping principle and the Green’s functions method, we established some new sufficient conditions ensuring
the existence, uniqueness and continuous dependence on parameters of periodic solutions for a nonlinear
fourth-order differential equation with an iterative source term. Furthermore, we supported our findings by
an example to illustrate their effectiveness.

We would like to point out that the derived results of this work are completely innovative and extend
those of the previous studies in [3], [5]-[14], [17]-[19].
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