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Abstract

Topological indices are extensively used for establishing relationship between the chemical structure and their
physico-chemical properties. Motivated by chemical applications of topological indices in the QSPR/QSAR
analysis, we introduce a new topological indices that we call, second BM Index and fourth BM Index, is
denoted by BM2(G) and BM4(G). Also we introduce second and fourth BM polynomials and is denoted by
BM2(G, x) and BM4(G, x). In this paper, BM2(G) and BM4(G) is tested with physico-chemical properties
of octane isomers such as entropy, acentric factor, enthalpy of vaporization (HVAP) and standard enthalpy
of vaporization (DHVAP) using the linear models. The BM2(G) and BM4(G) shows excellent correlation
with these chemical properties. Specially, BM2(G) and BM4(G) highly correlates with acentric factor
(coefficient of correlation 0.9906546 and 0.9783643). Furthermore, we obtain BM2(G), BM4(G) indices
and BM2(G, x), BM4(G, x) polynomials of dominating oxide network, regular triangulate oxide network,
H-Naphtalenic nanotubes and nanocones of molecular graphs.
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1. Introduction and Preliminaries

Let G = (V,E) be a finite, undirected graph without loops and multiple edges with V as vertex set
and E as edge set. Let |V | = n and |E| = m. The vertices and the edges of G are used to represent
the atoms and the bonds of chemical structures. For a graph G, the neighbourhood of a vertex u ∈ V (G)
is defined as the NG(u) consisting of all points v which are adjacent with u. The closed neighbourhood
is NG[u] = NG(u) ∪ {u}. The degree of a vertex u ∈ V (G), denoted by dG(u) and defined as |NG(u)|.
Let SG(u) =

∑
u∈NG(u) dG(v) be the degree sum of neighbourhood vertices. The closed neighbourhood [6]
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degree sum of vertices denoted by SG[u] and defined as SG[u] =
∑

u∈NG(u) dG(v). For unexplained graph
terminology and notation refer [10, 12].

Recently, we have [7], proposed closed neighbouhood degree based topological indices, which are first
and third BM indices and polynomials of a molecular graph G, defined as follows.

The first and third BM indices of a molecular graph G [7] is defined as

BM1(G) =
∑

uv∈E(G)

SG[u] + SG[v]

2
,

BM3(G) =
∑

uv∈E(G)

(
SG[u] + SG[v]

2

)2

.

The first and third BM polynomials of a molecular graph G [7] is defined as

BM1(G, x) =
∑

uv∈E(G)

x
SG[u]+SG[v]

2

,

BM3(G, x) =
∑

uv∈E(G)

x

(
SG[u]+SG[v]

2

)2
.

Motivated by the recent results on chemical structures and its applications, we now introduce the second
and fourth BM indices of the molecular graph G as follows.

The second BM index of a molecular graph G is defined as

BM2(G) =
∑

uv∈E(G)

SG[u]SG[v]

2
.

The fourth BM index of a molecular graph G is defined as

BM4(G) =
∑

uv∈E(G)

(
SG[u]SG[v]

2

)2

.

Next, we introduce the second and fourth BM polynomials of a molecular graph as follows.
The second BM polynomial of a molecular graph G is defined as

BM2(G, x) =
∑

uv∈E(G)

x
SG[u]SG[v]

2 .

The fourth BM polynomial of a molecular graph G is defined as

BM4(G, x) =
∑

uv∈E(G)

x

(
SG[u]SG[v]

2

)2
.

In the literature, many researchers studied the topological indices of molecular graphs which are in
[1, 2, 5, 7, 8, 9, 11, 14, 15, 16, 18]. Kulli [13] studied neighborhood Sombor index of nanostructures. First
time Basavanagoud et. al [6] introduced Chinmayi indices (closed neighbourhood degree indices) of graphs.
Motivated by this [6], we obtain BM2(G), BM4(G) indices and BM2(G, x), BM4(G, x) polynomials of
dominating oxide network, regular triangulate oxide network, H-Naphtalenic nanotubes and nanocones of
molecular graphs.

The molecular weight, volume, pressure, density, and refraction of organic compounds, as well as their
boiling, freezing, and vaporisation points, isomer and edge shift, infrared group frequency, quadruple split-
ting, and polarizability, can all be determined using topological indices.
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2. On the chemical applicability of BM2(G) and BM4(G) indices on octane isomers

In this section, we discuss the linear regression analysis of BM2(G) and BM4(G) with entropy(S), acen-
tric factor(AcentFac), enthalpy of vaporization(HVAP) and DHVAP of octane isomers. The BM2(G) and
BM4(G) was tested using a dataset of octane isomers found at http://www.moleculardiscriptors.eu/dataset.htm.
Interestingly, we have noticed that BM2(G) and BM4(G) indices are highly correlated with acentric factor
(AcentFac) (|r|=0.9906546 and |r|=0.9783643). The dataset of octane isomers (columns 1-5 of Table 1)
are taken from above web link whereas the 6th and 7th columns of Table 1 is calculated by definition of
BM2(G) and BM4(G) indices.

Table 1: Some physical properties and BM2(G), BM4(G) indices of octane isomers.

Alkane S AcentFac DHVAP HVAP BM2(G) BM4(G)

n-octane 111.67 0.397898 9.915 73.19 99 1534.5

2-methyl-heptane 109.84 0.377916 9.484 70.3 114 2038.5

3-methyl-heptane 111.26 0.371002 9.521 71.3 120.5 2419.25

4-methyl-heptane 109.32 0.371504 9.483 70.91 122 2549

3-ethyl-hexane 109.43 0.362472 9.476 71.7 128.5 2974.75

2,2-dimethyl-hexane 103.42 0.339426 8.915 67.7 150 3672

2,3-dimethyl-hexane 108.02 0.348247 9.272 70.2 149 2938.5

2,4-dimethyl-hexane 106.98 0.344223 9.029 68.5 137 3113

2,5-dimethyl-hexane 105.72 0.35683 9.051 68.6 129.5 2584.75

3,3-dimethyl-hexane 104.74 0.322596 8.973 68.5 163 4641.5

3,4-dimethyl-hexane 106.59 0.340345 9.316 70.2 148.5 3908.25

2-methyl-3-ethyl-pentane 106.06 0.332433 9.209 69.7 150 4074

3-methyl-3-ethyl-pentane 101.48 0.306899 9.081 69.3 174.5 5533.75

2,2,3-trimethyl-pentane 101.31 0.300816 8.826 67.3 184 5756

2,2,4-trimethyl-pentane 104.09 0.30537 8.402 64.87 167.5 4543.25

2,3,3-trimethyl-pentane 102.06 0.293177 8.897 68.1 189.5 6203.25

2,3,4-trimethyl-pentane 102.39 0.317422 9.014 68.37 164 4624

2,2,3,3-tetramethylbutane 93.06 0.255294 8.41 66.2 225.5 8198

The linear regression models for the entropy, acentric factor, DHVAP and HVAP using the data of Table
1 are obtained using the least squares fitting procedure as implemented in R software [17]. The BM2(G)
fitted models are:

S = 126.29475(±1.78752)− 0.13839(±0.01162)BM2(G) (2.1)

AcentFac = 0.5070(±0.006010)− 0.001135(±0.00003906)BM2(G) (2.2)

DHV AP = 10.707271(±0.254125)− 0.010477(±0.001652)BM2(G) (2.3)

HV AP = 76.72436(±1.62116)− 0.05011(±0.01054)BM2(G) (2.4)

Note: The values in the brackets of Eqs. (2.1) to (2.4) are the corresponding standard errors of the
regression coefficients.

From Table 2, we can observe that BM2(G) highly correlates with acentric factor which is better than
first Zagreb index (|r|=0.973087869 and residual standard error is 0.008424), second order first Zagreb
index (|r|=0.99020 and residual standard error is 0.005101)[3] and (β, α)−connectivity index (|r|=0.95802
and residual standard error is 0.01047) [4]. Closer the |r| to 1, better is the index.
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Figure 1: Scatter diagram of (a) S on BM2(G), (b) AcentFac on BM2(G), superimposed by the fitted regression line.

Figure 2: Scatter diagram of (c) DHV AP on BM2(G) (d) HV AP on BM2(G), superimposed by the fitted regression line.

Table 2: Correlation coefficient and residual standard error of regression models

Physical Property Absolute value of the correlation Residual standard error
coefficient (|r|)

Enthalpy 0.9479773 1.482

Acentric Factor 0.9906546 0.004984

DHVAP 0.8458742 0.2107

HVAP 0.7652918 1.344

The BM4 fitted models are:

S = 115.4(±0.9404)− 0.002524(±0.0002193)BM4(G) (2.5)

AcentFac = 0.4170(±0.004651)− 0.00002051(±0.000001084)BM4(G) (2.6)

DHV AP = 9.837(±0.1485)− 0.0001794(±0.00003464)BM4(G) (2.7)

HV AP = 72.5099144(±0.9113208)− 0.0008448(±0.0002125)BM4(G) (2.8)

Note: The values in the brackets of Eqs. (2.5) to (2.8) are the corresponding standard errors of the
regression coefficients.

From Table 3, we can observe that BM4(G) also highly correlates with acentric factor.
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Figure 3: Scatter diagram of (a) S on BM4(G), (b) AcentFac on BM4(G), superimposed by the fitted regression line.

Figure 4: Scatter diagram of (c) DHV AP on BM4(G) (d) HV AP on BM4(G), superimposed by the fitted regression line.

Table 3: Correlation coefficient and residual standard error of regression models

Physical Property Absolute value of the correlation Residual standard error
coefficient (|r|)

Enthalpy 0.9445771 1.529

Acentric Factor 0.9783643 0.00756

DHVAP 0.7915089 0.2415

HVAP 0.7049417 1.481

3. Results for Dominating Oxide Network DOX(n)

In this section, we consider the graph of a dominating oxide network DOX(n), see Figure 5.
Let G be the graph of DOX(n). The graph dominating oxide network DOX(n) has 54n2 − 54n + 18

edges. Also there are two types of edges in G based on the degrees of end vertices of each edge as follows:

E1 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 4}, |E1| = 24n− 12,
E2 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E2| = 54n2 − 78n+ 30.

The partition of the edges with respect to their sum degree of end vertices of dominating oxide network
is given in Table 4.



B. Basavanagoud, M. Sayyed, Journal of Prime Research in Mathematics, 18(2) (2022), 100–111 105

bb

b b bbbb b b

b

b

b b b b b b b b b
b

b

b

b
b

b
bb

b

b

b

b b b b b b b b

b

b b

b

bbb

bbbb b b b b b
b bb b b

b b
b

b b

b b

b b b b

Figure 5: Dominating oxide network DOX(2).

Table 4: Edge partition of dominating oxide network DOX(n).

(SG[u], SG[v]) (10, 16) (10, 18) (16, 16) (16, 18) (18, 20) (20, 20)

Number of edges 12n 12n− 12 6 12n− 12 24n− 24 54n2 − 114n+ 60

In the following theorems, we obtain explicit formulae for computing BM2(G), BM4(G), BM2(G, x) and
BM4(G, x) of the dominating oxide network DOX(n).

Theorem 3.1. Let DOX(n) be the family of dominating oxide network. Then

1. BM2(DOX(n)) = 10800n2 − 14712n+ 5640.

2. BM4(DOX(n)) = 2160000n2 − 335968n+ 1374672.

Proof. We give the proof for one of the topological graph indices under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 4. Then

BM2(G) =
∑

uv∈E(G)

SG[u]SG[v]

2

= m10,16

(
10× 16

2

)
+m10,18

(
10× 18

2

)
+m16,16

(
16× 16

2

)
+ m16,18

(
16× 18

2

)
+m18,20

(
18× 20

2

)
+m20,20

(
20× 20

2

)
= 10800n2 − 14712n+ 5640.

Theorem 3.2. Let DOX(n) be the family of dominating oxide network. Then

1. BM2(DOX(n), x) = 12nx80+(12n−12)x90+6x128+(12n−12)x144+(24n−24)x180+(54n2−114n+
60)x200.

2. BM4(DOX(n), x) = 12nx6400 + (12n − 12)x8100 + 6x16384 + (12n − 12)x20736 + (24n − 24)x32400 +
(54n2 − 114n+ 60)x40000.

Proof. We give the proof for one of the topological graph polynomial under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 4. Then
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BM2(G, x) =
∑

uv∈E(G)

x
SG[u]SG[v]

2

= m10,16x

(
10×16

2

)
+m10,18x

(
10×18

2

)
+m16,16x

(
16×16

2

)
+ m16,18x

(
16×18

2

)
+m18,20x

(
18×20

2

)
+m20,20x

(
20×20

2

)
= 12nx80 + (12n− 12)x90 + 6x128

+ (12n− 12)x144 + (24n− 24)x180 + (54n2 − 114n+ 60)x200.

4. Results for Regular Triangulate Oxide Network RTOX(n)

In this section, we consider a family of regular triangular oxide network which is denoted byRTOX(n), n ≥
3. The graph RTOX(5), is shown in Figure 6.

Let G be the graph of RTOX(n). The graph regular triangular oxide network RTOX(n) has 3n2 + 6n
edges. Also there are three types of edges in G based on the degrees of end vertices of each edge as follows:

E1 = {uv ∈ E(G)|dG(u) = dG(v) = 2}, |E1| = 2,
E2 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 4}, |E2| = 6n,
E3 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E3| = 3n2 − 2.
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Figure 6: Regular triangular oxide network, RTOX(5).

The partition of the edges with respect to their sum degree of end vertices of regular triangular oxide
network is given in Table 5.

Table 5: Edge partition of regular triangular oxide network RTOX(n).

(SG[u], SG[v])\uv ∈ E(G) Number of edges

(8, 8) 2
(8, 16) 4
(10, 16) 4
(10, 18) 6n− 8
(16, 16) 1
(16, 18) 6
(18, 18) 6n− 9
(18, 20) 6n− 12
(20, 20) 3n2 − 12n+ 12
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In the following theorems, we obtain explicit formulae for computing BM2(G), BM4(G), BM2(G, x) and
BM4(G, x) of the regular triangular oxide network RTOX(n).

Theorem 4.1. Let RTOX(n) be the family of regular triangular oxide network. Then

1. BM2(RTOX(n)) = 600n2 + 192n− 306.

2. BM4(RTOX(n)) = 120000n2 − 79536n− 24964.

Proof. We give the proof for one of the topological graph indices under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 5. Then

BM2(G) =
∑

uv∈E(G)

SG[u]SG[v]

2

= m8,8

(
8× 8

2

)
+m8,16

(
8× 16

2

)
+m10,16

(
10× 16

2

)
+ m10,18

(
10× 18

2

)
+m16,16

(
16× 16

2

)
+m16,18

(
16× 18

2

)
+ m18,18

(
18× 18

2

)
+m18,20

(
18× 20

2

)
+m20,20

(
20× 20

2

)
= 600n2 + 192n− 306.

Theorem 4.2. Let RTOX(n) be the family of regular triangular oxide network. Then

1. BM2(RTOX(n), x) = 2x32+4x64+4x80+(6n− 8)x90+x128+6x144+(6n− 9)x162+(6n− 12)x180+
(3n2 − 12n+ 12)x200.

2. BM4(RTOX(n), x) = 2x1024 + 4x4096 + 4x6400 + (6n − 8)x8100 + x16384 + 6x20736 + (6n − 9)x26244 +
(6n− 12)x32400 + (3n2 − 12n+ 12)x40000.

Proof. We give the proof for one of the topological graph polynomial under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 5. Then

BM2(G, x) =
∑

uv∈E(G)

x
SG[u]SG[v]

2

= m8,8x

(
8×8
2

)
+m8,16x

(
8×16

2

)
+m10,16x

(
10×16

2

)
+ m10,18x

(
10×18

2

)
+m16,16x

(
16×16

2

)
+m16,18x

(
16×18

2

)
+ m18,18x

(
18×18

2

)
+m18,20x

(
18×20

2

)
+m20,20x

(
20×20

2

)
= 2x32 + 4x64 + 4x80 + (6n− 8)x90 + x128 + 6x144

+ (6n− 9)x162 + (6n− 12)x180 + (3n2 − 12n+ 12)x200.
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5. Results for H-Naphtalenic nanotubes

In this section, we consider a family of H-Naphtalenic nanotubes. This nanotube is a trivalent decoration
having a sequence of C6, C6, C4, C6, C6, C4, ... in the first row and a sequence of C6, C8, C6, C8, ... in other
row. This nanotube is denoted by NHPX[m,n], where m is the number of pair of hexagons in first row
and n is the number of alternative hexagons in a column as shown in Figure 7.
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Figure 7: H-Naphtalenic nanotubes NHPX[m,n].

Let G be the graph of a nanotube NHPX[m,n]. The graph H-Naphtalenic nanotubes NHPX[m,n]
has 15mn− 2m edges. Also there are two types of edges in G based on the degrees of end vertices of each
edge as follows:

E1 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 3}, |E1| = 8m,
E2 = {uv ∈ E(G)|dG(u) = dG(v) = 3}, |E2| = 15mn− 10m

The partition of the edges with respect to their sum degree of end vertices of H-Naphtalenic nanotubes
is given in Table 6.

Table 6: Edge partition of H-Naphtalenic nanotubes NHPX[m,n].

(SG[u], SG[v]) (8, 10) (8, 11) (11, 11) (10, 12) (11, 12) (12, 12)

Number of edges 4m 4m 2m 2m 4m 15mn− 18m

In the following theorems, we obtain explicit formulae for computing BM2(G), BM4(G), BM2(G, x) and
BM4(G, x) of the H-Naphtalenic nanotubes NHPX[m,n].

Theorem 5.1. Let NHPX[m,n] be the family of H-Naphtalenic nanotubes. Then

1. BM2(NHPX[m,n]) = 1080mn− 455m.

2. BM4(NHPX[m,n]) = 77760mn− 47223.5m.

Proof. We give the proof for one of the topological graph indices under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 6. Then
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BM2(G) =
∑

uv∈E(G)

SG[u]SG[v]

2

= m8,10

(
8× 10

2

)
+m8,11

(
8× 11

2

)
+m11,11

(
11× 11

2

)
+ m10,12

(
10× 12

2

)
+m11,12

(
11× 12

2

)
+m12,12

(
12× 12

2

)
= 1080mn− 455m.

Theorem 5.2. Let NHPX[m,n] be the family of H-Naphtalenic nanotubes. Then

1. BM2(NHPX[m,n], x) = 4mx40 + 4mx44 + 2mx
121
2 + 2mx60 + 4mx66 + (15mn− 18m)x72.

2. BM4(NHPX[m,n], x) = 4mx1600 + 4mx1936 + 2mx
14641

4 + 2mx3600 + 4mx4356 + (15mn− 18m)x5184.

Proof. We give the proof for one of the topological graph polynomial under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 6. Then

BM2(G, x) =
∑

uv∈E(G)

x
SG[u]SG[v]

2

= m8,10x

(
8×10

2

)
+m8,11x

(
8×11

2

)
+m11,11x

(
11×11

2

)
+ m10,12x

(
10×12

2

)
+m11,12x

(
11×12

2

)
+m12,12x

(
12×12

2

)
= 4mx40 + 4mx44 + 2mx

121
2 + 2mx60 + 4mx66 + (15mn− 18m)x72.

6. Results for Nanocones Cn[k]

In this section, we consider nanocones Cn[k]. The molecular structure of C2[4] is shown in Figure 8.
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Figure 8: Molecular structure of Nanocone C2[4]
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Let G be the molecular structure of Cn[k]. The graph molecular structure of Cn[k] has n(k+1)2 vertices
and 3

2nk
2 + 5

2nk + n edges. Also there are three types of edges in G based on the degrees of end vertices of
each edge as follows:

E1 = {uv ∈ E(G)|dG(u) = dG(v) = 2}, |E1| = n,
E2 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 3}, |E2| = 2nk,
E3 = {uv ∈ E(G)|dG(u) = dG(v) = 3}, |E3| = 3

2nk
2 + 1

2nk,

The partition of the edges with respect to their sum degree of end vertices of molecular structure of
Cn[k] nanocones is given in Table 7.

Table 7: Edge partition of molecular structure of Cn[k] nanocones.

(SG[u], SG[v]) (7, 7) (7, 10) (8, 10) (10, 12) (12, 12)

Number of edges n 2n 2(k − 1)n nk nk
2 (3k − 1)

In the following theorems, we obtain explicit formulae for computing BM2(G), BM4(G), BM2(G, x) and
BM4(G, x) of the molecular structure of Cn[k] nanocones.

Theorem 6.1. Let Cn[k] be the family of nanocones. Then

1. BM2(Cn[k]) = 108nk2 + 104nk + 14.5n.

2. BM4(Cn[k]) = 7776nk2 + 4208nk − 149.75n.

Proof. We give the proof for one of the topological graph indices under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 7. Then

BM2(G) =
∑

uv∈E(G)

SG[u]SG[v]

2

= m7,7

(
7× 7

2

)
+m7,10

(
7× 10

2

)
+m8,10

(
8× 10

2

)
+ m10,12

(
10× 12

2

)
+m12,12

(
12× 12

2

)
= 108nk2 + 104nk + 14.5n.

Theorem 6.2. Let Cn[k] be the family of nanocones. Then

1. BM2(Cn[k], x) = nx
49
2 + 2nx35 + 2(k − 1)nx40 + nkx60 + nk

2 (3k − 1)x72.

2. BM4(Cn[k], x) = nx
2401
4 + 2nx1225 + 2(k − 1)nx1600 + nkx3600 + nk

2 (3k − 1)x5184.

Proof. We give the proof for one of the topological graph polynomial under consideration as the other follow
the same reasoning after the edge partitions. Let mu,v denote the number of edges connecting the vertices
of degrees SG[u] and SG[v]. The number of edges in each row are listed in Table 7. Then

BM2(G, x) =
∑

uv∈E(G)

x
SG[u]SG[v]

2

= m7,7x

(
7×7
2

)
+m7,10x

(
7×10

2

)
+m8,10x

(
8×10

2

)
+m10,12x

(
10×12

2

)
+m12,12x

(
12×12

2

)
= nx

49
2 + 2nx35 + 2(k − 1)nx40 + nkx60 +

nk

2
(3k − 1)x72.
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7. Conclusion

In this paper, we have introduced a closed neighbourhood indices namely BM2(G) and BM4(G) indices
and also BM2(G, x) and BM4(G, x) polynomials in the field of mathematical chemistry, it has chemical
applicability in determining several physico-chemical properties of octane isomers as it has coefficient of
correlation closer to 1, which is far better than other indices. Specially, BM2(G) and BM4(G) indices
highly correlates with acentric factor (coefficient of correlation 0.9906546 and 0.9783643). Next, we have
obtained BM2(G), BM4(G) indices and BM2(G, x), BM4(G, x) polynomials of dominating oxide network,
regular triangulate oxide network, H-Naphtalenic nanotubes and nanocones of molecular graphs. Further,
one can obtain different degree based indices of closed neighbourhood indices for chemical graphs.
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