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Abstract

An inner dual graph of a planar rigid benzenoid (hexagonal) system is a subgraph of the triangular lattice
with the constraint that any two adjacent faces in the corresponding hexagonal system must be connected
via an edge in the inner dual. The maximum degree of any vertex in an inner dual graph of a hexagonal
system is 6. In contrast with the already existing algorithms in the literature that are used to check a
given degree sequence to be graphically realizable, in this paper, we use a a simple technique to check the
realizable degree sequences of inner dual graphs of benzenoid systems that form a rich class of molecular
graphs in theoretical chemistry. We restrict the maximum degree to 3 and identify, by providing necessary
and sufficient conditions on the values of α, β and γ, all the degree sequences of the form d = (3α, 2β, 1γ)
that are graphically (inner dual of planar rigid hexagonal system) realizable. That is, we provide general
constructions of the graphs (inner dual of planar rigid hexagonal system) realizing the degree sequences of
the form d = (3α, 2β, 1γ).

Keywords: Hexagonal system, Inner dual graph, Matchstick graph, Degree sequence, Graphical
realization, Graphical sequence.
2010 MSC: 05C30, 05C92.

1. Introduction

Let π = (d1, d2, ..., dn) be a non-increasing sequence of non-negative integers. Then π is said to be
graphical, or a graphical sequence, if there exists a simple graph G with n vertices having π as its degree
sequence. If such a graph exists, then we say that G is a graphical realization of π, or that G realizes the
degree sequence π. And π is said to be planar graphical, if there exists a planar graph G realizing π. Of the
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many results [1, 7, 8] discussing the graphical degree sequences, the most well-known is a result by Erdös
and Gallai [7], stating that π is graphical if and only if

n∑
i=1

di ≡ 0 (mod 2)

and
r∑

i=1

di −
n∑

i=r+1

min{r, di} ≤ r(r − 1), 1 ≤ r ≤ n− 1

Using Euler’s formula (for polyhedra), a necessary (but not sufficient) condition for π to be planar
graphical is that

n∑
i=1

di ≤ 6(n− 2) , n ≥ 3

A hexagonal system H, is a connected planar matchstick graph with no cut vertices and whose each
face is a hexagon. The faces (hexagons) of H are also called cells. An inner dual graph, G, of a hexagonal
system H is obtained by placing a vertex in the centre of each regular hexagonal face of H and connecting,
by single edges, the vertices of adjacent hexagons. Since, the inner dual graph of a hexagonal system is a
subgraph of a triangular lattice, its maximum degree is equal to 6. A degree sequence d is said to be inner
dual hexagonal graphical, if there exists a hexagonal system, whose corresponding inner dual graph realizes
d. In this paper, we study various properties of such degree sequences. A pendent vertex is a vertex that
is adjacent with exactly one vertex. Let Kn, Cn, Pn and Sn respectively denote the complete graph, cycle,
path and star graph on n vertices.

In [2] spectral properties of He matrices of rigid hexagonal systems (RHS) have been studied, where
the zero eigenvalues of the He matrices of RHS and also the relationship between the number of triangles
in the inner dual of RHS with the eigenvalues of the He matrices of RHS have been investigated, whereby
obtaining some upper bound on the He energy of RHS.

The motivation for studying hexagonal systems from applications in communication systems, in modern
organic chemistry [6], and in mineralogy and crystallography [9] is significant. For references to He matrices,
their spectra and He energy, the reader is referred to the literature cited in [2, 4, 5, 6]. The degree sequences
of the inner duals of hexagonal systems have been studied for the first time in this paper. These inner
dual graphs form a subclass of triangular lattice. But it is interesting to note that not all subgraphs of the
triangular lattice are inner dual graphs of hexagonal systems. For example, the graphs shown in Figure 1
with bold edges are subgraphs of triangular lattice but cannot be inner dual graphs of any hexagonal system.

(a) The star graph S5 is
not an inner dual graph of
a hexagonal system.

(b) The cycle C4 with a
chord and two pendents at
a single vertex is also not
inner dual of any hexago-
nal system.

Figure 1: Examples of graphs that are not inner duals of hexagonal systems.

A characterization of these degree sequences, graph theoretic or not, would be interesting from both
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theoretical and application point of view. This is the motivation of our study in this paper. Thus, our main
aim is to determine the structure of family of inner duals of hexagonal systems, and their degree sequences.

2. Preliminaries

Let G be the inner dual of a planar rigid hexagonal system, H. Let |G| = n and ∥G∥ = m be the number
of vertices and edges of G, respectively. For 1 ≤ i ≤ 6, let ki be the number of vertices, of G, of degree i.
Let f be the number of faces of G and define fi = f − 1 to be the number of bounded faces of G. Then the
degree sequence of G is given as

d(G) = (6k6 , 5k5 , 4k4 , 3k3 , 2k2 , 1k1)

where,
6∑

i=1

ki = n and
6∑

i=1

iki = 2m

In this paper, we restrict the maximum degree of G to 3. That is, we consider the degree sequence of G
of the form

d(G) = (60, 50, 40, 3k3 , 2k2 , 1k1) ≡ (3α, 2β, 1γ)

In this case, we have

α+ β + γ = n (2.1)

3α+ 2β + γ = 2m (2.2)

Also, by Euler’s formula, we have
fi = m− n+ 1 (2.3)

Throughout this paper, we write d(G) as simply d. Also, if either α, β or γ is zero, say β = 0, we write
d = (3α, 20, 1γ) as simply d = (3α, 1γ). Henceforth, for the sake of brevity, by the term inner dual, we
mean inner dual graph of a planar rigid hexagonal system, and we may use the terms hexagonal inner dual
graphical and graphical interchangeably, unless mentioned explicitly.

Due to the geometry of the triangular lattice, the inner dual could either be acyclic or cyclic. An acyclic
inner dual is also called catacondensed (tree). It should be noted that acyclic inner dual has a special
structure: every edge forms either an angle of 120◦ or 180◦ with an adjacent edge. Due to this structure,
the maximum degree of an acyclic inner dual is 3. On the other hand, a cyclic inner dual is a subgraph
of the triangular lattice. Thus, the girth of a cyclic inner dual is either equal to 3 or greater than 7 (see
Theorem 3.1 for further discussion). In other words, the degree of each bounded face of a cyclic inner dual
has either degree equal to 3 or greater than 7. See Figure 2 for examples of cyclic and acyclic inner dual
graphs. This leads us to the following definition of a hole of a cyclic inner dual.

(a) an acyclic inner dual (b) a cyclic inner dual

Figure 2: Examples of hexagonal systems along with their inner duals.
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Definition 2.1. (Hole) A bounded face of a cyclic inner dual with degree greater than 7 is defined as a hole
of the inner dual. We represent by R the set of all holes of a cyclic inner dual. If we let F3 to be the set of
faces with degree equal to 3, and define f3 = |F3| and ρ = |R|, then we have

fi = f3 + ρ (2.4)

Figure 3 shows an example of a cyclic inner dual and its holes. Here R = {R1, R2}, deg(R1) = 11,
deg(R2) = 14, ρ = 2, F3 = {F ′

1, F
′
2, F

′
3, F

′
4}, f3 = 4 and fi = 6

Figure 3: A cyclic inner dual and its holes

Definition 2.2. (Gadgtes) There are three possible configurations (subgraphs) when only vertices of degree
3 are added (see Figure 4). We call these configurations gadgets and represent by D′, T ′ and C ′ the gadgets
diamond, triangle and claw, respectively. We also define D, T , and C to be the number of gadgets D′, T ′

and C ′ in G, respectively.

(a) Diamond, D′ (b) Triangle, T ′ (c) Claw, C′

Figure 4: Gadgets: Three possible configurations when only vertices of degree 3 are added.

3. Degree Sequences of Inner Duals with Maximum Degree 3

In this section, we find necessary and sufficient condition(s) for a given degree sequence with maximum
degree 3 to be inner dual hexagonal graphical. We also present inner dual constructions if the given degree
sequence is inner dual graphical. In the context of each figure that shows a construction for a degree se-
quence, the edges shown in bold represent the base case, whereas the edges shown as dotted lines represent
induction (induction on the number of copies of inductive subgraph). There are

(
3
1

)
+
(
3
2

)
+
(
3
3

)
= 7 cases to

be discussed for different values of α, β and γ.

Three cases when α = 0 are discussed in the following theorem.

Theorem 3.1.

(a) d = (30, 20, 1γ) is graphical iff γ = 2.

(b) d = (30, 2β, 1γ) is graphical iff γ = 2.

(c) d = (30, 2β, 10) is graphical iff β ∈ {3, 8, 9, 10, ...}.
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Proof.
(i) Setting α, β = 0 in (2.1) and (2.2) and then simplifying gives n = 2m. Substituting this in (2.3) and
using the fact that fi ≥ 0 yields m = 1 and n = γ = 2. This implies that d = (30, 20, 1γ) is graphical if and
only if γ = 2. This degree sequence is that of an inner dual with just one edge.
(ii) Setting α = 0 in (2.1) and (2.2) and solving for m and n gives n = β + γ and m = β + γ

2 . Substituting
these values of n and m in (2.3) and using the fact that fi ≥ 0 yields γ = 2. This implies d = (30, 2β, 1γ) is
graphical if and only if γ = 2 and β = n − 2. This degree sequence is that of an inner dual that is a path
(see Figure 5 (a)).
(iii) Setting α, γ = 0 in (2.1) and (2.2) and simplifying gives n = m. Substituting this in (2.3) gives
fi = 1. Note that a graph with exactly one interior face fi = 1 is a circular graph. We now find the
values of β that makes d = (30, 2β, 10) a graphical degree sequence. By definition of hexagonal system, an
empty cell (not represented by a vertex in the inner dual) cannot have all its adjacent cells included in the
inner dual (see Figure 5 (b)). This implies that n = β ̸= 4, 5, 6, 7. Clearly, d = (30, 2β, 10) is graphical if
β ∈ {3, 8, 9, 10, ...} = {3} ∪ {8 + 2k : k ∈ N ∪ {0}} ∪ {9 + 2k : k ∈ N ∪ {0}} (see Figure 5 (c), (d) and (e)).

After proving the following lemmas, we will then discuss the case β = 0, α, γ ̸= 0 in Theorem 3.4.

Lemma 3.2. Let α ̸= 0. Then d = (3α, 2β, 1γ) has an acyclic graphical realization iff α = i, β = n− 2i− 2
and γ = i+ 2 for i = 1, 2, ..., ⌊n2 ⌋ − 1.

Proof. Clearly if n < 4 then α = 0, so let n ≥ 4 and α = i. Multiplying equation (2.1) by 2 and subtracting
it from (2.2) and then simplifying for γ gives γ = α − 2(m − n). In this equation, substituting m = n − 1
(a necessary and sufficient condition for a tree) gives γ = α + 2 = i + 2 and then from (2.1) we have
β = n− 2i− 2. Note that since γ = i+ 2 we have i ≤ ⌊n2 ⌋ − 1. The construction of the inner dual realizing
the degree sequence d = (3i, 2n−2i−2, 1i+2) for i = 1, 2, ..., ⌊n2 ⌋ − 1 is shown in Figure 6.

(a) d = (2n−2, 1γ) (b) Not a hexagonal sys-
tem

(c) d = (23)

Equal number 

    of copies

(d) d = (28+2k), k ∈ N ∪ {0}

Equal number 

    of copies

(e) d = (29+2k), k ∈ N ∪ {0}

Figure 5: Theorem 1 figures.
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Figure 6: An inner dual tree for d = (3i, 2n−2i−2, 1i+2).

When β = 0 then degree of any vertex is either 3 or 1, thus n is even. We have the following lemma.

Lemma 3.3. The degree sequences with β = 0 are characterized as follows.

(a) Let n ≡ 0 (mod 4). Then d = (3n−2, 12) is graphical iff n ≥ 20.

(b) Let n ≡ 2 (mod 4). Then d = (3n−1, 11) is graphical iff n ≥ 30.

(c) Let n ≡ 0 (mod 4). Then d = (3n−1, 11) is graphical iff n ≥ 32.

Proof. We leave the proofs of statements (b) and (c) as these statements could be proved using the similar
technique used below to prove statement (a) of the lemma.
Note that if d = (3n−2, 12) is graphical for n = 4, 8 or 12, then it must also be graphical for n = 16 (by
concatenating a diamond to a pendant edge). So, we now show that d = (3n−2, 12) is not graphical for
n = 16.
From equations (2.1), (2.2) and (2.3), we have fi = 1− n+m = 1− (α+ β + γ) + 3α+2β+γ

2 , that is,

fi =
α

2
− γ

2
+ 1 (3.1)

It is worth mentioning that fi in independent of the value of β. The gadgets (shown as bold edges in
Figure 4) contribute to the vertices of degree 3. Since a diamond (D′) and a triangle (T ′) contribute to 4
and 3 vertices, respectively, it follows that 4D+3T ≤ α. Also, since D′ and T ′ contribute to 2 and 1 interior
faces, respectively, we have f3 = 2D + T . So, from the last two equations and equation (2.4), we have

4D + 3T ≤ α ⇒ 2(2D + T ) + T ≤ α ⇒ T ≤ α− 2f3 ⇒ T ≤ α− 2(fi − ρ)

⇒ T ≤ 2ρ (3.2)

For n = 16 (α = 14,γ = 2), fi = 7 from equation (3.1). Now, note that ρ ≤ 1, for if ρ ≥ 2 then
apart from the two pendant vertices, we have 14 remaining vertices, all of which cannot be of degree
3. So, subject to the constraints fi = 7, ρ = 0 or 1, the set of tuples (D,T ) that satisfies the equation
fi − ρ = f3 = 2D + T is {(3, 0), (2, 2)}. All non-isomorphic simple planar graphs with n = 16, α = 14 and
γ = 2 for {(D,T )} = {(3, 0), (2, 2)} are shown in the Figure 7, none of which is embeddable in the triangular
lattice. Hence, we deduce that for n ≡ 0 (mod 4), if d = (3n−2, 12) is graphical then n > 16.

(a) D = (3, 0) (b) D = (3, 0) (c) D = (2, 2) (d) D = (2, 2)

Figure 7: Non-isomorphic graphs for n = 16 (α = 14, γ = 2)

The inner dual for d = (3n−2, 12) with n = 20 is shown in Figure 8 (a), whereas Figure 8 (b) shows that
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d = (3n−2, 12) is graphical for all n ≥ 20 with n ≡ 0 (mod 4). The inner duals for the degree sequences of
statements (b) and (c) of the lemma are shown in Figure 8 (c) and (d), respectively.

(a) d = (318, 12) (b) d = (318+4t, 12) , t ∈ N ∪ {0}

(c) d = (329+4t, 11) , t ∈ N ∪ {0} (d) d = (331+4t, 11) , t ∈ N ∪ {0}

Figure 8: Graphs with degree sequences of special forms

Theorem 3.4. d = (3α, 20, 1γ) is graphical iff one of the following two conditions is satisfied (depending
upon the cyclic nature of the inner dual graph):

(a) Acyclic (inner dual is a tree) :
α = i, γ = i+ 2 ; i = 1, 2, ...,

⌊
n
2

⌋
− 1, n ≥ 4

(b) Cyclic :
n is even (n = 2k) : α = k + i, γ = k − i,

i = 0, 1, ..., k − 2 ; n ≡ 2 (mod 4), n ≥ 6
i = 0, 1, ..., k − 3 ; n ≡ 0 (mod 4), n ≥ 6
i = k − 2 ; n ≡ 0 (mod 4), n ≥ 20
i = k − 1 ; n ≡ 0 (mod 4), n ≥ 32
i = k − 1 ; n ≡ 2 (mod 4), n ≥ 30

Proof. The degree sequence d = (3α, 20, 1γ) may either have an acyclic or a cyclic inner dual graphical re-
alization. If d = (3α, 20, 1γ) has an acyclic graphical realization then the condition (a) follows from Lemma
3.2.
We now consider the case when d = (3α, 20, 1γ) has cyclic inner dual realization. Since only three configu-
rations are possible (see the definition of gadgets) when a vertex of 3 is added, it is clear that n ≥ 6. Also
since β = 0 and α, γ ̸= 0, from equation (2.2) it follows that the number of vertices of odd degree(s) must
be even, that is n = 2k. By setting fi ≥ 1 in (2.3), we get m ≥ n. So, from this inequality and equations
(2.1) and (2.2), we have

m ≥ n ⇒ 3α+ 2β + γ

2
≥ α+ β + γ

⇒ α ≥ γ (3.3)

Note that equation (3.3) is independent of the value of β. Since n = 2k, it follows from (3.3) that α ≥ k.
We claim that for n ≥ 6, d = (3α, 20, 1γ) has a cyclic graphical inner dual realization iff α = k + i,
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γ = k − i (∵ α + γ = n ⇒ γ = n− α = 2k − (k + i) = k − i) where i = 0, 1, ..., k − 2 if n ≡ 2 (mod 4) and
i = 0, 1, ..., k − 3 if n ≡ 0 (mod 4).
It has already been noted that (3.1) is independent of the value of β. So, setting α = k+ i and γ = k− i in
(3.1) gives fi = 1+i. We now present general cyclic construction realizing the degree sequence d = (3α, 20, 1γ)
for n ≥ 6, satisfying the conditions claimed in the preceding paragraph.
We can see the construction of G (see Figure 9) as union of a cyclic graph C̃ and a tree T̃ . Let n, nC̃ and

nT̃ be the cardinality of the vertex sets of G, C̃ and T̃ respectively (with slight abuse of notations). Also,

let d = (3α, 1γ), dC̃ = (3αC̃ , 1γC̃ ) and dT̃ = (3αT̃ , 1γT̃ ) be the degree sequences of G, C̃ and T̃ respectively.
We now present two cases based on the parity of fi.

va

vb T
~C

~

(a) G when fi ≡ 0 (mod 2)

T
~

va

vb

C
~

(b) G when fi ≡ 1 (mod 2)

Figure 9: Construction of G as a union of C̃ and T̃

Case 1: fi ≡ 0 (mod 2) (see Figure 9 (a))
By construction of C̃, αC̃ = 2fi and γC̃ = 1. So,

α = αC̃ + αT̃ ⇒ αT̃ = α− αC̃ = (k + i)− 2fi = (k + i)− 2(1 + i) = k − 2− i, and
γ = γC̃ + γT̃ − 1 ⇒ γT̃ = γ − γC̃ + 1 = (k − i)− 1 + 1 = k − i
⇒ γT̃ = αC̃ + 2

From Lemma 3.2, we know that dT̃ = (3αT̃ , 1γT̃ ) = (3αT , 1αT̃+2) is graphical (ignoring trivial cases of
i).

Case 2: fi ≡ 1 (mod 2) (see Figure 9 (b))
By construction of C̃, αC̃ = 2(fi − 1) + 3 = 2fi + 1 and γC̃ = 2. So,

α = αC̃ + αT ⇒ αT = α − αC̃ = (k + i) − 2fi − 1 = (k + i) − 2(1 + i) − 1 = k − 3 − i, and
γ = γC̃ + γT − 1 ⇒ γT = γ − γC̃ + 1 = (k − i)− 2 + 1 = k − 1− i
⇒ γT = αT̃ + 2

From Lemma 3.2, we know that dT̃ = (3αT̃ , 1γT̃ ) = (3αT , 1αT̃+2) is graphical (ignoring trivial cases of
i).

The conditions n ≥ 20 for i = k − 2 and n ≡ 0 (mod 4), n ≥ 32 for i = k − 1 and n ≡ 0 (mod 4),
and n ≥ 30 for i = k − 1 and n ≡ 2 (mod 4) follow from Lemma 3.3.

Now, we discuss the case γ = 0 and α, β ̸= 0 in Theorem 3.5 and Corollary 3.6.
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Theorem 3.5. For n ≥ 4 (n ̸= 5), let n = 2k or 2k + 1 and γ = 0, then

α = 2i, i = 1, 2, ..., k − 2 or k − 1 depending upon whether n ≡ 2 (mod 4)

or n ≡ 0 (mod 4) and n ≡ 1 (mod 2)

then β = 2k − 2i for n ≡ 0 (mod 2)

and β = 2k − 2i+ 1for n ≡ 1 (mod 2)

Proof. Let v1,v2,...,vn be the vertices of inner dual of hexagonal system. For γ = 0, α must be even that is
α ≡ 0 (mod 2) (by handshaking lemma). Note that graph cannot end on a pendant vertex as γ = 0. Thus
the end points of the inner dual graph are shown in the following figure 10.

Figure 10: End points of graph where γ = 0

For n = 4 we have only a diamond shape inner dual graph.

Now we consider the cases when n ≥ 6 for different values of i:
With i = 1 and α = 2, the graph can be constructed as shown in Figure 11.

Figure 11: An inner dual for γ = 0 and α = 2

For i ≥ 2 any three vertices with degree 2 can be joined in such a way that they will result in two vertices
of degree 3 and one vertex of degree 2 to convert a graph from α = 2i to α = 2(i+ 1) (See Figure 12).

1 2

1

2

1 2 3 4

1 2

3

4

OR

Figure 12: An inner dual for transition from i to i+ 1

When there are three or more triangles in an inner dual they can be changed into diamonds to convert a
graph from α = 2i to α = 2(i+ 1) as shown in Figure 13.
For n ≡ 0 (mod 4), maximum value of i = k− 1 can be achieved with the construction shown in Figure 14.
For n ≡ 1 (mod 4) maximum value of i = k − 1 can be achieved with the construction shown in Figure 15,
whereas, for n ≡ 3 (mod 4) maximum value of i = k − 1 can be achieved with the construction shown in
Figure 16.
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3

4

5

1 2

3

4

1

2 5

3

4

1 2

3

41

2

OR

Figure 13: An inner dual showing triangle to diamond construction to go from i to i+ 1

Figure 14: An inner dual showing maximum value of α when n ≡ 0 (mod 4)

For n ≡ 2 (mod 4), graph at i = k − 1 does not exist with just cycles of 3 as when i = k − 1, β = 2
which is possible only with composition of diamonds, but 4 does not divide n. Thus maximum i = k − 2
(see Figure 17)

Note that the only cases left in Theorem 3.5 are when α = n−2, β = 2 for n ≡ 2 (mod 4) and α = n−1,
β = 1 for n ≡ 1 (mod 2). These cases are discussed in the following corollary.

Corollary 3.6.

1. Let n ≡ 2 (mod 4). Then d = (3n−2, 22) is graphical if and only if n ≥ 18.

2. Let n ≡ 1 (mod 2). Then d = (3n−1, 21) is graphical if and only if n ≥ 29.

Proof. Note that α = n− 2, β = 2 is not possible with only cycles of 3 as β = 2 implies that there are only
diamonds in the graph. That would mean n ≡ 0 (mod 4), a contradiction! Thus there needs to be at least
one face ∈ R for α = n− 2, β = 2 where R is the family of holes.
It follows from lemma 3.3 that the least value of n for which α = n− 2, β = 2 is 18 and similarly the least
value of n for which α = n− 1, β = 1 is 29.
Induction on diamonds imply that hexagonal inner dual graph exists for all n ≥ 18 (n ≡ 2 (mod 4)) and
n ≥ 29 (n ≡ 1 (mod 2)) as shown in Figure 18.
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Figure 15: An inner dual showing maximum value of α when n ≡ 1 (mod 4)

Figure 16: An inner dual showing maximum value of α when n ≡ 3 (mod 4)

In the following results, we discuss the case when α, β, γ ̸= 0.

Theorem 3.7. When α, β, γ ̸= 0 then the multiplicities of the degrees of inner dual of hexagonal system is
the rearrangement of the elements of integer partition of n with the following conditions:

1. α ≥ γ for all n ≥ 4.

2. α and γ are of same parity.

3. 1 ≤ α ≤ n− 2 for n ≡ 1 (mod 4)
1 ≤ α ≤ n− 3 otherwise,

where α, β and γ are the multiplicities of the vertices of degree 3, 2 and 1 respectively.

Proof. In standard representation, a partition of n is given by a sequence x1...xm, where x1 ≥ x2 ≥ ... ≥ xm
and x1 + x2 + ...+ xm = n [3].

The value of α cannot be less than γ as for the minimum value of n with at least one triangle we have
α = γ and with two triangles α > γ. Thus α ≥ γ.

To show that for α even γ is also even and for α odd γ is also odd it is enough to recall that number
of odd degree vertices in a graph should be even by well known handshaking lemma.

The upper bound for α when n ≡ 0 (mod 2) is n − 3 as least value of β, γ can be 1(odd) which im-
plies that α is even. This violates handshaking lemma thus both β and γ cannot be odd at the same time.
Therefore, least value of β + γ = 3 and maximum α = n− 3 when n ≡ 0 (mod 2).

We can remove one pendent vertex (see fig. 19) to get d = (3n−2, 21, 11) from the construction of inner
dual given in theorem 3.5 for d = (3n−2, 12), n ≡ 2 (mod 4), thus upper bound for α when n ≡ 1 (mod 4)
is n− 2.

Likewise, we can add a vertex adjacent to a pendent (see fig. 20) to get d = (3n−3, 21, 12), thus upper
bound for α when n ≡ 3 (mod 4) is n− 3, with just cycles of three.

It can be proved through slight adjustments to the construction given in theorem 3 that all degree sequences
subject to the above constraints are hexagonal inner dual graphical. For example to achieve d = (34, 24, 12),
we need to add 2 vertices to d = (32, 26). (Figure. 21)

Corollary 3.8. In theorem 3.7, for n ≡ 3 (mod 4), α = n− 2, β = 1, γ = 1 is hexagonal inner dual graph
if and only if n ≥ 19.

Proof. Removing one pendent from construction for α = n− 2, γ = 2 for n = 20 in lemma 3.3 gives desired
degree sequence at n = 19.
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Figure 17: An inner dual showing maximum value of α when n ≡ 2 (mod 4)

(a) d = (316+4t, 22) , t ∈ N ∪ {0} (b) d = (328+4t, 21) , t ∈ N ∪ {0}

(c) d = (330+4t, 21) , t ∈ N ∪ {0}

Figure 18: Graphs with degree sequences of special forms

Similar argument as was given in lemma 3.3 shows that α = n − 2, β = 1, γ = 1 does not exist for
n < 19, n ≡ 3 (mod 4).

All n > 19, n ≡ 3 (mod 4) with α = n − 2, β = 1, γ = 1 are hexagonal inner dual graphical as can be
shown by addition of diamonds to the pendent vertex. (figure 22)

Now, we discuss the final case when β, γ = 0 and α ̸= 0.

Theorem 3.9. The degree sequence d = (3α, 20, 10) is graphical iff α ∈ N\A, where A = {x ∈ N :
x is odd or x = 2, 4, 6, ..., 22, 26, 28, 30, 38}.

Proof. (if)
From equation (2.2), we know that the number of vertices of odd degree(s) must be even, so clearly
α ≡ 1(mod 2). The smallest 3-regular planar matchstick graph has 8 vertices, so α ̸= 2, 4, 6. And for
n = 8, the only 3-regular matchstick graph is as shown in Figure 23 (a), which is not embeddable in the
triangular lattice since it contains a cycle of length 6.
We now show that α ̸= 10, 12, 14, 16, 26. Using similar arguments, it could be shown that α ̸= 18, 20, 22, 28, 30, 38.
By setting n = α and 2m = 3α in (2.3), we have

fi = 1 +
α

2
(3.4)

As noted earlier, only three configurations, that we call gadgets (shown as bold edges in Figure 4), are possible
when a vertex of degree 3 is added. So a 3-regular inner dual must be made up of these three gadgets with
each gadget connected by a straight edge (shown as dotted edges in Figure 4). Since a diamond (D′), a
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Figure 19: Upper bound for n ≡ 1 (mod 4)

Figure 20: Upper bound for n ≡ 3 (mod 4)

triangle (T ′) and a claw (C ′) contribute to 4, 3, and 1 vertices, respectively, we have

4D + 3T + C = n = α (3.5)

Also, since D′ and T ′ contribute to 2 and 1 interior faces, respectively, substituting f3 = 2D+T in equation
(2.4) yields

fi = ρ+ 2D + T (3.6)

So, using equations (3.4), (3.5) and (3.6), we have

2(2D + T ) + T + C = α ⇒ 2(fi − ρ) + T + C = α ⇒ T + C = α− 2(1 +
α

2
− ρ)

T + C = 2(ρ− 1) (3.7)

We now find the tuples (D,T,C), for n = 10, 12, 14, 26, with D,T,C ∈ N ∪ {0}, subject to constraint equa-
tions (3.5) and (3.7).

n = 10 ⇒ ρ = 0 or 1 ⇒ T + C = 0 ⇒ no solutions
n = 12 ⇒ ρ = 0 or 1 ⇒ T + C = 0 ⇒ {(D,T,C)} ≡ {(3, 0, 0)}
n = 14 ⇒ ρ = 0 or 1 ⇒ T + C = 0 ⇒ no solutions
n = 16 ⇒ ρ = 0 or 1 ⇒ T + C = 0 ⇒ {(D,T,C)} ≡ {(4, 0, 0)}

n = 26 ⇒ ρ = 0, 1, 2 or 3

⇒ T + C =


0 ; ρ = 0, 1
2 ; ρ = 2
4 ; ρ = 3

⇒ {(D,T,C)} ≡


ρ=2︷ ︸︸ ︷

(5, 2, 0) , (6, 0, 2) ,
(4, 3, 1) , (5, 1, 3)︸ ︷︷ ︸

ρ=3

 .

For n = 12 (with (D,T,C) = (3, 0, 0)) and n = 16 (with (D,T,C) = (4, 0, 0)), the only possible 3-regular
non-isomorphic graphs are as shown in Figure 23 (b) and (c), respectively, which are not embeddable in the
triangular lattice. For n = 26, we show that a 3-regular planar graph subject to (D,T,C) = (5, 2, 0) is not
embeddable in the triangular lattice. Similar arguments could be used to show that a planar graph subject
to (D,T,C) = (6, 0, 2), (4, 3, 1) or (5, 1, 3) is not embeddable in the triangular lattice.

First, note that a simple planar 3-regular graph with (D,T,C) = (5, 2, 0) is of the form shown in Fig-
ure 24. Now, consider the subgraph shown as shaded in this figure. Since this subgraph has two pendant
vertices, from Lemma 3.3 it follows that the number of vertices of the subgraph of Figure 24 in consider-
ation must have atleast 20 vertices, if it is to be embeddable in the triangular lattice. This implies that
4(p + q) + 8 ≥ 20, that is, p + q ≥ 3. Similarly, 4(q + r) + 8 ≥ 20, that is, q + r ≥ 3. So, the solution
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Figure 21: d = (32, 26) → d = (34, 24, 12)

Figure 22: d = (3n−2, 21, 11) for n ≥ 19 and n ≡ 3 (mod 4)

set of the tuples (p, q, r) subject to constraints p + q ≥ 3, q + r ≥ 3, p + q + r = D = 5 and p, q, r ≥ 0 is
{(0, 3, 2), (0, 4, 1), (0, 5, 0), (1, 2, 2), (1, 3, 1), (1, 4, 0), (2, 1, 2), (2, 2, 1), (2, 3, 0)}. For any tuple (p, q, r) belong-
ing to this set, Figure 24 is not embeddable in the triangular lattice.

This completes if part of the proof.

(only if)
Note that,

A′ = N\A = {24, 32, 34, 36, 40, 42, 44, 46, 48, 50, 52, 54, ...}
= {24 + 8k : k ∈ N ∪ {0}}︸ ︷︷ ︸

A′
1

∪{32 + 8k : k ∈ N ∪ {0}}︸ ︷︷ ︸
A′

2

∪{36 + 8k : k ∈ N ∪ {0}}︸ ︷︷ ︸
A′

3

∪{46}︸︷︷︸
A′

4

∪{54 + 8k : k ∈ N ∪ {0}}︸ ︷︷ ︸
A′

5

The inner dual graphs that realizes the degree sequence d = (3α, 20, 10) for α ∈ A′
i, (1 ≤ i ≤ 5) are shown in

Figure 25.
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(a) n = 8 (b) n = 12 (c) n = 16

Figure 23: 3-regular simple planar graphs on n vertices.

Figure 24: 3-regular planar graph with (D,T,C) = (5, 2, 0)

4. Generating function for the degree sequence of inner dual graph with maximum degree 3

There is also a scope for finding appropriate generating function for the degree sequence, for further
details we refer [10].
We present here a few results in the form of corollaries. In fact they are coming out from the above theorem,
which establishes exact relationship between α, β, and γ. The first corollary is a result based on the degree
sequence of inner dual graph. All other results in the following are based on the multiplicities α, β and γ.

Corollary 4.1. If α = γ and β = α+ γ then the degree sequence 3α, 2α+γ , 1γ will hold for inner dual graph
and these terms(multiplicities of the degree sequence of inner dual) are the coefficients of the generating
function

C(n) = 1 + 2× [3|n] = 1 + 2

(
1 + 2 cos(2nπ3 )

3

)
,

where [x|y] = 1 when x divides y and 0 otherwise.

Proof. Let α = γ and β = α + γ, we will show that these values come from theorem 4. According to the
theorem 4 we have

1 ≤ α ≤ n− 2 for n ≡ 1(mod 4)

and
1 ≤ α ≤ n− 3 otherwise

and
1 ≤ γ ≤ α− 2 for each α

We are considering the case for α = γ then β = n− (α+ γ) Putting β = α+ γ, we have α+ γ = n− (α+ γ)
this gives α+ γ = n

2 ⇒ n must be even and it is a multiple of 4 as α = γ ̸= 0.
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(a) A′
1 = {24 + 8k : k ∈ N ∪ {0}} (b) A′

2 = {34 + 8k : k ∈ N ∪ {0}} (c) A′
4 = {46}

(d) A′
3 = {36 + 8k : k ∈ N ∪ {0}} (e) A′

5 = {54 + 8k : k ∈ N ∪ {0}}

Figure 25: 3-regular inner dual hexagonal graphs

It can also be justified as α and γ are the multiplicities of odd degree vertices. Since α = γ therefore, α+ γ
must be even. Furthermore, increasing the multiplicities α, α+ γ and γ will increase the quantities 4 times
the previous one. Thus it represents the case when n ≡ 0 (mod4).

⇒ 1 ≤ α, γ ≤ n− 3 and α = γ

and
β = n− (α+ γ) = n− n

2
=

n

2

Hence β = α+ γ. Hence (3α, 2α+γ , 1γ) forms an inner dual degree sequence. The multiplicities α, α+ γ and
γ gives the following terms

1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...

the terms in the above sequence in fact are the coefficients of generating function f(n), where f(n) =
1 + 2× [3|n] = 1 + 2(1 + 2× cos(2× n× π/3)/3), where [x|y] = 1 when x divides y, 0 otherwise.

Corollary 4.2. If α = 3γ and β = α−γ then the degree sequence 3α, 2α−γ , 1γ will hold for inner dual graph
and these terms(multiplicities of the degree sequence of inner dual) are the coefficients of the generating
function

C(n) = n mod 3 + (n + 1) mod 3, with n ≥ 0.
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Proof. Let α = 3γ and β = α− γ, we will show that these values come from theorem 4. Since

1 ≤ α ≤ n− 2 for n ≡ 1(mod 4)

and
1 ≤ α ≤ n− 3 otherwise

and
1 ≤ γ ≤ α− 2 for each α

We are considering the case for α = 3γ then β = n− (α+γ) Putting β = α−γ, we have α−γ = n− (α+γ)
this gives α = n

2 ⇒ n must be even and it is a multiple of 6 as α = 3γ ̸= 0
It can also be justified as α and γ are the multiplicities of odd degree vertices. Since α = 3γ therefore,

α + 3γ must be even and a multiple of 4. Furthermore, increasing the multiplicities α, α − γ and γ will
increase the quantities 6 times the previous one. Thus this is the case when n ≡ 0(mod4) and n ≡ 2(mod4).

⇒ 1 ≤ α, γ ≤ n− 2 and α = 3γ

and
β = n− (α+ γ) = n− n

2
− n

6
=

n

3

Hence β = α − γ. Hence 3α, 2α−γ , 1γ forms an inner dual degree sequence. The multiplicities α, α + γ and
γ gives the following terms

3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, ...

Terms in the above sequence infact are the coefficients of generating function f(n), where f(n) = n mod 3+
(n + 1) mod 3, with n ≥ 0. □

Similar arguments can be used to prove other exact relationship between α, β and γ for 3α, 2β, 1γ

which form the degree sequence for inner dual graphs. The terms in the degree sequence are exactly the
coefficients of the generating functions. In the following we also summarize various degree sequences and
their respective generating functions.
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Exact Relation The n-th Coefficient of Generating Function

α = β = γ C(n) = ⌊n3 ⌋+ 1 n > 0

α = γ C(n) = 1 + 2(
1+2 cos( 2nπ

3
)

3 ) n ≥ 0
β = 2α+ γ

α = γ C(n) = 1
9{8(n mod 3) + 5[(n + 1) mod 3] + 2[(n + 2) mod 3]} n > 0

β = α+γ
4

α = 3γ C(n) = 1 + 2(
1+2 cos( 2nπ

3
)

3 ), n > 0.
β = α− 2γ

α = 3γ C(n) =
7−4 cos( 2πn

3
)

3 n > 0
β = α

α = 2γ C(n) = 2mod(n,3) n ≥ 2

β = α−γ
2

α = γ C(n) = fn−1 + fn−2 − 2[⌊fn−1

3 ⌋+ ⌊fn−2

3 ⌋]
β = α+γ

3

α = 3γ C(n) = 1
6{3(n mod 6)− [(n + 1) mod 6)]− 4[(n + 2) mod 6)]

β = α+ γ −3[(n+ 3) mod 6)] + [(n + 4) mod 6)] + 4[(n + 5) mod 6)],n ≥ 0

α = γ C(n) = (n mod 3) + 2[(n + 1) mod 3]− 2 ∗ [C(2n, n) mod 2]
β = 2α+ γ

2 −5C[(n+ 1)2, n+ 3] mod 2, n ≥ 0

α = γ C(n) = (x+ 4x2 + x3)/(1− x3)

β = α+γ
8

α = 3γ C(n) = 1
3 [7(n mod 3) + ((n + 1) mod 3) + ((n + 2) mod 3)] n > 0

β = α+ 2γ

α = 5γ C(n) = −5
6 (n mod 6)− [(n + 1) mod 6] + 4[(n + 2) mod 6]

β = α− γ +5[(n+ 3) mod 6] + [(n + 4) mod 6]− 4[(n + 5) mod 6], n ≥ 0

α = 3γ C(n) = −9
6 (n mod 6) + 8[(n + 1) mod 6]− 5[(n + 2) mod 6]

β = α
2 +9[(n+ 3) mod 6]− 8[(n + 4) mod 6] + 5[(n + 5) mod 6], n ≥ 0

α = 7γ C(n) = 1
37(n mod 3) + 7[(n + 1) mod 3]− 2[(n + 2) mod 3], n ≥ 0

β = α− 3γ

α = 3γ C(n) = 3n mod 13 n > 0
β = 2α+ 3γ

α = 7γ C(n) = 1
3−4(n mod 6)− 2[(n + 1) mod 6]− [(n + 2) mod 6]

β = α− 2γ +4[(n+ 3) mod 6] + 2 ∗ [(n + 4) mod 6] + [(n + 5) mod 6] n ≥ 0

α = 2γ C(n) = 2n mod 14 n > 1
β = α+ 2γ

Conclusion

In this paper, all the hexagonal inner dual graphical degree sequences with maximum degree 3k,k have
been identified and their respective graphical realizations have been presented. All degree sequences which
can generate a-cyclic graphs in hexagonal inner dual system have been looked upon, however for graphs
containing cycles, there is scope for work with maximum degree 4 or greater. Moreover, we also find
relationships between degree sequences and their respective generating functions which are based on some
conditions. Further work on higher degree sequences is underway and will be published soon.
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