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On f -Derivations in Residuated Lattices

Mbarek Zaouia, Driss Greteteb, Brahim Fahidc,∗

aUniversity of Ibn Tofail National, school of Applied Sciences, Kenitra, Morocco.
bUniversity of Ibn Tofail National, school of Applied Sciences, Kenitra, Morocco.
cUniversity of Ibn Tofail Superior, School of Technology, Kenitra, Morocco.

Abstract

In this paper, as a generalization of derivation in a residuated lattice, the notion of f -derivation for a
residuated lattice is introduced and some related properties of isotone (resp. contractive) f -derivations and
ideal f -derivations are investigated. Also, we define principal f -derivation and their properties. Finally, we
define the notion of fixed point. In particular, as an application of ideal f -derivation in Heyting algebras,
we obtain that the fixed point set is still a residuated lattice.
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1. Introduction

It is well known that certain information processing is based on the classical two-valued logic (Boolean
logic). Naturally, it is necessary to establish some rational logic systems as the logical foundation for
uncertain information processing. For this reason, various kinds of non-classical logic systems have been
extensively proposed and researched, for example, BL-algebras [19], MV-algebras [3], MTV-algebras [7] and
so on. Residuated lattice are very basic and important as an algebraic structure.

The notion of derivation is a very interesting and important area of research, because it is helpful in
studying structures and properties in algebraic systems. In 1957, Posner [15] introduced the notion of
derivation in a prim ring (R,+, .). In 2004, Jun and Xin [11] applied the notion of derivations to BCI-
algebras. In 2005, Zhan and Liu [20] examined the notion of f-derivation of BCI-algebras. In 2008, Xin et
al. [22] proposed the concept of a derivation on a lattice (L,∧,∨). In the same year, Çeven and Özturk [23]
studied the notion of an f-derivation on a lattice. In 2016, He et al. [9] introdused the concept of derivation in
a residuated lattice, and they characterized some special types of residuated lattices in terms of derivations.
In 2018, Rachunek and Salunova [18] have introduced the concept of derivations and a complete description
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of all derivations on a non-commutative generalization of MV-algebras. In the same year, Liang et al
[13] presented the notions of derivations on EQ-algebras and obtained many special types of them. In
addition, Wang et al. [25] introduced the notion of derivations of commutative multiplicative semilattices,
they investigated the related properties of some special derivations and gave some characterizations.In 2019,
Wang et al [26] gave some representations of MV -algebras in terms of derivations. Rasheed and Majeed [17]
studied some results of (α, β)-derivations on prime seeding. Dey et al [6] considered generalized orthogonal
derivations of semiprimary rings. Ciungu [5] studied the properties of implicit derivations in pseudo-BCI-
algebras. Chaudhuri [4] discussed (σ, τ)-derivations of group rings. In 2020, Guven [8] proposed the notion
of (σ, τ)-derivations generalized on rings and discussed some related aspects. Hosseini and Fosner [10]
studied the image of left Jordan derivations on algebras. Ali and Rahaman [1] studied a pair of generalized
derivations in rings. Zhu et al. [21] introduced the notion of a generalized derivation and investigated
some related properties of them. In 2021, Ling and Zhu [14] proposed a generalization of a derivation in a
residuated lattice and some related properties are investigated.

Motivated by the above research, this paper, introduced the notion of multiplicative f -derivation df ,
as a generalization of a derivation in a residuated lattice, determined by a function f from L to L. More
precisely, for any x, y ∈ L, we propose the following formula: df (x ⊗ y) = (df (x) ⊗ f(y)) ∨ (f(x) ⊗ df (y)).
At the same time, we discuss and investigate some related properties.

This paper is organized as follows. In section 2, we recall some concepts and results on residuated lattices.
In section 3, we propose the notion of multiplicative f -derivation in residuated lattices and investigate some
related properties of isotone, contractive, ideal and good commutative f -derivation. Moreover, we define
principal f -derivation and their properties. finally, we define the notion of fixed point. In particular, as an
application of ideal f -derivation in Heyting algebras, we obtain that the fixed point set is still a residuated
lattice.

2. Preliminaries

We assume that the reader is familiar with the classical results concerning residuated lattices, but to
make this work more self-contained, we briefly introduce some basic notions used in the rest of the work.

Definition 1. [24] An algebraic structure (L,∧,∨,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a bounded
commutative residuated lattice (simply called a residuated lattice) if:

1. (L,∧,∨, 0, 1) is a bounded lattice,

2. (L,⊗, 1) is a monoid with unit element 1,

3. For all x, y, z ∈ L, x⊗ y ≤ z if and only if x ≤ y → z.

In what follows, we denote by L a residuated lattice (L,∧,∨,⊗,→, 0, 1).
For any x ∈ L and a natural number n, we define x

′
= x → 0, which is a negation in a sense. x

′′
= (x

′
)
′
,

x0 = 1, xn = xn−1 ⊗ x for all n ≥ 1.

Proposition 1. [24] For all x, y, z, w ∈ L, we have:

1. 1 → x = x, x → 1 = 1,

2. x ≤ y if and only if x → y = 1,

3. If x ≤ y, then z → x ≤ z → y and y → z ≤ x → z,

4. If x ≤ y and z ≤ w then x⊗ z ≤ y ⊗ w,

5. x⊗ y ≤ x ∧ y,

6. 0
′
= 1, 1

′
= 0, x ≤ x

′′
,

7. x⊗ y = 0 if and only if x ≤ y
′
,

8. x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z),

9. x → (y → z) = (x⊗ y) → z = y → (x → z).
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An element x ∈ L is called complemented if there exists an element y ∈ L such that x ∧ y = 0 and
x ∨ y = 1. By B(L), we mean the set of all complemented elements of L, i.e.,

B(L) = {x ∈ L : ∃y ∈ L, x ∧ y = 0, x ∨ y = 1}.

Proposition 2. [12] For a residuated lattice L we have:

1. x ∈ B(L) if and only if x ∨ x
′
= 1,

2. If x ∈ B(L), then x ∧ y = x⊗ y for all y ∈ L,

3. If x ∈ B(L), then x⊗ x = x.

In what follows, we recall the structure of Heyting algebras.

Definition 2. [2] A lattice (L,∨,∧) is called to be a Heyting algebra if for any x, y ∈ L, there exists
x → y ∈ L such that z ≤ x → y if and only if z ∧ x ≤ y for all z ∈ L.

Theorem 1. [16] Let (L,∨,∧,⊗, 0, 1) be a residuated lattice. Then, the following statements are equivalent:

1. L is a Heyting algebra,

2. x⊗ y = x ∧ y = x⊗ (x → y) for all x, y ∈ L.

At the end of this section, we give the notion of multiplicative derivation in a residuated lattice L as
follows.

Definition 3. [9] A mapping d: L −→ L is called a multiplicative derivation on L if it satisfies the following
conditions: for any x, y ∈ L,

d(x⊗ y) = (d(x)⊗ y) ∨ (x⊗ d(y)).

3. f-derivations in Residuated Lattices

In this section, as a generalization of a derivation on a residuated lattice, the notion of f -derivation for
a residuated lattice is introduced and some related properties are investigated. Firstly, we give the concept
of f -derivation in a residuated lattice as follows.

Definition 4. Let L be a residuated lattice. A map df : L −→ L is called a multiplicative f -derivation on
L if there exists a function f : L −→ L such that

df (x⊗ y) = (df (x)⊗ f(y)) ∨ (f(x)⊗ df (y))

for any x, y ∈ L.

Remark 1. If f is an identity function then df is a derivation on a residuated lattice L [9].

In what follows, unless otherwise stated, a multiplicative f -derivation on L is called a f -derivation on
L. The following example, showed that an f -derivation is not a derivation in general.

Example 1. Let L = {0, a, b, 1} be a chain and the operations ⊗, → be defined as follows:

⊗ 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then it is easy to verify that L is a residuated lattice, where x ∧ y = min{x, y} and x ∨ y = max{x, y}.
We define a mapping d : L −→ L by d0 = 0, da = b, db = a, d1 = a. Since d(a ⊗ a) = 0 and (d(a) ⊗ a) ∨
(a ⊗ d(a)) = a. Then d is not a derivation on L. Based on d, we define a mapping f by f0 = 0, fa = 0,
fb = b, d1 = 1. Then d satisfies the equation d(x⊗ y) = (d(x)⊗ f(y)) ∨ (f(x)⊗ d(y)) for any x, y ∈ L, so
d is a f -derivation on L.
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Proposition 3. Let df be a f -derivation on L. Then the following statements hold.

1. If f(0) = 0, then df (0) = 0,

2. f(x)⊗ df (1) ≤ df (x) for all x ∈ L,

3. If f is an homomorphism under ⊗, then df (x
n) = fn−1(x)⊗ df (x) for all x ∈ L,

4. If x ≤ y
′
and f(0) = 0, then df (y) ≤ (f(x))

′
and df (x) ≤ (f(y))

′
for all x, y ∈ L,

5. If (f(x))
′ ≤ f(x

′
), then df (x

′
) ≤ (df (x))

′
for all x ∈ L.

Proof. (1) It follows from Definition 4 that df (0) = df (0)⊗ f(0). Then df (0) = 0.
(2) Let x ∈ L. Then we have df (x) = df (1 ⊗ x) = (df (1) ⊗ f(x)) ∨ (f(1) ⊗ df (x)) , which implies

f(x)⊗ df (1) ≤ df (x).
(3) Let x ∈ L. Then we have df (x

2) = df (x ⊗ x) = f(x) ⊗ df (x). By induction, we have df (x
n) =

df (x
n−1 ⊗ x) = (df (x

n−1)⊗ f(x)) ∨ (f(xn−1)⊗ df (x)) = ((fn−2(x)⊗ df (x)⊗ f(x))) ∨ (fn−1(x)⊗ df (x)) =
fn−1(x)⊗ df (x).

(4) Let x, y ∈ L and x ≤ y
′
then x ⊗ y = 0. Thus df (x ⊗ y) = df (0) = 0, then (df (x) ⊗ f(y)) ∨

(f(x) ⊗ df (y)) = 0, which implies df (x) ⊗ f(y) = 0 and f(x) ⊗ df (y) = 0. Therefore, df (y) ≤ (f(x))
′
and

df (x) ≤ (f(y))
′
.

(5) Let x ∈ L, and (f(x))
′ ≤ f(x

′
). Then it follows from Proposition 1 that x ≤ x

′′
then x ≤ (x

′
)
′
.

From 4. we have df (x) ≤ (f(x
′
))

′
. Then df (x

′
) ≤ (f(x

′′
))

′
. Also we have f(x

′
)
′′ ≤ (df (x))

′
. Thus

df (x
′
) ≤ (f(x

′′
))

′ ≤ f(x
′
)
′′ ≤ (df (x))

′
. Therefore, df (x

′
) ≤ (df (x))

′
.

Definition 5. Let df be a f -derivation on L. Then for all x, y ∈ L,

1. If x ≤ y implies df (x) ≤ df (y), we call df an isotone f -derivation,

2. If df (x) ≤ f(x), we call df a contractive f -derivation.

In particular, if df is both isotone and contractive, then we call df an ideal f -derivation.

Example 2. Let L = {0, a, 1} with 0 < a < 1. The lattice L be a residuated lattice if we define x⊗y = x∧y
and

x → y =

{
1 if x ≤ y,

y otherwise.

Define a map da by da(x) = x ∧ a for all x ∈ L and a mapping f by f0 = 0, fa = a, f1 = 1. It is easy
to verify that df is an ideal f -derivation on L.

Now, some properties of isotone and contractive f derivation are investigated.

Proposition 4. Let df be an isotone f -derivation on L. Then the following statements hold.

1. if z ≤ x → y, then f(z) ≤ df (x) → df (y) and f(x) ≤ df (z) → df (y) for all x, y, z ∈ L,

2. f(x → y) ≤ df (x) → df (y) and df (x → y) ≤ f(x) → df (y) for all x, y ∈ L,

3. f(x) ≤ df (y) → df (x) and f(y) ≤ df (x) → df (y) for all x, y ∈ L.

Proof. (1) Let x, y, z ∈ L and z ≤ x → y. Then x⊗ z ≤ y. Since df is an isotone f -derivation on L, we have
(df (x) ⊗ f(z)) ∨ (f(x) ⊗ df (z)) ≤ df (y). Then f(z) ⊗ df (x) ≤ df (y) and f(x) ⊗ df (z) ≤ df (y). Therefore
f(z) ≤ df (x) → df (y) and f(x) ≤ df (z) → df (y).

(2) Since x⊗ (x → y) ≤ y, because x⊗ (x → y) ≤ x∧y for all x, y ∈ L, we have df (x⊗ (x → y)) ≤ df (y).
It follows that (df (x) ⊗ f(x → y)) ∨ (f(x) ⊗ df (x → y)) ≤ df (y), which implies f(x → y) ⊗ df (x) ≤ df (y)
and df (x → y)⊗ f(x) ≤ df (y), Therefore f(x → y) ≤ df (x) → df (y) and df (x → y) ≤ f(x) → df (y) for all
x, y ∈ L.

(3) Let x, y ∈ L. Since x ⊗ y ≤ x, we have df (x ⊗ y) ≤ df (x). It follows from definition 4 that
df (y)⊗f(x) ≤ df (x⊗y) ≤ df (x). Thus, f(x) ≤ df (y) → df (x). In the similar way, we have f(y) ≤ df (x) →
df (y).



M. Zaoui, D. Gretete and B. Fahid, Journal of Prime Research in Mathematics, 19(2) (2023), 17-23 21

Proposition 5. Let df be a contractive f -derivation on L. Then the following statements hold.

1. df (x)⊗ df (y) ≤ df (x⊗ y) ≤ df (x) ∨ df (y) for all x, y ∈ L,

2. If df (1) = 1, then df (x) = f(x) for all x ∈ L,

3. If df (1) = 1, then f(x)⊗ f(y) ≤ df (x⊗ y) for all x, y ∈ L.

Proof. (1) Let x, y ∈ L. Since df (x) ≤ f(x) and df (y) ≤ f(y). we have, df (y) ⊗ df (x) ≤ df (y) ⊗ f(x)
and df (x) ⊗ df (y) ≤ df (x) ⊗ f(y). Thus, df (x) ⊗ df (y) ≤ (df (x) ⊗ f(y)) ∨ (df (y) ⊗ f(x)). On the other
hand, since f(y) ≤ 1 and f(x) ≤ 1. We have, df (x) ⊗ f(y) ≤ df (x) and df (y) ⊗ f(x) ≤ df (y). Thus,
df (x⊗ y) ≤ df (x) ∨ df (y). Finally, df (x)⊗ df (y) ≤ df (x⊗ y) ≤ df (x) ∨ df (y) for all x, y ∈ L.

(2) Let x ∈ L. From Proposition 3 it follows that f(x) ⊗ df (1) ≤ df (x). Then f(x) ≤ df (x). Since
df (x) ≤ f(x), we get df (x) = f(x).

(3) Let x, y ∈ L. It follows from Definition 4 that df (x) ⊗ f(y) ≤ df (x ⊗ y). Since df (1) = 1 then
f(x) ≤ df (x). Therefore, f(x)⊗ f(y) ≤ df (x⊗ y).

Proposition 6. Let df be an ideal f -derivation on L. Then df (x → y) ≤ df (x) → df (y) ≤ df (x) → f(y).

Proof. Let x, y ∈ L. Since x ⊗ (x → y) ≤ y, we have df (x ⊗ (x → y)) ≤ df (y). Then, df (x) ⊗ df (x →
y) ≤ df (y). Thus, df (x → y) ≤ df (x) → df (y). On the other hand, Since df (y) ≤ f(y), we have
df (x) → df (y) ≤ df (x) → f(y). Finally, df (x → y) ≤ df (x) → df (y) ≤ df (x) → f(y).

Proposition 7. Let df be an f-derivation on L and f is an increasing function. If df satisfies df (x) →
df (y) = df (x) → f(y) for all x, y ∈ L, then df is an ideal f -derivation on L.

Proof. Let df (x) → df (y) = df (x) → f(y) for all x, y ∈ L. Since df (x) ⊗ 1 ≤ df (x), we have 1 ≤
df (x) → df (x) = df (x) → f(x). Thus, df (x) ⊗ 1 ≤ f(x), which implies df (x) ≤ f(x) for all x ∈ L
then, df is contractive. On the other hand, let x, y ∈ L and x ≤ y. Since f is an increasing function,
we have f(x) ≤ f(y). Thus, df (x) ⊗ 1 ≤ df (x) ≤ f(x) ≤ f(y). Then, df (x) ⊗ 1 ≤ f(y), which implies
1 ≤ df (x) → f(y) = df (x) → df (y). Then, 1⊗ df (x) ≤ df (y), which implies df is isotone. Therefore, df is
an ideal f -derivation on L.

An ideal f -derivation is said to be good if df (1) ∈ B(L).

Proposition 8. Let df be a good ideal f -derivation on L, then the following statements hold.

1. df (x) = f(x)⊗ df (1) for all x ∈ L,

2. If df (1) = 1 then df (x) = f(x) and f(x⊗ y) = f(x)⊗ f(y) for all x, y ∈ L.

Proof. (1) Let x ∈ L. We have f(x)⊗ df (1) ≤ df (x) from Proposition 3. On the other hand, since df (x) ≤
df (1) and df (x) ≤ f(x), we have df (x) ≤ df (1) ∧ f(x) = df (1)⊗ f(x), which implies df (x) = f(x)⊗ df (1).

(2) If df (1) = 1. Then, df (x) = f(x)⊗df (1) = f(x) and f(x⊗y) = df (x⊗y) = (df (x)⊗f(y))∨ (f(x)⊗
df (y)) = (f(x)⊗ f(y)) ∨ (f(x)⊗ f(y)) = f(x)⊗ f(y), which implies f(x⊗ y) = f(x)⊗ f(y).

Definition 6. Let a ∈ L. We define a principal multiplicative mapping d(a,f) : L −→ L as follows:
d(a,f)(x) = a⊗ f(x) for all x ∈ L.

Proposition 9. Let df be a good ideal derivation on L, then df is a principal multiplicative mapping and
df = d(df (1),f)

Proof. Easy, since df (x) = f(x)⊗ df (1) for all x ∈ L.

Proposition 10. Let d(a,f) be a principal multiplicative mapping and f(x⊗y) = f(x)⊗f(y) for all x, y ∈ L,
then the following statements hold.

1. d(a,f) is an f -derivation;

2. If f is an increasing function. Then, d(a,f) is an ideal f -derivation on L.
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Proof. (1)Let x, y ∈ L, then

d(a,f)(x⊗ y) = a⊗ f(x⊗ y)

= (a⊗ f(x⊗ y)) ∨ (a⊗ f(x⊗ y))

= (a⊗ f(x)⊗ f(y)) ∨ (a⊗ f(x)⊗ f(y))

= (d(a,f)(x)⊗ f(y)) ∨ (f(x)⊗ d(a,f)(y)).

Then, d(a,f) is an f -derivation.
(2)Let x ≤ y. Since f is an increasing function, we have f(x) ≤ f(y). Thus, d(a,f)(x) = a ⊗ f(x) ≤

a⊗f(y) = d(a,f)(y), which implies that d(a,f) is isotone. Moreover, since a ≤ 1, we have d(a,f)(x) = a⊗f(x) ≤
f(x) for all x ∈ L, which implies that d(a,f) is contractive. Therefore, d(a,f) is an ideal f -derivation on L.

Next, we discuss the structures and properties of the fixed point set of ideal f -derivation. Firstly, we
give the concept of the fixed point set of a f -derivation in residuated lattice as follows.

Definition 7. Let df be an ideal f -derivation on L. Define a set Fixdf (L) = {x ∈ L : df (x) = x}. Fixdf
is called the set of fixed elements of L for df .

Now, we investigate some operations of Fixdf (L).

Proposition 11. Let df be an ideal f -derivation on L and f(x) ≤ x for all x ∈ L. Then we have:
for all x, y ∈ Fixdf (L): x⊗ y, x ∨ y ∈ Fixdf (L).

Proof. Let x, y ∈ Fixdf (L), we have df (x) = x and df (y) = y. Then, x⊗y = df (x)⊗df (y) ≤ df (x)⊗f(y) ≤
df (x⊗ y). On the other hand, since df is an ideal f -derivation on L, we have df (x⊗ y) ≤ f(x⊗ y) ≤ x⊗ y,
which implies df (x⊗ y) = x⊗ y. Therefore, x⊗ y ∈ Fixdf (L). Moreover, since df is an ideal f -derivation
on L, we have x ∨ y = df (x) ∨ df (y) ≤ df (x ∨ y) ≤ f(x ∨ y) ≤ x ∨ y, then we have df (x ∨ y) = x ∨ y, which
implies that x ∨ y ∈ Fixdf (L).

Theorem 2. Let L be a Heyting algebra, df an ideal f -derivation on L and f(x) ≤ x for all x ∈ L. Then
(Fixdf (L),∧,∨,⊗, 7−→, 0, 1) is a residuated lattice, where x 7−→ y = df (x −→ y) and 1 = df (1) for all
x, y ∈ L.

Proof. We complete the proof by three steps.
1. First, we show that (Fixdf (L),∧,∨,⊗, 7−→, 0, 1) is a bounded lattice with 0 as the smallest element

and 1 as the greatest element. From Proposition 11 and Theorem 1, we have Fixdf (L) is closed under ∨
and ∧. Therefore, (Fixdf (L),∧,∨) is a lattice. Let x ∈ Fixdf (L), we have, x ∧ 0 = 0 and

x ∨ df (1) = df (x) ∨ df (1)

= df (1).

Therefore, 0 the smallest element and 1 = df (1) is the greatest element in Fixdf (L).

2. Next,we prove that (Fixdf (L),⊗, 1) is a commutative monoid with 1 = df (1) as neutral element.
It follows from Proposition 11 that (Fixdf (L),⊗) is closed under ⊗, and easy to show that it satisfies
associative laws. Thus, (Fixdf (L),⊗) is a commutative semigroup. Let x ∈ Fixdf (L), since df is contractive
and f(x) ≤ x we get df (x) = f(x) by this fact, we obtain

x⊗ 1 = df (x)⊗ df (1)

= df (x⊗ 1)

= df (x)

= x,
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which implies 1 = df (1) is unit element.
3. Finally, we show that x ⊗ y ≤ z if and only if y ≤ x 7→ z for all x, y ∈ Fixdf (L). We have for all

x, y, z ∈ Fixdf (L)

x⊗ y ≤ z ⇔ y ≤ x → z

⇔ df (y) ≤ df (x → z)

⇔ df (y) ≤ x 7→ z

⇔ y ≤ x 7→ z.

Therefore, (Fixdf (L),∧,∨,⊗, 7−→, 0, 1) is a residuated lattice.
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