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Abstract

In this study, a multi-wing chaotic system with classical derivative has been studied. The conditions under
which the existence and uniqueness of the solution of this chaotic system exist are examined. Afterwards,
this chaotic system has been modified using fractional differential operators, and in this case the behavior of
the multi-wing chaotic system has been investigated. Moreover, the newly introduced piecewise differential
operators is included in such a chaotic system and the piecewise chaotic system is solved by using Newton
polynomial approach. The numerical simulations of piecewise chaotic system are performed for fractional
order.
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1. Introduction and Preliminaries

The fractional derivative consept, which is a generalization of the classical derivative, has become the
focus of attention of researchers and has been seccesfully applied to many real world problems. In this
study, fractional differential operators such as Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional
derivatives will be considered [1-3]. Undoubtedly, the chaos theory, which has attracted the attention of
researchers, has been reconsidered with fractional analysis and has opened new doors in research [4-11]. In
[4], the authors have investigated the modified Chua attractor. Labyrinth chaotic system has been modeled
with the fractional differential operators in [5]. In [6], Chua attractor with fractional and fractal-fractional
operators has been solved by using a new numerical scheme based on Newton polynomial. In [7], chaotic
systems have been modeled by using with fractal-fractional operators introduced by Atangana. In [8], chaotic
attractors with many scrolls have been examined for fractional case. In [9], some chaotic attractors has been
presented by using fractal-fractional differentiation and integration. In [10], Irving-Mullineux oscillator has

∗Corresponding author
Email addresses: akif.cetin@alanya.edu.tr (Mehmet Akif Cetin), selahattingenc1980@gmail.com (Selahattin Genc),

maraz250@hotmail.com (Metin Araz)

Received : 01 January 2024; Accepted: 11 January 2024; Published Online: 23 January 2024.



MA. Cetin, S. Genc, M. Araz, Journal of Prime Research in Mathematics, 20(1) (2024), 1–14 2

been modified by the fractional derivative with Mittag-Leffler kernel. In [11], the authors have examined
the chaotic behavior in system of fractional ordinary differential equations.

Since chaotic systems are nonlinear, we need to solve such systems by using numerical methods. In this
study, we present the numerical scheme based on Newton polynomial [6] to solve chaotic system that will
be presented in the next section.

We now present some definitions about fractional differential operators that will be used in this study.

Definition 1.1. Let u : R+ → R. The left Caputo fractional derivative[2] of fractional order ρ of the
function u (t) is defined by

C
0 D

ρ
t u (t) =

1

Γ (1− ρ)

∫ t

0
(t− l)−ρ u′ (l) dl, t > 0 (1.1)

where ρ ∈ (0, 1).

Definition 1.2. Let u (t) be continuous and differentiable on C1 [0, 1]. Then, the Caputo-Fabrizio fractional
derivative[3] with fractional order ρ of the function u (t) is given as follows

CF
0 Dρ

t u (t) =
1

1− ρ

∫ t

0

du (l)

dl
exp

[
−ρ (t− l)

1− ρ

]
dl (1.2)

where 0 < ρ ≤ 1.

Definition 1.3. Let u (t) ∈ W 1
2 (0, l), then for ρ ∈ [0, 1] Atangana-Baleanu fractional derivative[1] in Caputo

sense of the function u (t) is given by

ABC
0 Dρ

t u (t) =
1

1− ρ

∫ t

0

d

dl
u (l)Eρ

[
− ρ

1− ρ
(t− l)ρ

]
dl. (1.3)

Definition 1.4. The Caputo fractional integral of the function u (t) is given as follows:

C
0 I

ρ
t u (t) =

1

Γ (ρ)

∫ t

0
u (l) (t− l)ρ−1 dl. (1.4)

Definition 1.5. The Caputo-Fabrizio fractional integral[3] of the function u (t) is in the form of:

CF
0 Iρt u (t) = (1− ρ)u (t) + ρ

∫ t

0
u (l) dl. (1.5)

Definition 1.6. The Atangana-Baleanu fractional integral[1] of the function u (t) is defined by the following:

AB
0 Iρt u (t) = (1− ρ)u (t) +

ρ

Γ (ρ)

∫ t

0
u (l) (t− l)ρ−1 dl. (1.6)

2. Statement of Problem

In this section, we consider a multi-wing chaotic system presented in [14] and we present conditions
under which existence and uniqueness are ensured for such a system. To achieve this, we consider multi-
wing chaotic system [14] with classical derivative

u′ (t) = κ (υ − u) (2.1)

υ′ (t) = γυ − uw

w′ (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ
2.

Here, the parameters are
κ = 2, γ = 1, ξ = 1, δ = 0.4, δ1 = 3, δ2 = 4 (2.2)
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Figure 1: The graphical representation for multi-wing chaotic system.

Figure 2: 3D simulation for multi-wing chaotic system with classical derivative for ρ = 0.95.
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and initial data
u (0) = 0, υ (0) = 0.1, w (0) = 0. (2.3)

The numerical simulations for each function in the chaotic problem are decipted in Figure 1.
In Figure 2, we present the numerical simulations for chaotic problem with classical derivative.
Now, we prove the existence and uniqueness of the solutions for the considered chaotic problem. To do

this, we present a theorem about existence and uniqueness of the system of equations [15].
Theorem: Assume that there exists positive constants ki, k̄i such that
(i) ∀i ∈ {1, 2, 3} ∣∣Fi (xi, t)− Fi

(
x′i, t

)∣∣2 ≤ ki
∣∣xi − x′i

∣∣2 , (2.4)

(ii) ∀ (x, t) ∈ R3 × [0, T ]

|Fi (xi, t)|2 ≤ k̄i

(
1 + |xi|2

)
. (2.5)

Proof. Before starting with the proof, we shall first define the following norm

∥υ∥∞ = sup
0≤t≤T

|υ (t)| . (2.6)

We start with the function F1 (t, u) . Then, we will show that

|F1 (u1, t)− F1 (u2, t)|2 = |κυ (u1 − u2)|2 (2.7)

= κ2 |υ (t)|2 |u1 − u2|2

≤ κ2 sup
0≤t≤T

|υ (t)|2 |u1 − u2|2

≤ κ2 ∥υ∥2∞ |u1 − u2|2

≤ k1 |u1 − u2|2 ,

where k1 = κ2
∥∥υ2∥∥∞ . Then, we write

|F2 (υ1, t)− F2 (υ2, t)|2 = |γ (υ1 − υ2)|2 (2.8)

≤
(
γ2 + ε1

)
|υ1 − υ2|2

≤ k2 |υ1 − υ2|2 ,

where k2 = γ2 + ε1. Next, we write

|F3 (w1, t)− F3 (w2, t)|2 ≤ k3 |w1 − w2|2 , (2.9)

where k3 = ε2. We verified the first condition for all function. To verify the second condition for all function,
we write the following

|F1 (u, t)|2 = |κυ − κu|2 (2.10)

≤ 2κ2
(
|υ|2 + |u|2

)
≤ 2κ2

(
sup

0≤t≤T
|υ|2 + |u|2

)

≤ 2κ2 ∥υ∥2∞

(
1 +

1

∥υ∥2∞
|u|2
)

≤ k̄1

(
1 + |u|2

)
,
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under the condition 1
∥υ2∥∞

< 1 such that k̄1 = 2κ2
∥∥υ2∥∥∞ . Later

|F2 (υ, t)|2 = |γυ − uw|2 (2.11)

≤ 2
(
γ2 |υ|2 + |u|2 |w|2

)
≤ 2

(
γ2 |υ|2 + sup

0≤t≤T
|u|2 sup

0≤t≤T
|w|2

)
≤ 2

(
γ2 |υ|2 +

∥∥u2∥∥∞ ∥∥w2
∥∥
∞

)
≤ 2 ∥u∥2∞ ∥w∥2∞

(
1 +

γ2

∥u∥2∞ ∥w∥2∞
|υ|2
)

≤ k̄2

(
1 + |υ|2

)
,

under the condition γ2

∥u2∥∞∥w2∥∞
< 1 such that k̄2 = 2 ∥u∥2∞ ∥w∥2∞ . Finally, we have

|F3 (w, t)|2 =
∣∣ξ − u2 − υ2 + ρuw

∣∣2 (2.12)

≤ 4
(
ξ2 +

∣∣u2∣∣2 + ∣∣υ2∣∣2 + ρ2 |u|2 |w|2
)

≤ 4

(
ξ2 + sup

0≤t≤T

∣∣u2∣∣2 + sup
0≤t≤T

∣∣υ2∣∣2 + ρ2 sup
0≤t≤T

|u|2 |w|2
)

≤ 4
(
ξ2 +

∥∥u2∥∥2∞ +
∥∥υ2∥∥2∞ + ρ2 ∥u∥2∞ |w|2

)
≤ 4

(
ξ2 +

∥∥u2∥∥2∞ +
∥∥υ2∥∥2∞)

(
1 +

ρ2 ∥u∥2∞
ξ2 + ∥u2∥2∞ + ∥υ2∥2∞

|w|2
)

≤ k̄3

(
1 + |w|2

)
,

under the condition
ρ2∥u∥2∞

ξ2+∥u2∥2∞+∥υ2∥2∞
< 1 such that k̄3 = 4

(
ξ2 +

∥∥u2∥∥2∞ +
∥∥υ2∥∥2∞) . Then, the solution of

our chaotic system is exist and unique when

max

{
1

∥υ2∥∞
,

γ2

∥u2∥∞ ∥w2∥∞
,

ρ2
∥∥u2∥∥∞

ξ2 + ∥u2∥2∞ + ∥υ2∥2∞

}
< 1. (2.13)

3. Multi-wing chaotic system with exponential decay kernel

In this section, we deal with the multi-wing chaotic system[14] including exponential decay kernel known
as Caputo-Fabrizio fractional derivative

CF
0 Dρ

t u (t) = κ (υ − u) (3.1)
CF
0 Dρ

t v (t) = γυ − uw
CF
0 Dρ

tw (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ
2.

For brevity, we can write as follows:

CF
0 Dρ

t u (t) = U (t, u, v, w) (3.2)
CF
0 Dρ

t v (t) = V (t, u, v, w)
CF
0 Dρ

tw (t) = W (t, u, v, w) .

When integrating the chaotic system, we can write the following equality
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u (t) = u0 + (1− ρ)U (t, u, v, w) + ρ

∫ t

0
U (s, u, v, w) ds, (3.3)

v (t) = v0 + (1− ρ)V (t, u, v, w) + ρ

∫ t

0
V (s, u, v, w) ds,

w (t) = w0 + (1− ρ)W (t, u, v, w) + ρ

∫ t

0
W (s, u, v, w) ds.

If we write the above equations at points t = tn and t = tn+1 and take the difference of the equations
obtained, then the following equation can be achieved:

u (tn+1) = u (tn) + (1− ρ)
[
U
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
− U (tn, u

n, vn, wn)
]

(3.4)

+ρ

∫ tn+1

tn

U (s, u, v, w) ds,

v (tn+1) = v (tn) + (1− ρ)
[
V
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
− V (tn, u

n, vn, wn)
]

+ρ

∫ tn+1

tn

V (s, u, v, w) ds,

w (tn+1) = w (tn) + (1− ρ)
[
W
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
−W (tn, u

n, vn, wn)
]

+ρ

∫ tn+1

tn

W (s, u, v, w) ds.

Replacing the functions U (t, u, v, w) , V (t, u, v, w) and W (t, u, v, w) by their two step Newton polynomial,
then the following numerical scheme is obtained as

un+1 = un + (1− ρ)
[
U
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
− U (tn, u

n, vn, wn)
]

(3.5)

+ρh

[
23
12U (tn, u

n, vn, wn)− 4
3U
(
tn−1, u

n−1, vn−1, wn−1
)

+ 5
12U

(
tn−2, u

n−2, vn−2, wn−2
) ]

,

vn+1 = vn + (1− ρ)
[
V
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
− V (tn, u

n, vn, wn)
]

+ρh

[
23
12V (tn, u

n, vn, wn)− 4
3V
(
tn−1, u

n−1, vn−1, wn−1
)

+ 5
12V

(
tn−2, u

n−2, vn−2, wn−2
) ]

,

wn+1 = wn + (1− ρ)
[
W
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
−W (tn, u

n, vn, wn)
]

+ρh

[
23
12W (tn, u

n, vn, wn)− 4
3W

(
tn−1, u

n−1, vn−1, wn−1
)

+ 5
12W

(
tn−2, u

n−2, vn−2, wn−2
) ]

,

where the predictor terms are evaluated as

ũn+1 = u0 + (1− ρ)U (tn, u
n, vn, wn) + ρh

n∑
k=0

U
(
tk, u

k, vk, wk
)
, (3.6)

ṽn+1 = v0 + (1− ρ)V (tn, u
n, vn, wn) + ρh

n∑
k=0

V
(
tk, u

k, vk, wk
)
,

w̃n+1 = w0 + (1− ρ)W (tn, u
n, vn, wn) + ρh

n∑
k=0

W
(
tk, u

k, vk, wk
)
.

4. Multi-wing chaotic system with power-law kernel

In this section, we obtain numerical scheme for the following multi-wing chaotic model[14]
C
0 D

ρ
t u (t) = κ (υ − u) (4.1)

C
0 D

ρ
t v (t) = γυ − uw

C
0 D

ρ
tw (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ

2
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where the derivative is the Caputo fractional derivative. Integrating above equation, we have the following
equations

u (t) = u0 +
1

Γ (ρ)

∫ t

0
U (s, u, v, w) (t− s)ρ−1 ds, (4.2)

v (t) = v0 +
1

Γ (ρ)

∫ t

0
V (s, u, v, w) (t− s)ρ−1 ds,

w (t) = w0 +
1

Γ (ρ)

∫ t

0
W (s, u, v, w) (t− s)ρ−1 ds.

If we replace the above functions by their Newton polynomials after taking t = tn+1, we get the following

un+1 =



u0 +
hρ

Γ (ρ+ 1)

∑n
k=2 U

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
hρ

Γ (ρ+ 2)

∑n
k=2

[
U
(
tk−1, u

k−1, vk−1, wk−1
)

−U
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
hρ

2Γ (ρ+ 3)

∑n
k=2

 U
(
tk, u

k, vk, wk
)

−2U
(
tk−1, u

k−1, vk−1, wk−1
)

+U
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k

, (4.3)

vn+1 =



v0 +
hρ

Γ (ρ+ 1)

∑n
k=2 V

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
hρ

Γ (ρ+ 2)

∑n
k=2

[
V
(
tk−1, u

k−1, vk−1, wk−1
)

−V
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
hρ

2Γ (ρ+ 3)

∑n
k=2

 V
(
tk, u

k, vk, wk
)

−2V
(
tk−1, u

k−1, vk−1, wk−1
)

+V
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k

, (4.4)

wn+1 =



w0 +
hρ

Γ (ρ+ 1)

∑n
k=2W

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
hρ

Γ (ρ+ 2)

∑n
k=2

[
W
(
tk−1, u

k−1, vk−1, wk−1
)

−W
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
hρ

2Γ (ρ+ 3)

∑n
k=2

 W
(
tk, u

k, vk, wk
)

−2W
(
tk−1, u

k−1, vk−1, wk−1
)

+W
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k

, (4.5)

where

Π1
n,k = [(n− k + 1)ρ − (n− k)ρ] , (4.6)

Π2
n,k =

[
(n− k + 1)ρ (n− k + 3 + 2ρ)
− (n− k)ρ (n− k + 3 + 3ρ)

]
,

Π3
n,k =

 (n− k + 1)ρ
(

2 (n− k)2 + (3ρ+ 10) (n− k)
+2ρ2 + 9ρ+ 12

)
− (n− k)ρ

(
2 (n− k)2 + (5ρ+ 10) (n− k)

+6ρ2 + 18ρ+ 12

)
 .

5. Multi-wing chaotic system with Mittag-Leffler kernel

In this section, we establish numerical approximation for the considered model[14] including Mittag-
Leffler kernel
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AB
0 Dρ

t u (t) = κ (υ − u) (5.1)
AB
0 Dρ

t u (t) = γυ − uw
AB
0 Dρ

t u (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ
2.

When we integrate the above equation, we have the following

u (t) = u0 + (1− ρ)U (t, u, v, w) +
ρ

Γ (ρ)

∫ t

0
U (s, u, v, w) (t− s)ρ−1 ds, (5.2)

v (t) = v0 + (1− ρ)V (t, u, v, w) +
ρ

Γ (ρ)

∫ t

0
V (s, u, v, w) (t− s)ρ−1 ds,

w (t) = w0 + (1− ρ)W (t, u, v, w) +
ρ

Γ (ρ)

∫ t

0
W (s, u, v, w) (t− s)ρ−1 ds.

If we replace the above functions by their Newton polynomials after taking t = tn+1, we get the following

un+1 =



u0 + (1− ρ)U
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
+

ρhρ

Γ (ρ+ 1)

∑n
k=2 U

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑n
k=2

[
U
(
tk−1, u

k−1, vk−1, wk−1
)
− U

(
tk−2, u

k−2, vk−2, wk−2
)]

Π2
n,k

+
ρhρ

2Γ (ρ+ 3)

∑n
k=2

[
U
(
tk, u

k, vk, wk
)
− 2U

(
tk−1, u

k−1, vk−1, wk−1
)

+U
(
tk−2, u

k−2, vk−2, wk−2
) ]

Π3
n,k

,

(5.3)

vn+1 =



v0 + (1− ρ)V
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
+

ρhρ

Γ (ρ+ 1)

∑n
k=2 V

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑n
k=2

[
V
(
tk−1, u

k−1, vk−1, wk−1
)
− V

(
tk−2, u

k−2, vk−2, wk−2
)]

Π2
n,k

+
ρhρ

2Γ (ρ+ 3)

∑n
k=2

[
V
(
tk, u

k, vk, wk
)
− 2V

(
tk−1, u

k−1, vk−1, wk−1
)

+V
(
tk−2, u

k−2, vk−2, wk−2
) ]

Π3
n,k

,

wn+1 =



w0 + (1− ρ)W
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)
+

ρhρ

Γ (ρ+ 1)

∑n
k=2W

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑n
k=2

[
W
(
tk−1, u

k−1, vk−1, wk−1
)
−W

(
tk−2, u

k−2, vk−2, wk−2
)]

Π2
n,k

+
ρhρ

2Γ (ρ+ 3)

∑n
k=2

[
W
(
tk, u

k, vk, wk
)
− 2W

(
tk−1, u

k−1, vk−1, wk−1
)

+W
(
tk−2, u

k−2, vk−2, wk−2
) ]

Π3
n,k

where the predictor terms are evaluated as

ũn+1 = u0 + (1− ρ)U (tn, u
n, vn, wn) +

ρ

Γ (ρ)

n∑
k=0

U
(
tk, u

k, vk, wk
)
Π1

n,k, (5.4)

ṽn+1 = v0 + (1− ρ)V (tn, u
n, vn, wn) +

ρ

Γ (ρ)

n∑
k=0

V
(
tk, u

k, vk, wk
)
Π1

n,k,

w̃n+1 = w0 + (1− ρ)W (tn, u
n, vn, wn) +

ρ

Γ (ρ)

n∑
k=0

W
(
tk, u

k, vk, wk
)
Π1

n,k.

Example 1. We consider the folowing chaotic problem with exponential decay kernel

CF
0 Dρ

t u (t) = κ (υ − u) (5.5)
CF
0 Dρ

t υ (t) = γυ − uw
CF
0 Dρ

tw (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ
2.



MA. Cetin, S. Genc, M. Araz, Journal of Prime Research in Mathematics, 20(1) (2024), 1–14 9

Figure 3: Simulation for multi-wing chaotic system with Caputo-Fabrizio fractional derivative for ρ = 0.95.

Here, the parameters are

κ = 1.8, γ = 1, ξ = 0.5, δ = 0.4, δ1 = 0.03, δ2 = 2 (5.6)

and initial data
u (0) = 0, υ (0) = 0.1, w (0) = 0. (5.7)

In Figure 3, the numerical simulations for chaotic problem with Caputo-Fabrizio fractional derivative are
depicted using same parameters and initial conditions.

Example 2. We consider the folowing chaotic problem with Mittag-Leffler kernel

ABC
0 Dρ

t u (t) = κ (υ − u) (5.8)
ABC
0 Dρ

t υ (t) = γυ − uw
ABC
0 Dρ

tw (t) = −ξ + δ (1− δ1 sin (δ2υ)) υ
2.

The parameters are
κ = 1.8, γ = 1, ξ = 0.5, δ = 0.4, δ1 = 0.03, δ2 = 2 (5.9)

and initial data
u (0) = 0, υ (0) = 0.1, w (0) = 0. (5.10)

In Figure 4, we perform the numerical simulations for chaotic problem with Atangana-Baleanu fractional
derivative.

6. Chaotic model with piecewise derivative

We consider the chaotic model[14] with the scenario where the first part is with classical derivative and
the second part is with Caputo fractional derivative. The piecewise system[16] under investigation is given
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Figure 4: Simulation for multi-wing chaotic system with Atangana-Baleanu fractional derivative for ρ = 0.95.

by: 
ABC
0 Dρ

t u (t) = U (t, u, v, w)
ABC
0 Dρ

t v (t) = V (t, u, v, w)
ABC
0 Dρ

tw (t) = W (t, u, v, w)
, 0 ≤ t ≤ t0, (6.1)


u′ (t) = U (t, u, v, w)
v′ (t) = V (t, u, v, w)
w′ (t) = W (t, u, v, w)

, t0 ≤ t ≤ T.

Applying the associated integral, we obtain

u (t) =

 u (0) + (1− ρ)U (t, u, v, w) +
ρ

Γ (ρ)

∫ t
0 U (s, u, v, w) ds, 0 ≤ t ≤ t0

u (t0) +
∫ t
t0
U (s, u, v, w) (t− s)ρ−1 ds, t0 ≤ t ≤ T

,

v (t) =

 v (0) + (1− ρ)V (t, u, v, w) +
ρ

Γ (ρ)

∫ t
0 V (s, u, v, w) ds, 0 ≤ t ≤ t0

v (t0) +
∫ t
t0
V (s, u, v, w) (t− s)ρ−1 ds, t0 ≤ t ≤ T

,

v (t) =

 w (0) + (1− ρ)W (t, u, v, w) +
ρ

Γ (ρ)

∫ t
0 W (s, u, v, w) ds, 0 ≤ t ≤ t0

w (t0) +
∫ t
t0
W (s, u, v, w) (t− s)ρ−1 ds, t0 ≤ t ≤ T

. (6.2)
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We consider above at t = tn+1, and replace the function f (x, t) by its Newton polynomial [16]. Thus, we
obtain

un+1 =





u (0) + (1− ρ)U
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+
ρhρ

Γ (ρ+ 2)

∑m
k=2 U

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑m
k=2

[
U
(
tk−1, u

k−1, vk−1, wk−1
)

−U
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
ρhρ

Γ (ρ+ 3)

∑m
k=2

 U
(
tk, u

k, vk, wk
)

−2U
(
tk−1, u

k−1, vk−1, wk−1
)

+U
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k, 0 ≤ t ≤ t0,{
u (t0) + h

∑n
k=m+3

[
23
12U

(
tk, u

k, vk, wk
)
− 4

3U
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12U

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

, (6.3)

vn+1 =





v (0) + (1− ρ)V
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+
ρhρ

Γ (ρ+ 2)

∑m
k=2 V

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑m
k=2

[
V
(
tk−1, u

k−1, vk−1, wk−1
)

−V
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
ρhρ

Γ (ρ+ 3)

∑m
k=2

 V
(
tk, u

k, vk, wk
)

−2V
(
tk−1, u

k−1, vk−1, wk−1
)

+V
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k, 0 ≤ t ≤ t0,{
v (t0) + h

∑n
k=m+3

[
23
12V

(
tk, u

k, vk, wk
)
− 4

3V
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12V

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

, (6.4)

wn+1 =





w (0) + (1− ρ)W
(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+
ρhρ

Γ (ρ+ 2)

∑m
k=2W

(
tk−2, u

k−2, vk−2, wk−2
)
Π1

n,k

+
ρhρ

Γ (ρ+ 2)

∑m
k=2

[
W
(
tk−1, u

k−1, vk−1, wk−1
)

−W
(
tk−2, u

k−2, vk−2, wk−2
) ]Π2

n,k

+
ρhρ

Γ (ρ+ 3)

∑m
k=2

 W
(
tk, u

k, vk, wk
)

−2W
(
tk−1, u

k−1, vk−1, wk−1
)

+W
(
tk−2, u

k−2, vk−2, wk−2
)
Π3

n,k, 0 ≤ t ≤ t0,{
w (t0) + h

∑n
k=m+3

[
23
12W

(
tk, u

k, vk, wk
)
− 4

3W
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12W

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

,

where the predictor components are obtained as:

ũn+1 = u0 + (1− ρ)U (tn, u
n, vn, wn) + ρ

n∑
k=0

U
(
tk, u

k, vk, wk
)
Π1

n,k, (6.5)

ṽn+1 = v0 + (1− ρ)V (tn, u
n, vn, wn) + ρ

n∑
k=0

V
(
tk, u

k, vk, wk
)
Π1

n,k,

w̃n+1 = w0 + (1− ρ)W (tn, u
n, vn, wn) + ρ

n∑
k=0

W
(
tk, u

k, vk, wk
)
Π1

n,k.

We next consider the chaotic model with piecewise derivative [16]
u′ (t) = U (t, u, v, w)
v′ (t) = V (t, u, v, w)
w′ (t) = W (t, u, v, w)

, 0 ≤ t ≤ t0, (6.6)


CF
t0 Dρ

t u (t) = U (t, u, v, w)
CF
t0 Dρ

t v (t) = V (t, u, v, w)
CF
t0 Dρ

tw (t) = W (t, u, v, w)
, t0 ≤ t ≤ T.
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where the first part is with classical derivative and the second part is with Caputo-Fabrizio fractional
derivative. Applying the associated integral, we obtain

u (t) =

{
u (0) +

∫ t
0 U (s, u, v, w) ds, 0 ≤ t ≤ t0

u (t0) + (1− ρ)U (t, u, v, w) + ρ
∫ t
t0
U (s, u, v, w) ds, t0 ≤ t ≤ T

,

v (t) =

{
v (0) +

∫ t
0 V (s, u, v, w) ds, 0 ≤ t ≤ t0

v (t0) + (1− ρ)V (t, u, v, w) + ρ
∫ t
t0
V (s, u, v, w) ds, t0 ≤ t ≤ T

,

w (t) =

{
w (0) +

∫ t
0 W (s, u, v, w) ds, 0 ≤ t ≤ t0

w (t0) + (1− ρ)W (t, u, v, w) + ρ
∫ t
t0
W (s, u, v, w) ds, t0 ≤ t ≤ T

. (6.7)

We consider above at t = tn+1, and replace the function f (x, t) by its Newton polynomial [16]. Thus, we
obtain

un+1 =



{
u (0) + h

∑m
k=0

[
23
12U

(
tk, u

k, vk, wk
)
− 4

3U
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12U

(
tk−2, u

k−2, vk−2, wk−2
) ]

, 0 ≤ t ≤ t0,
u (t0) + (1− ρ)U

(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+ρh
∑n

k=m+3

[
23
12U

(
tk, u

k, vk, wk
)
− 4

3U
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12U

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

, (6.8)

vn+1 =



{
v (0) + h

∑m
k=0

[
23
12V

(
tk, u

k, vk, wk
)
− 4

3V
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12V

(
tk−2, u

k−2, vk−2, wk−2
) ]

, 0 ≤ t ≤ t0, ,
v (t0) + (1− ρ)V

(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+ρh
∑n

k=m+3

[
23
12V

(
tk, u

k, vk, wk
)
− 4

3V
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12V

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

,

wn+1 =



{
w (0) + h

∑m
k=0

[
23
12W

(
tk, u

k, vk, wk
)
− 4

3W
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12W

(
tk−2, u

k−2, vk−2, wk−2
) ]

, 0 ≤ t ≤ t0,
u (t0) + (1− ρ)W

(
tn+1, ũ

n+1, ṽn+1, w̃n+1
)

+ρh
∑n

k=m+3

[
23
12W

(
tk, u

k, vk, wk
)
− 4

3W
(
tk−1, u

k−1, vk−1, wk−1
)

+ 5
12W

(
tk−2, u

k−2, vk−2, wk−2
) ]

, t0 ≤ t ≤ T

,

where the predictor components are obtained as:

ũn+1 = u0 + (1− ρ)U (tn, u
n, vn, wn) + ρh

n∑
k=0

U
(
tk, u

k, vk, wk
)
, (6.9)

ṽn+1 = v0 + (1− ρ)V (tn, u
n, vn, wn) + ρh

n∑
k=0

V
(
tk, u

k, vk, wk
)
,

w̃n+1 = w0 + (1− ρ)W (tn, u
n, vn, wn) + ρh

n∑
k=0

W
(
tk, u

k, vk, wk
)
.

The numerical simulation for chaotic problem with piecewise derivative are performed using same parameters
and initial data that we took for fractional case in Figure 5 and 6.

7. Conclusion

In this study, a multi-wing chaotic system with different differential operators are considered. It has
been investigated under which conditions the existence and the uniqueness of the solution of the chaotic
system with the classical derivative are guaranteed. Afterwards, this newly introduced chaotic system is
modeled with fractional differential operators. A numerical method based on Newton polynomial for the
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Figure 5: The graphical representation piecewise chaotic model with first scenario ρ = 0.95.

Figure 6: The graphical representation piecewise chaotic model with second scenario for ρ = 0.99.
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numerical solution of this chaotic model with Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional
derivative has been presented. The numerical scheme based on Newton polynomial has been created to be
used in solving chaotic model with piecewise derivative. Numerical simulations are depicted for different
values of fractional orders.

—————————————————————-
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