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Abstract

In this paper, we introduce the concept of morphisms between two grey sets and defined a new category,
namely, GSet, of grey sets and grey morphisms. We investigate some categorical notions such product,
coproduct, pullback, and pushout. Additionally, we study equalizer and coequalizer for pairs of grey mor-
phisms and show that any grey set has an injective hull.
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1. Introduction

Grey system is one of the most important scientific achievements in the field of how to use uncertain
information, which was presented by Julang Deng [6]. His research focused on the prediction and controlling
economic and fuzzy systems. He encountered many inaccurate systems, some known and some unknown,
whose properties could not be adequately explained by fuzzy mathematics or statistics and probability.
To solve these systems optimally, Deng published an article titled of “The Controlling Problems of Grey
Systems” in 1982, introducing grey systems theory. The major advantage of the grey systems theory
is its need for a low volume of data [7]. In fact, grey systems theory has been posited as an effective
method for solving the problems with discrete data and imperfect information [6]. Incomplete information
is fundamentally ”grey”, representing partially known and partially unknown information. Black represents
unknown information, while white represents completely known information. Grey system stands for the
system with partially known and partially unknown information. Liu et al. [12] presented some new
concepts, frameworks, and models that the scientific applications of new models of grey systems can be used
to solve various problems in the social sciences, Engineering including Air Flight, Air Warfare, Information,
Metallurgy, Petroleum, Chemical Industry, Electric Power, Electronics, Lighting Industries, Energy Sources,
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Transportation, Pharmacy, Health, Agriculture, Forestry, Geography, Water Resources, Earthquake Found
science, Meteorology, Environmental protection, Architecture, Behavioral sciences, Management sciences,
Economics, Politics, Law, Logic, Military sciences, etc. These applications have yielded significant economic
and social benefits in society and show the wide range of applications of grey systems theory, especially
in situations where available information is incomplete or the data collected are inaccurate. Darvishi et
al. [5] studied the existing approaches of ordering interval grey numbers in the context of decision-making
by surveying existing definitions. We recall that a category is a common language for discussing classes of
sets, groups, modules, topological spaces, etc. Fore more, see [1],[2] and [4]. Several categories have been
investigate in various articles.

Goguen[8], [9], and [10] initiated the study of category Set(V) of V -sets for partially ordered setV , which
any V -set is a function A : X −→ V from a set X, and a morphism between two V -sets is a function
f : X −→ Y such that A ≤ Bf . The category Set(V) becomes the category Set if V is a singleton and the
fuzzy subsets category if V = [0, 1]. Barr [3] studied the category Set ([0,1]), which he called Fuz([0,1]).
Walker et al. [14] investigated two categories of fuzzy subsets and quotient category of fuzzy sets. Also,
Harding et al. [11] studied the 2- category of fuzzy sets and relations. In [13], a new category of fuzzy sets
and its properties were defined and studeid.

In this paper, we define the category GSet, where objects are grey sets, and morphisms are grey
functions between two objects. We show the existence of the product and coproduct of grey sets. We
also investigate the notions of pullaback and pushout in this category, study equalizer and coequalizer for
morphisms, characterize injective grey sets, and explore the injective hull of any grey set.

2. Category GSet

In this section, we recall grey numbers and grey sets, define morphisms between two grey sets, and
introduce the category GSet of grey sets and grey morphisms.

We recall from [17], a grey numbers is a number with clear upper and lower boundaries but which has
an unknown position within the boundaries. A grey number is expressed mathematically as g± ∈ [g−, g+] =
{g− ≤ t ≤ g+} where g± is a grey number, t is information, and g− and g+ are the lower and upper limits
of the information.

If g− = g+, then g± is called a white number.

We recall the following definition for grey numbers from [17]. It is shown a new representation of grey
numbers to consider continuous and discrete grey numbers.

Let R be set of real numbers and g± be a union set of closed or open intervals g± ∈
⋃n

i=1[a
−
i , a

+
i ], which

i = 1, 2, 3, · · · , n, n is an integer and 0 < n < ∞, a−i , a
+
i ∈ R and a−i−1 ≤ a−i ≤ a+i ≤ a+i+1. For any interval

[a−i , a
+
i ], pi is probability for g± ∈ [a−i , a

+
i ], if the following conditions hold for

(i) pi > 0 if and only if g± ∈ [a−i , a
+
i ]

(ii) pi = 0 if and only if g± /∈ [a−i , a
+
i ]

(iii)Σn
i=1pi = 1

then we call g is a grey number represented by g±. g−=infa−i ∈g±a
−
i and g+=supa+i ∈g±a

+
i are called as the

lower and upper of g±.

Theorem 2.1. [15, Theorem1] The following properties hold for g±:
(i) g± is a continnuous grey number g± = [a−1 , a

+
n ] iff a−i = a+i+1(∀i > 1) or n = 1.

(ii) g± is a discrete grey number g± = {a1, a2, · · · , an} iff ai = a−i = a+i

Now, let U denote a universe of discourse. For a set A ⊆ U , if the characteristic function value of x with
respect to A can be expressed with a single white number v ∈ [0, 1], χA : U −→ [0, 1], then A is a white set.
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For a set A ⊆ U , if the characteristic function value of x with respect to A can be expressed with a grey
number g±A(x) ∈

⋃n
i=1[a

−
i , a

+
i ] ∈ D[0, 1]±

χA : U −→ D[0, 1]±

then A is a grey set, where D[0, 1]± refers to the set of all grey numbers within the interval [0, 1]. Similar
to fuzzy set, a grey set A is shown to

A =
g±(x1)

x1
+
g±(x2)

x2
+ · · ·+ g±(xn)

xn
for xi ∈ A. The grey set will be denoted by A = (U, χA).

The special case of the grey set is the white set, and any fuzy set is special case of white set. Replacing
the characteristic function with a fuzzy membership function, the white set become a fuzzy set. In the

following, we recall grey lattice operation from [16].
Consider grey numbers x± = [x−, x+] (lower x− and upper x+) and y± = [y−, y+] (lower y− and upper
y+). The Join and Meet of these grey numbers are defined as x± ∨ y± = [ min (x−, y−), max (x+, y+)] and
x± ∧ y± = [ max (x−, y−), min (x+, y+)], respectively.
Now according to definition Join and Meet, the partial order ⪯ on grey set (X,χA) is shown as below:

x± ⪯ y± ⇐⇒ x+ ≤ y+and y− ≤ x−

Definition 2.2. Let X = (U, χA) and Y = (U ′, χA′) be two grey sets which χA : U −→ D[0, 1]± and
χA′ : U ′ −→ D[0, 1]±. A grey morphism between grey sets X and Y is ordinary function f : U −→ U ′ such
that (upper) lower χA(x) ≤ (upper) lower χBf(x), for shortly, χ

±
A(x) ≤ χ±

A′f(x).

The composition of two grey morphisms , which is composition of two functions is assotative. The cat-
egory of grey sets and grey morphismss between is denoted GSet.

Recall from [1], a concrete category over X is a pair (A,U), where A is a category and U : A −→ X is
a faithful functor. Some times U is called the forgetfull functor of the concrte category and X is called the
base category for (A,U). Any concrete category over category Set is called a construct.

It is clear that category GSet is construct category.

Example 2.3. Let A = {a, b, c, d} and B = {e, f, g, h, i}. Define χA(a) = [0.1, 0.15], χA(b) = [0.1, 0.23],
χA(c) = χA(d) = [0.3, 0.3], χB(e) = [0.1, 0.26], χB(f) = [0.3, 0.34], χB(g) = [0.6, 0.6] and χA(d) = [0.7, 0.81].
We define function from X to Y such that f(a) = f(b) = e, f(c) = i and f(d) = h. It is clear that f is
morphism between two objects (A,χA) and (B,χB).

Lemma 2.4. Any morphism in the category GSet is a monomorphism if and only if it is one-to-one.

Proof. We claim in the category GSet, any grey monomorphism is one-to-one. For this, consider grey
monomorphism f : (U, χA) −→ (V, χB). Suppose that f(x) = f(y) and x ̸= y for any x, y ∈ U . Define
morphism, g : ({∗}, χC) −→ (U, χA) such that g(∗) = x and χC(∗) = χA(x). Also define morphism
h : ({∗}, χD) −→ (U, χA) such that h(∗) = y and χD(∗) = χA(y). We have f(g(∗)) = f(x) = f(y) = f(h(∗)).
So g(∗) = h(∗) since f is monomorphism. Thus x = y. The converse is clear.

Lemma 2.5. Any grey morphism in the category GSet is epimorphism if and only if it is surjective.

Proof. Consider epimorphism f : (U, χA) −→ (V, χB). Define morphism g : (V, χB) −→ (V ∪ {∗1, ∗2}, χC)
such that

g(x) =

{
x x ∈ Imf

∗1 otherwise
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which χC(x) = χB(x) for any x ∈ V and χC(x) = {0, 1} for x ∈ {∗1, ∗2}. Also define morphism h :
(V, χB) −→ (V ∪ {∗1, ∗2}, χC) such that

h(x) =

{
x x ∈ Imf

∗2 otherwise

which χC(x) = χB(x) for any x ∈ V and χC(x) = {0, 1} for x ∈ {∗1, ∗2}. For any u ∈ U , g(f(u)) = f(u) =
h(f(u)). So g = h since f is an epimorphism. Suppose that the morphism f is not surjective. So there
exists x ∈ V such that x /∈ Im(f). Therefore ∗1 = g(x) = h(x) = ∗2, which is contradicts. The converse is
clear.

It is well-known that category GSet is balanced by two lemmas, 2.4 and 2.5.

Proposition 2.6. A map f : (U, χA) −→ (U ′, χA′)in Gset is an isomorphisms if and only if it is one-to-one,
onto and χ±

A(x) = χ±
A′f(x).

Proof. Let map f be isomorphism, then it is one- to- one and onto. Since f is isomorphism there exists f−1.
So, we have χ±

A(x) ≤ χ±
A′f(x) and χ

±
A′(x) ≤ χ±

Af
−1(x). Hence, χ±

A(x) = χ±
A′f(x). The converse is clear.

3. Main Result

In this section, we study the existence of product and coproduct in the category GSet. Additionally,
we investigate some categorical concepts such as pushout, pullback, equalizer, and injective objects in the
category GSet, and we demonstrate that any grey set has an injective hull.

Proposition 3.1. The category Gset has products.

Proof. Consider a family (Xi, χi)i∈J of grey sets. We claim (X,χ) is the product of this family, which X
is the product Xi’s and χ is the meet of χi, i.e ∧χ±

i = {∧χ−
i ,∧χ

+
i }, for i ∈ I and πj : (X,χ) −→ (Xj , χj)

is projection map. We have χ±(x) = (∧i∈Jχ
±
i )(x) = ∧i∈J(χ

±
i (x)) ≤ χ±

j∈(xj) = χ±
j (πj(x)). So, πj ∈ GSet.

Now, suppose that there exists a map mj : (Y, τ) −→ (Xj , χj), by universal properties of product of sets,
there exists unique function φ : (Y, τ) −→ (

∏
i∈J Xj , χ) such that πjφ = mj . Also, we have τ± ≤ χ±

j mj =

χ±
j πjφ = χ±

j φ, hence φ ∈ GSet.

Proposition 3.2. The category GSet has coproducts.

Proof. For a family (Xi, χi)i∈J of grey sets, we claim (X,χ) is the coproduct, which X± is disjoint union
of Xi’s and χ± is the disjoint union of χ±

j . For this, consider qj : (Xj , χj) −→ (
∐

i∈J Xi,
∐

i∈J χi), which

qj : Xj −→
∐

i∈J Xi is inclusion maps, such that χ±
j (xj) = (

∐
i∈J χ

±
i qj(xj). It is clear that qj is a map in

GSet. If there exists any grey map such ψj : (Xj , χj) −→ (Y, ς) in GSet, by the prpperty of coproduct,
there exists a unique function τ :

∐
i∈J χi) −→ Y such that τqj = ψj . Also, since χ±

j ≤ ς±ψj , we have∐
i∈J χi ≤ ς±τ . Hence τ ∈ GSet.

We denote the constant characteristic function at a point such as m by the χm.

Proposition 3.3. In the category Gset, the empty set with the constant characteristic function χ0 is the
initial object and singelton set with the constant characteristic function χ1 is the terminal object.



M. Hezarjaribi, et al., Journal of Prime Research in Mathematics, 20(1) (2024), 89–96 93

Proof. Consider arbitrary grey set (U, χA). We have from the category Set, the empty set is initial object.
So there exists a unique function f : ∅ −→ U . It is clear that f is a grey morphism. For the terminal
object, consider arbitrary grey set (U, χA), consider grey set ({∗}, χ∗}), with characteristic function to grey
number with upper bound 1 and lower bound zero. It is clear there exists one function f : A −→ {∗} and
so f ∈ GSet.

It is clear that an empty grey set is a free object, since it is an initial object in the category GSet by [1,
Example 8.23].

Proposition 3.4. In the category GSet , the equalizer of two maps f, g : (X,χ1) −→ (Y, χ2) is the pair
(E,χE), which E = {x ∈ X|f(x) = g(x)}, χE : E −→ D[0, 1]± is the restriction of χ1 on E and the
inclusion map i : (E,χE) −→ (X,χ1).

Proof. Consider map i : (E,χE) −→ (X,χ1) which i : E −→ X is inclusion function such that E = {x ∈
X|f(x) = g(x)}. Also χE : E −→ D[0, 1]±. I t is clear that i is a grey map in the category GSet. If there
exists any grey map l : (K,χK) −→ (X,χ1) such that fl = gl. For any x ∈ K, l(x) inE, since fl(x) = gl(x).
So, we define m : K −→ E satisfying im = l. It is clear that χ±

K ≤ χ±
Em. Thus m is a grey map in the

category GSet. We claim m is unique, otherwise there exists a map m′ : (K,χK) −→ (E,χE) such that
im′ = l. Thus im = im′ and so m = m′.

Proposition 3.5. In the category GSet, the coequalizer of two maps f, g : (X,χ1) −→ (Y, χ2) is the pair

(K,χK), which K =
Y

θ
, which θ is the equivalence relation generated by of {(f(x), g(x))|x ∈ X} and

χ±
K(k) = sup{χ±

2 (y)|π(y) = k}, which π : Y −→ K is natural function.

Proof. By assumption, since for any y ∈ Y , χ±
2 (y) ≤ χ±

Kπ(y), we can conclude that π is a grey map in the
category GSet. Now, suppose that there exists a map h : (Y, χ2) −→ (W,χW ) such that hf = hg. We recall
from category Set, there exists a unique function α : K −→ W satisfying απ = h. We show that α is a
grey map in Gset. Consider y = π−1(k) for k ∈ K. Since χ±

2 (y) ≤ χ±
Wh(y) = χ±

Wαπ(y) = χ±
Wα(k). So

χ±
K(k) ≤ χ±

Wα(k), and hence α ∈ GSet.

An object S is called a seperator if for distinct morphisms f, g : A −→ B, there exists a morphisms
h : S −→ A such that goh ̸= foh.

Remark 3.6. In the category GSet, a non-empty set with constant characteristic function χ1 is seperator
object.

An object C is called co-separator if for distinct morphisms f, g : B → A, there exists a morphisms
h : A −→ C such that hog ̸= hof .

Remark 3.7. In the category GSet, the co-separators are sets with at least two elements and the constant
characteristic function χ1.

Recall that in a category C, the object F ∈ C is called a free object in C, if there exists I in the category
Set and a function ς : I −→ ⌊F ⌋ such that for any X ∈ C and every function σ : I −→ ⌊X⌋, there exists
exactly α ∈MorC(F,X) such that ας = σ in the category Set, i.e. the following diagram is commutative.

I
σ //

ς

��

⌊X⌋

⌊F ⌋
α

<<

Remark 3.8. It is clear that (∅, χ0) is a free object, since it is an initial object in GSet by [1, Example 8.23].
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In the concrete category, an object C is called injective if for any embedding m : A −→ B and any
morphism f : A −→ C, there exists a morphism g : B −→ C such that the following diagram is commutative.

A �
� m //

f
��

B

g~~
C

Lemma 3.9. In the category GSet, the non-empty grey sets with constant characteristic function χ1 are
percisely injective objects.

Proof. Let f : (A,χA) −→ (B,χB) be a monomorphism grey map and g : (A,χA) −→ (X,χc) be arbitrary
map in the category GSet, where χ1 is constant function. We show that there exists a map h : (B,χB) −→
(X,χC) such that hg = f . Recall that in the category Set any non-empty set is injective, so there exists a
map h : B −→ X such that extend g. We show that g is a grey map in the category GSet. By definition
of XC , the result χB ≤ χCh is clear. So, h ∈ GSet.

Remark 3.10. In the category GSet, any non-empty object (A,χ1) can be embedded into injective object.

An injecetive hull of A is an extension m : A −→ B such that B is injective and m is essential.

Lemma 3.11. In the category GSet, any object has a injective hull.

Proof. It is clear that the injective hull of non-empty grey set, is itself. If A is empty, then ({∗}, χ1) is
injective hull of grey set A.

Given two morphisms f : A −→ C and g : B −→ C in a given category C, a pullback of pair (f, g) is a
pair (P ; (ρ1; ρ2)) with ρA : P −→ A, ρB : P −→ A such that fρA = gρB and satisfies the following universal
property:
For any pair (P ′; (ρ′A; ρ

′
B)) with ρ′A : P ′ −→ A, ρ′B : P ′ −→ A such that fρ′A = gρ′B there exists a unique

morphism θ : P ′ −→ P such that ρAθ = ρ′A and ρBθ = ρ′B. Next, we show the pullback for a pair (f, g) in

the category GSet.

Theorem 3.12. In the category GSet, there is a pullback of any morphisms f : (U, χA) −→ (W,χC) and
g : (V, χB) −→ (W,χC).

Proof. Consider grey sets (U, χA), (V, χB), (W,χC) and morphisms f : (U, χA) −→ (W,χC) and g :
(V, χB) −→ (W,χC). Consider folowing diagram.

V

g

��
U

f //W

In the category Set, the pullback of this diagram is set T = {(x, y) ∈ U × V |f(x) = g(y)} and functions
ρU : T −→ U , ρV : T −→ V , which ρU (a, b) = a and ρV (a, b) = b, for a, b ∈ U × V such that fρU = gρV .
Define characteristic function χ such that χ+

D(a, b) = (χA(a)∧χB(b))
+ and χ−

D(a, b) = (χA(a)∧χB(b))
− for

any (a, b) ∈ T .
We claim ρU and ρV are in the category GSet. It is clear that for any a ∈ U and b ∈ V , χ+

D(a, b) =
(χA(a) ∧ χB(b))

+ ≤ χ+
A(a) = χ+

AρU (a, b) and χ−
AρU (a, b) = χ−

A(a) ≤ (χA(a) ∧ χB(b))
− = χ−

D(a, b). Hence
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ρU ∈ GSet. Similarly we can show ρV ∈ GSet. Now consider grey object (T ′, χD′) such that ff ′ = gg′.
From category Set, there exists exactly one function h : T ′ −→ T such that ρUh = g′ and ρV h = f ′. It is
easy to check that h ∈ GSet.

Given two morphisms f : A −→ B and g : A −→ C in a given category C, a pushout of pair (f, g) is a
pair (Q; (α;β)) with βg = αf that satisfies the following universal property:
For every triple (Q′; (α′;β′)) with β′g = α′f , there exists a unique morphism θ : Q −→ Q′ such that θβ = β′

and θα = α′.

Theorem 3.13. In category GSet, there is a pushout of any morphisms f : (U, χA) −→ (V, χB) and
g : (U, χA) −→ (W,χC).

Proof. Let (U, χA), (V, χB) and (W,χC) be grey sets and f : (U, χA) −→ (V, χB) and g : (U, χA) −→ (W,χC)
be two grey morphisms. Consider the following diagram

U

f
��

g //W

V

In the category Set, pushout of this diagram is the pair (Z, (h, k)) such that hg = kf which Z = (V ⊔W )/θ, θ
is the equivalence relation on V ⊔W generated by all pairsH = {(uV f(x), uW g(x)) : x ∈ U}, h = πuW :W →
Z, k = πuV : V → Z, π : U ⊔W → Z is the natural epimorphism and uV : V → V ⊔W,uW : W → V ⊔W
are coproduct injections. Consider (Z, χQ), which for any [x]θ ∈ Z,

χ+
Q([x]θ) = Sup

{
χ+
B(v) : {k(v) = [x]θ} x ∈ V

χ+
C(w) : {h(w) = [x]θ} x ∈W

and

χ−
Q([x]θ) = Inf

{
χ−
B(v) : {k(v) = [x]θ} x ∈ V

χ−
C(w) : {h(w) = [x]θ} x ∈W

We show that k and h are morphisms in category GSet. It is clear that χ+
B(x) ≤ χ+

Q([x]θ) = χ+
Qk(x) and

χ−
Qk(x) = χ−

Q([x]θ) ≤ χ−
B(x) for any x ∈ V , so k ∈ GSet. Similarly, we can show h ∈ GSet. Now consider

arbitray grey set (Z ′, χQ′). If there exists grey morphisms k′ : V −→ Z ′ and h′ : W −→ Z ′ such that
k′f = h′g, it is follow from categery Set, there exists a unique function φ : Z −→ Z ′ such that φk = k′

and φh = h′. We show that φ ∈ GSet. For any [x]θ ∈ Z, if x ∈ V , let v = (k)−1([x]θ). We have
χ+
B(v) ≤ χ+

Q′k′(v) = χ+
Q′φk(v) = χ+

Q′φ([x]θ) and χ
−
Q′φ([x]θ) = χ−

Q′φk(v) = χ−
Q′k′(v) ≤ χ−

B(v).

Thus χ+
Q([x]θ) ≤ χ+

Q′φ([x]θ) and χ−
Q′φ([x]θ) ≤ χ−

Q([x]θ). If x ∈ W , we result by similar method. So,
φ ∈ GSet.

Lemma 3.14. In the category GSet, any grey set with constant characteristic function χ0 is percisely
projective grey set.

Proof. Consider surjective grey map π : (A,χA) −→ (B,χB) and arbitrary grey map f : (P, χ0) −→ (B,χB),
which χ0. In the category Set, there exists a function g : C −→ A such that πg = f . Obviously, χ±(p) ≤
χ±
Ag(p), for any p ∈ P . So g ∈ GSet and (P, χ0) is projective in the category GSet.
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