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Abstract

A Monad graph is a graph Γ in which each of its vertices belongs to a finite group G and connects with its
image under the action of a linear map f . This kind of graph was introduced by V. Arnold in 2003. In this
paper, we compute the Monad graphs in which G is isomorphic to a cyclic group Cn of order n and f the
fifth power function, i.e. f(g) = g5. Furthermore, some algebraic and dynamical properties of the studied
Monad graphs are obtained. The proofs of our results are based on various tools and results with regard to
the fields of number theory, algebra and graph theory.
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1. Introduction and Preliminaries

In 2003, V.I. Arnold [1] introduced a very motivating phenomena termed by Monad. that concerns a
dynamical systems defined on group actions. More precisely, we may recall the definition of Monad graph.
Suppose that G is a group, f : G −→ G is a map, f(g) = gk for g ∈ G with k ≥ 0, the Monad graph Γk(G)
is defined under the following properties:

1. V (G) = {g|g ∈ G}, which represents the set of the vertices,

2. E(G) = {a → ak|f(a) = ak or fk(a) → ak}, which represents the set of edges.

Suppose that G is an arbitrary finite set, f is a function that maps each element in G into itself, and
Γ is Monad graph that connects each of the vertices of the corresponding G with its image by directed
connected edge under the action of map f , then a discrete dynamical system has the form of triple (G,Γ, fg)
or (G,Γg, fg).
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A special case of a discrete dynamical system (G,Γ, fg) = (G,Γ, g2) was considered by Arnold [1] in
which he showed the following result: Each connected component of a Monad graph is a forest of rooted
trees directed towards their roots, which lie on a directed cycle (topologically, a circle) formed by the edges
connecting the roots.

On the other hand, it’s well-known that the finite cycle orbit of an element is the action of element g
under the map fg (see e.g. [7]) i.e.

orbc(g, fg) = {g, f(g), f2(g), · · · , fn−1(g) : n ∈ N}.

For g ∈ G, we remind fn(g) = g for n ∈ N is called periodic point. We denote by Pr(g) the set of periodic
points. For more information about such graphs, see e.g. [2], [3], [8] and [9].

In this paper, we study the Monad graph of discrete dynamical system (G,Γ, fg), where G is isomorphic
to cyclic group Cn of order n and fg is given by the map f(g) = g5. Furthermore, we show the dynamical
properties of each element in the group Cn and prove our results using elementary results regarding the
fields of number theory, graph theory and algebra.

To show the action of this map on certain groups, in the following table we show the Monad graphs
generated by the map f(g) = g5 for the group Zn with 2 ≤ n ≤ 10 under the additive operation:

Group Monad Graph Graph’s symbol

Z2
0 1 O1 +O1

Z3

0

1

2 O2 +O1

Z4
0

12

3 4O1

Z5

0

1234 T5

Z6
032

4

1

5

2O2 + 2O1

Z7
0

1

326

4 5

O6 +O1

Z8
04

26

3

7

1

5

2O2 + 4O1
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Z9
0

1

7

2

84

5

3

6

O6 +O1 +O2

Z10

0

2468

5

1379 2T5

where On denotes the directed cycle of length n and T5m is the rooted tree with 5m vertices with m branches.
An interesting result regarding the directed cycle On (due to [1]) stated that the product of cyclic Monads

graph On and Om is a sum of identical cyclic Monads; namely

On ∗Om = dOc,

where d = gcd(n,m) and c = nm
d .

For later use and in the proof of our main results, we need to recall an important concept in number
theory called by the Euler Phi Function, which is denoted by φ(n), that is given by

φ(n) =
∏

1≤i≤s

φ(pαi
i ) =

∏
1≤i≤s

(pαi
i (1− 1

pi
)) = n

∏
1≤i≤s

(1− 1

pi
),

where n =
∏

1≤i≤s p
αi
i represent a positive integer number with p denotes a prime number and the integer

αi ≥ 1. Moreover, ∆(n) represents the set of all divisors of n. More precisely, the Euler Phi Function counts
the positive integers less than a given integer n that are relatively prime to n. For more details about the
Euler Phi Function and its application, one can see e.g. [4], [5] and [6].

2. Main results

In this section, we introduce our results concerning to the Monad graphs in case of the mapping f : g → gt

and t is an odd prime number represented by 5.
Firstly, we present the results of Monad graphs when G be isomorphic to Cn and n = 2r, r ≥ 1.

Proposition 2.1. Let Cn be a cyclic group and n = 2r, r ≥ 3, then, there exist exactly 2 of O2.

Proof. In fact, the elements of the group will act under the Monad mapping f(g) = g5 under modulo n = 2r.
We can see the elements

a2
r−3 ≡ a5·2

r−3 → a2
r−3+2r−1

and
a2

r−3+2r−1 ≡ a5(2
r−3+2r−1) ≡ a2

r−3+2r−1
a5·2

r−1 ≡ a2
r−3+2·2r−1 → a2

r−3
.

Similarly, we can easily see that
a2

r−3+2r−2 → a2
r−3+2r−2+2r−1

and
a2

r−3+2r−2+2r−1 → a2
r−3+2r−2

.

Hence, the proposition is proved.

Corollary 2.2. Let Cn be a cyclic group and n = 2r, r ≥ 1, the following are held:

1. If r = 1, then there exist exactly 2 of O1;
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2. If r ≥ 2, then there exist exactly 4 of O1 and representation by {a2r−1
, a2

r−2
, a2

r−1+2r−2
, e}.

Proof. The proof of this corollary can be achieved by following the proof of Proposition 2.1. Thus, we omit
the details of the proof.

Proposition 2.3. Let Cn be a cyclic group and n = 2r, r ≥ 4, then, there exist exactly 2 of O4.

Proof. The elements of the group will act under the Monad mapping f(g) = g5 (or sometimes we denoted
by f5(g) = g5) under modulo n = 2r. We indeed can see the elements:

f5(a
2r−4

) = a5·2
r−4

= a(2
2+1)·2r−4

= a2
r−2+2r−4

.

f5(a
2r−2+2r−4

) = a5·2
r−2+2r−4

= a(2
2+1)·2r−2+2r−4

= a2
r−1+2r−4

.

f5(a
2r−1+2r−4

) = a5·2
r−1+2r−4

= a(2+2+1)·2r−1+2r−4

= a2
r−1+2r−2+2r−4

.

f5(a
2r−1+2r−2+2r−4

) = a5·2
r−1+2r−2+2r−4

= a(2+2+1)·2r−1+2r−2+2r−4

= a2
r−4

.

A similar approach can be followed for the element a2
r−3+2r−4

. Hence, the proposition is proved.

Proposition 2.4. The Monad graph of the cyclic group Cn when n = 2r, r ≥ 1 is given by the following:

1. If r = 1, then Γ(C2) = 2O1;

2. If r = 2, then Γ(C22) = 4O1;

3. If r = 3, then Γ(C23) = 2O2 + 4O1;

4. If r ≥ 4, then Γ(C2r) =
∑r−1

i=2 2O2r−i + 4O1.

Proof. One can easily see that the first two cases are trivial, so we start proving Case 3 with which we
have the group C8 = {e, a, a2, . . . , a7} with a generates e, that denotes the identity of C8. Starting with
the identity element, one easily case see it goes to itself under the Monad mapping f(g) = g5. We also see
that the element a2 has the order 4, and with the mapping f(g) = g5 it goes to itself, i.e. a2 ≡ a10 → a2.
Let’s next consider the elements a4 and a6, that also go to themselves under the Monad mapping, namely
a4 → a4 and a6 → a6, respectively. Thus, we have 4O1. Finally, we consider the other elements a → a5,
a5 → a1, a3 → a7 and a7 → a3. These give the 2O2. These mappings can be represented in the following
graph:

a

a5

a3

a7

a2

a3

e

a4
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Finally, we consider Case (4). Indeed, there exist exactly four elements loop to themselves, namely e,
a2

r−2
,a2

r−1
and a2

r−2+2r−1
since f5(e) = e and

f5(a
2r−1

) = a52
r−1

= a(2+2+1)2r−1

= a2
r
a2

r
a2

r−1mod(2r)

= a2
r−1

.

f5(a
2r−2

) = a52
r−2

= a(2
2+1)2r−2

= a2
r
a2

r−1mod(2r)

= a2
r−2

.

f5(a
2r−2+2r−1

) = a5(2
r−2+2r−1)

= a(2
2+1)2r−2+(2+2+1)2r−1

= a2
r+2r−2+2r+2r+2r−1mod(2r)

= a2
r−2+2r−1

.

In other words, these mappings can be represented as follows:

e

a2
r−1

a2
r−2

a2
r−1+2r−2

Also, for the elements a2
r−3

and a5·2
r−3

we see the following:

f5(a
2r−3

) = a52
r−3

= a(2
2+1)2r−3

= a2
r−1+2r−3

.

f5(a
2r−1+2r−3

) = a5∗(2
r−1+2r−3) = a(2

r−1+2r−1+2r−3) = a2
r−3

.

Also, for the elements a2
r−2+2r−3

and a5·2
r−2+2r−3

we see the following:

f5(a
2r−2+2r−3

) = a2
r−1+2r−2+2r−3

,

f5(a
2r−1+2r−2+2r−3

) = a2
r−2+2r−3

,

which means there exists an edge from v
a2r−2+2r−3 into v

a5·2r−2+2r−3 . For

f5(a
2r−2+2r−3

) = a5·(2
r−2+2r−3)

= a2
r−1+2r−2+2r−3

= f5(a
2r−1+2r−2+2r−3

)

= a2
r−1+2r−2+2r−3

,

that also means there exists an edge from v
a32r−3 into v

a2r−3 . Similar idea goes to the elements a2
r−2

, a6·2
r−3

, a5·2
r−3

and a7·2
r−3

, and they are represented in the following figure:

a2
r−3

a2
r−1+2r−3

a2
r−2+2r−3

a2
r−1+2r−2+2r−3
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Now, it remains to consider the remaining 2r−1 elements. The number 2r−1 is clearly an odd number. Here,
this leads to two cyclic graphs of order O2r−2 since these elements are clearly splitted up to two cyclic graphs
of order O2r−2 . To finish the proof of this case, it is enough to show that the order of the group is equal to
the order of the Monad graph. This can be done as follows:

2
r−1∑
t=2

|V (O2r−t)|+ 4|V (O1)| = 2
r−1∑
t=2

2r−t + 4.

Let’s now consider the right hand side of the latter equation, we obtain that

2

r−1∑
t=2

2r−t + 4 = 2(2r−2 + 2r−3 + · · ·+ 22 + 2) + 22

= 22(2r−3 + 2r−4 + · · ·+ 2 + 1) + 22

= 22[(2r−3 + 2r−4 + · · ·+ 2 + 1) + 1)]

= 22[2r−2 − 1 + 1]

= 2r

= |Cn| = |V (Cn)|,

and this completes the proof of the fourth case.

Example 2.5. Let’s take n = 25, then the Monad graph Γ5(C27) is isomorphic to 2O32 + 2O16 + 2O8 +
2O4 + 2O2 + 4O1, which is obtained as follows: the set of all vertices is V (Γ5) = {ai : 1 ≤ i ≤ 128} and the
set of all edges is given by E(Γ5) = {{ai, f5(ai)} : 1 ≤ i ≤ 128}. Therefore, the corresponding Monad graph
is represented by

n Γ5(Cn)

4 2O4 + 2O2 + 4O1

5 2O8 + 2O4 + 2O2 + 4O1

6 2O16 + 2O8 + 2O4 + 2O2 + 4O1

7 2O32 + 2O16 + 2O8 + 2O4 + 2O2 + 4O1

8 2O64 + 2O32 + 2O16 + 2O8 + 2O4 + 2O2 + 4O1

a
a5

a25

a29
a17

a21

a9

a13

a3

a15

a11

a23

a19
a31

a27

a7

a2

a10

a18

a26

a6

a30

a22

a14

a4

a20

a12

a28
e

a8

a16

a24

Proposition 2.6. Let Cn be a cyclic group and n = 3α, 1 ≤ α ≤ 4, the following are hold:

1. If α = 1, then there exist exactly 1 of O1 and 1 of O2;

2. If α = 2, then there exist exactly 1 of O1, 1 of O2 and 1 of O6;

3. If α = 3, then there exist exactly 1 of O1, 1 of O2, 1 of O6 and 1 of O18;

4. If α = 4, then there exist exactly 1 of O1, 1 of O2, 1 of O6, 1 of O18 and 1 of O54.
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Proof. The first case can be easily achieved, so we may start considering the second case in which we have
C9 = {e, a, a2, . . . , a8} with a generates e, that denotes the identity of C9. It is clear that the identity
element goes to itself under the Monad mapping f(g) = g5. We also see that the element a3 with the
mapping f(g) = g5 goes to a6, which also goes to a3, i.e.

a3 ≡ a15 → a6 ≡ a30 → a3.

Also, under the same mapping, we see that

a1 → a5 → a7 → a8 → a4 → a2 → a1.

We also can represent this case with the following graph:

e

a

a7

a2

a8a4

a5

a3

a6

Thus, we have exactly 1 of O1, 1 of O2 and 1 of O6.
Next, we deal with the third case in which we have that C27 = {e, a, a2, . . . , a26}. Under the Monad

mapping f(g) = g5, we summarize the details of computations for the elements of C27 as follows:

a a5 a25 a17 a4 a20 a19 a14

a16

a26a22a2a10a23a7a8a13

a11

e

a15

a24

a3

a12

a6 a21

a9

a18

This proves that with α = 3, there exist exactly 1 of O1, 1 of O2, 1 of O6 and 1 of O18.
It remains to consider the last case with α = 4, namely we deal with the elements of the group C81 =

{e, a, a2, . . . , a80} with the Monad mapping g → g5. In fact, in a similar way done with above cases we can
easily obtain that there are only 1 of O1, 1 of O2, 1 of O6, 1 of O18 and 1 of O54. Thus, Proposition 2.6 is
completely proved.

Proposition 2.7. The Monad graph of the cyclic group Cn when n = 3α, α ≥ 1 is given by the following:

1. If α = 1, then Γ(C3) = O2 +O1;

2. If α = 2, then Γ(C32) = O6 +O2 +O1;

3. If α ≥ 3, then Γ(C3α) =
∑α−1

t=0 O23t +O1.

Proof. Here, the proof of these three cases can be achieved in a similar way as done in the proofs of
Propositions 2.4 and 2.6, so we only consider proving the second case and the others are proved similarly.
We have the group C9 = {e, a, a2, . . . , a8} with a generates e, that denotes the identity of C9. From the
proof of the second case of Proposition 2.6, we have from this mapping the following graph:

e

a

a7

a2

a8a4

a5

a3

a6
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That has exactly 1 of O1, 1 of O2 and 1 of O6. Thus, with α = 2, we obtain that Γ(C32) = O6 + O2 + O1.
This proves the second case of Proposition 2.7, and the remaining cases will be achieved similarly. So, we
omit the details of computations. Hence, Proposition 2.7 is proved.

Proposition 2.8. The Monad graph of the cyclic group Cn when n = 5α, α ≥ 1 is given by the following:

Γ(Cn) ∼= T5α .

Proof. Suppose that n = 5α. Consider the following five elements in the group that are a5∗i0≤i≤4 which
goes to e, a5∗i+1

0≤i≤4 goes to a5, a5∗i+2
0≤i≤4 goes to a10, a5∗i+3

0≤i≤4 goes to a15 and a5∗i+4
0≤i≤4 goes to

a20, which imply that

f5(a
5∗i) = a25i = e

f5(a
10∗i) = a50i = e

f5(a
15∗i) = a75i = e

f5(a
20∗i) = a100i = e,

f5(a
5∗i+1) = a25ia5 = a5

f5(a
10∗i+1) = a50ia5 = a5

f5(a
15∗i+1) = a75ia5 = a5

f5(a
20∗i+1) = a100ia5 = a5,

f5(a
5∗i+2) = a25ia10 = a10

f5(a
10∗i+2) = a50ia10 = a10

f5(a
15∗i+2) = a75ia10 = a10

f5(a
20∗i+2) = a100ia10 = a10,

f5(a
5∗i+3) = a25ia15 = a15

f5(a
10∗i+3) = a50ia15 = a15

f5(a
15∗i+3) = a75ia15 = a15

f5(a
20∗i+3) = a100ia15 = a15

and

f5(a
5∗i+4) = a25ia20 = a20

f5(a
10∗i+4) = a50ia20 = a20

f5(a
15∗i+4) = a75ia20 = a20

f5(a
20∗i+4) = a100ia20 = a20.

In general, let a5
r−t·i+k, where n = 5r, 1 ≤ t ≤ r, 0 ≤ i, k ≤ 4. Thus,

f5(a
5r−t·i+k) = a55

r−t·i+5k

= a5
r−t+1·i+5k.

Therefore, we have the following cases that complete the proof:

1. If k = 0, then
f5(a

5r−t·0) = a5
r−t+1

.

2. If k = 1, then
f5(a

5r−t·1) = a5
r−t+1+5.
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3. If k = 2, then
f5(a

5r−t·2) = a5
r−t+1+10.

4. If k = 3, then
f5(a

5r−t·2) = a5
r−t+1+15.

5. If k = 4, then
f5(a

5r−t·4) = a5
r−t+1+20.

Therefore, Proposition 2.8 is completely proved.

Remark 2.9. As a problem that can be left to the reader to prove, we propose the following conjecture:
Conjecture: Let Cn be a cyclic group and n = pα with α ≥ 1 and p ̸= 2, 3, 5 is prime, then the following
is held:

Γ(Cn) = kO p−1
k

+O1,

where k is some positive integer. As a hint, this conjecture could be proved using the theory of the Euler
Phi function.
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