ON SOME SUBFIELDS OF K((X))

SHAHEEN NAZIR¹, ANGEL POPESCU^{1,2}

ABSTRACT. Let K be a commutative field and let K((X)) be the field of Laurent series in one variable X, consider with its natural X-adic topology. In this paper we prove that any closed subfield $K \subset L \subset K((X))$ is of the form L = K((f)) and K((X)) is algebraic over L of degree $ord_X(f)$. Some other properties of L are studied.

 $\mathit{Key\ words}$: Field of Laurent series, Krull valuation, algebraic extension, completeness

AMS SUBJECT: 12J12,12F05,12J99,16W60.

1. Introduction

Let K be a commutative field and let K((X)) be the field of Laurent series in one variable X with the coefficients in K. If $g \in K((X))$, then $g = X^m u$ where $m \in Z$ and u is a unit in K[[X]], the ring of formal power series. We call m the order of g and denote it by $ord_X(g)$. The mapping $g \mapsto ord_X(g) \in Z \cup \{\infty\}$, $ord_X(0) = \infty$ is a Krull valuation on K((X)) with the valuation ring K[[X]].

Lemma 1. Let f be a non constant series of K((X)) with $ord_X(f) \ge 1$. Then the restriction of the X-adic topology to K((f)) is the same as its natural f-adic topology.

Proof. It is sufficient to see that $ord_X(g) = ord_X(f) ord_f(g)$ for any $g \in K((f))$. So $ord_x(g) \to \infty$ if and only if $ord_f(g) \to \infty$

Lemma 2. Let $f \in K((X))$ such that $ord_X(f) \ge 1$. Then any $g \in K[[X]]$ can be written in a unique way as: $g = r_0 + r_1 f + ... + r_n f^n + ...$, where $r_i = r_i(X)$ are polynomials in X with $degr_i(X) < ord_X(f)$, for any i = 0, 1, 2...

¹School of Mathematical Science, GC University, Lahore, 68-B, New Muslim Town, Lahore, Pakistan, E-mail: shaheen.nazir@gmail.com.

²Technical University of Civil Engineering, Bucharest, Romania, E-mail: popescuangel@yahoo.co.uk.

Proof. If the order of g is greater or equal to the order n of f, then $g = X^m v$, with v a unit in K[[X]]. But $f = X^n u$, where u is a unit in K[[X]]. So, $g = X^{m-n} f u^{-1} v = f h$, where $h = X^{m-n} u^{-1} v$, has the order less than $ord_X(g)$. If $ord_X(h) \geq ord_X(f)$ we take h instead of g and repeat the above reasoning up to a point when $g = f^h h_1$ and $ord_X(h_1) < ord_X(f)$. Hence we may assume: $ord_X(g) < ord_X(f)$. Write $g = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + X^n g_1$ and denote $a_0 + a_1 X + \ldots + X_{n-1} X^{n-1}$ by $r_0(X)$. Since $X^n = f u^{-1}$, we obtain that $g = r_0(X) + f u^{-1} g_1$. Take now $u^{-1} g_1$ and repeat the above reasoning. We find $g = r_0(X) + r_1(X)f + f^2 g_2$, where $g_2 \in K[[X]]$ and $degr_1(X) < ord_X(f)$. If we continue in this way we get $g = r_0(X) + r_1(X)f + r_2(X)f^2 + \ldots + r_t(X)f^t + f^{t+1} g_{t+1}$, for any $t = 0, 1, 2, \ldots$. Since $ord_X(f) \geq 1$, the series $r_0(X) + r_1(X)f + r_2(X)f^2 + \ldots + r_t(X)f^t + \ldots$ is convergent in K[[X]] to g.

Theorem 3. Let $f \in K((X))$ such that $ord_X(f) \ge 1$. Then K((X)) is an algebraic extension of K((f)) and [K((X)) : K((f))] = n, where $n = ord_X(f)$.

Proof. Let $V=K((f))+K((f))X+\ldots+K((X))X^{n-1}$ be the K((f))-vector subspace of K((X)) generated by $\{1,X,...,X^{n-1}\}$. Let us consider $g\in K[[X]]$. From Lemma 2 we write $g=(a_0+a_1X+\ldots+a_{n-1}X^{n-1})+(b_0+b_1X+\ldots+b_{n-1}X^{n-1})f+\ldots+(w_0+w_1X+\ldots+w_{n-1}X^{n-1})f^t+\ldots$ After rearrangement of the terms, using the convergence in K((X)), we obtain $g=(a_0+b_0f+\ldots+w_0f^t+\ldots)+(a_1+b_1f+\ldots+w_1f^t+\ldots)X+\ldots+(a_{n-1}+b_{n-1}f+\ldots+w_{n-1}f^t+\ldots)X^{n-1}$, i.e. $g\in V$. In particular, $X^n\in V$, i.e. $X^n-s_{n-1}(f)X^{n-1}-s_{n-2}(f)X^{n-2}-\ldots-s_0(f)=0$, where $s_j(f)\in K((f))$ for any $j=0,1,\ldots,n-1$. So that $X^{-1}\in V$. Now, any $h\in K((X))$ can be written as $h=\frac{g}{X^l}$, with $g\in V$. Since V is also a subfield (being a finite extension of a field) we get that $h\in V$, K((X))=V. It results from here that $[K((X)):K((f))]\leq n$. Since $K\subset K((f))\subset K((X))$ and since the residue fields of K((f)) and K((X)) coincide with K, then the degree [K((X)):K((f))] is the ramification index of $K((f))\subset K((X))$ which is exactly n. Hence [K((X)):K((f))]=n

Corollary 4. For any $f \in K((X))$ with $ord_X(f) = n \ge 1$, one has $K((f)) = K((X^n))$ if and only if $X^n \in K((f))$

Theorem 5. Let $L \supset K$ be a closed subfield of K((X) (relative to the X-adic topology). Then K((X)) is a finite algebraic extension of L and L = K((f)), for $a \in K((X))$.

Proof. Let $f \in L$ with $ord_X(f) \geq 1$. Since $K \subset K((f)) \subset L \subset K((X))$ (here we use the fact that L is closed in K((X))), from Theorem 3 one has that K((X))/L is algebraic and $[K((X)):L] \leq n$, where $n = ord_X(f)$. Now, since L is a closed subfield of K((X)), it is complete. Then, by 4. L = K((f)), where $f \in L$ such that $ord_X(f) = min\{ord_X(g) > 0 : g \in L\}$.

Remark 1. If L is not closed, it is possible that L cannot be generated by one element. Take for instance K = Q, the rational number field, and take

 $L=Q(X,e^X)\subset Q((X)), \ where \ e^X=\sum_{x=0}^\infty \frac{1}{n!}X^n. \ Since \ Q(X)\subset L\subset Q((X)),$ we have $\tilde L=Q((X)).$ If L is closed then L must be equal to Q((X)), which is impossible (as $e^{X^2}\not\in L$). Since in L we have rational functions in X and in e^X , let us assume that $L=Q(f),\ f\in Q((X)).$ Then X=A(f)/B(f), where $A(X),B(X)\in Q[X].$ This means that f is algebraic over Q(X). Since $e^X=U(f)/V(f),$ where $U(X),V(X)\in Q[X]$ and since f is algebraic over Q(X) we get that e^X is algebraic over Q(X). Hence f is algebraic over f is a contradiction (see f in instance), f is a transcendental number.

Remark 2. The mapping $X \to f$, where $ord_X(f) \ge 1$ gives a field K-endomorphism of K((X)). Since $K((f)) \subset K((X))$ is an algebraic extension of degree $n = ord_X(f)$, this last K-endomorphism is K-automorphism if and only if $ord_X(f) = 1$, i.e. $f = a_1X + a_2X^2 + ...$, $a_1 \ne 0$. This last result was directly obtained by Shaheen Nazir in 5.

Let $E \supset K$ be a subfield of K(X). From Lüroth theorem (see 3.), we know that E = K(g) for a rational function g(X) of K(X). If $ord_X(g) < 0$ we shall change g with 1/g. If $ord_X(g) = 0$ we write $g(X) = \frac{a_0 + a_1 X + \ldots + a_k X^k}{b_0 + b_1 X + \ldots + b_l X^l}$ and change g with $g - \frac{a_0}{b_0}$, which has the order ≥ 1 . Hence we can always consider g in E = K(g) with $ord_X(g) \geq 1$.

Since the X-adic topology on E is the same with g-adic topology of it, the completion of E in K((X)) is exactly K((g)). Thus we have the following proposition:

Proposition 6. Let $E \supset K$ be a subfield of K(X). Let $\omega(E) = ord_X(g) \ge 1$ where g is any generator of E in K(X) i.e. E = K(g), then the X-adic completion of E in K((X)) is exactly $\tilde{E} = K((g))$ and K((X)) = K(X) is algebraic over \tilde{E} , $[K((X)) : \tilde{E}] = \omega(E)$.

Definition 1. Let $K \subset E \subset K(X)$. An element $g \in K(X)$ s.t. E = K(g) is said to be a Lüroth generator of E. If L is a closed subfield of K((X)), an element $g \in K(X)$ s.t. L = K((g)) is said to be Lüroth generator of L.

If L is a closed subfield of K((X)), it may not have a Lüroth generator. For example $L=Q((f)), f=e^X-1-X$. We shall prove that $L\cap Q(x)=Q$. If not, take $q(X)=\frac{P(X)}{R(X)}\in L\cap Q(X), q(X)\not\in Q$. We can assume that $ord_X(q(X))\geq 1$ (see the above reasoning). Suppose $q(X)=\frac{A_0+A_1f+A_2f^2+...}{f^k}$. Since $ord_X(f)=2$ and $ord_X(q)\geq 1$, we must have k=0 and $A_0=0$. Take a natural number ≥ 2 such that $R(m)\neq 0$ then $R(m)\in Q$, but $A_1f(m)+A_2f^2(m)+...$ is not a convergent series except $A_{n_0+1}=A_{n_0+2}=...=0$ for a natural number n_0 . So that $q(X)=A_1f(X)+A_2f^2(X)+...+A_{n_0}f^{n_0}(X)$ with $A_1,A_2,...,A_{n_0}\in Q$. From here one can see that e^X-1-X is algebraic over Q(q(X)) i.e. e^X is algebraic over Q(q(X)), since X is algebraic over Q(q(X)) (see Lüroth theorem). Hence does exist a relation of the following type: $A_0(X)+A_1(X)e^X+...+A_h(X)e^{hx}=0$ for any X, where $A_0(X),...,A_h(X)\in Q[X]$. Take them to be

coprime and then take X=1, we obtain a nontrivial relation of the form: $b_0+b_1e+b_2e^2+...+b_ke^k=0$ where $b_0,b_1,...,b_h\in Q$. This means that e is algebraic over Q which is a contradiction. Hence $L\cap Q(X)=Q$. Therefore L cannot have a Lüroth generator. The following result will clarify the general situation.

Theorem 7. A closed subfield $L \supset K$ of K((X)), has a Lüroth generator if and only if $L \cap K(X) = L$

Proof. Let L = K((g)), where $ord_X(g) \ge 1$ and $g \in K(X)$. Since $g \in L \cap K(X) \Rightarrow K(g) \subset L \cap K(X)$, taking the completion, we have $L = K((g)) \subseteq L \cap K(X)$. Moreover, $L \cap K(X) \subseteq L$. Thus $L \cap K(X) = L$. Conversely, since $L \ne K$, $L \cap K(X) \ne K$ so there exists $q(X) \in K(X) \setminus K$ such that $ord_X(q) \ge 1$ and $K(q) = L \cap K(X)$. Then $L = L \cap K(X) = K(q) = K((q))$, because the X-adic topology on L((q)) is the same with the q-adic topology of it.

References

- 1. N. Bourbaki, Éléments de Mathématique, Livre II Algébra, Hermann, Paris VI.
- 2. A.O.Gelfond, Transcendental and Algebraic Numbers, Dover Publications, Inc., 1960.
- 3. N. Jacobson, Lectures in Abstract Algebra, Vol III, Springer-Verlag, N.Y., 1964.
- 4. J. Neukirch, Algebraic Number Theory, Springer-Verlag, 1999.
- 5. Shaheen Nazir, Continuous Automorphism and an Equivalence Relations in K[[X]], The Journal of Prime Research in Mathematics, Vol. I Nr. 1(2005),178-183.
- 6. O. Zariski, P.Samuel Commutative Algebra, Vol. II, D.Van Nostrand, New Jersey, 1960.