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ON SOME SUBFIELDS OF K((X))

SHAHEEN NAZIR1, ANGEL POPESCU1,2

Abstract. Let K be a commutative field and let K((X)) be the field of
Laurent series in one variable X, consider with its natural X-adic topology.
In this paper we prove that any closed subfield K ⊂ L ⊂ K((X)) is of the
form L = K((f)) and K((X)) is algebraic over L of degree ordX(f). Some
other properties of L are studied.
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1. Introduction

Let K be a commutative field and let K((X)) be the field of Laurent series in
one variable X with the coefficients in K. If g ∈ K((X)), then g = Xmu where
m ∈ Z and u is a unit in K[[X]], the ring of formal power series. We call m the
order of g and denote it by ordX(g). The mapping g 7→ ordX(g) ∈ Z ∪ {∞},
ordX(0) = ∞ is a Krull valuation on K((X)) with the valuation ring K[[X]].

Lemma 1. Let f be a non constant series of K((X)) with ordX(f) ≥ 1. Then
the restriction of the X-adic topology to K((f)) is the same as its natural f-adic
topology.

Proof. It is sufficient to see that ordX(g) = ordX(f)ordf (g) for any g ∈ K((f)).
So ordx(g) →∞ if and only if ordf (g) →∞ ¤

Lemma 2. Let f ∈ K((X)) such that ordX(f) ≥ 1. Then any g ∈ K[[X]] can
be written in a unique way as: g = r0 + r1f + ... + rnfn + ..., where ri = ri(X)
are polynomials in X with degri(X) < ordX(f), for any i = 0, 1, 2....
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Proof. If the order of g is greater or equal to the order n of f , then g = Xmv,
with v a unit in K[[X]]. But f = Xnu, where u is a unit in K[[X]]. So,
g = Xm−nfu−1v = fh, where h = Xm−nu−1v, has the order less than ordX(g).
If ordX(h) ≥ ordX(f) we take h instead of g and repeat the above reasoning
up to a point when g = fhh1 and ordX(h1) < ordX(f). Hence we may assume:
ordX(g) < ordX(f). Write g = a0 + a1X + ... + an−1X

n−1 + Xng1 and denote
a0 + a1X + ... + Xn−1X

n−1 by r0(X). Since Xn = fu−1, we obtain that g =
r0(X) + fu−1g1. Take now u−1g1 and repeat the above reasoning. We find
g = r0(X) + r1(X)f + f2g2, where g2 ∈ K[[X]] and degr1(X) < ordX(f). If we
continue in this way we get g = r0(X) + r1(X)f + r2(X)f2 + ... + rt(X)f t +
f t+1gt+1, for any t = 0, 1, 2, .... Since ordX(f) ≥ 1, the series r0(X) + r1(X)f +
r2(X)f2 + ... + rt(X)f t + ... is convergent in K[[X]] to g. ¤
Theorem 3. Let f ∈ K((X)) such that ordX(f) ≥ 1. Then K((X)) is an
algebraic extension of K((f)) and [K((X)) : K((f))] = n, where n = ordX(f).

Proof. Let V = K((f)) + K((f))X + ... + K((X))Xn−1 be the K((f))-vector
subspace of K((X)) generated by {1, X, ..., Xn−1}. Let us consider g ∈ K[[X]].
From Lemma 2 we write g = (a0 + a1X + ... + an−1X

n−1) + (b0 + b1X + ... +
bn−1X

n−1)f+...+(w0+w1X+...+wn−1X
n−1)f t+.... After rearrangement of the

terms, using the convergence in K((X)), we obtain g = (a0+b0f+...+w0f
t+...)+

(a1+b1f+...+w1f
t+...)X+...+(an−1+bn−1f+...+wn−1f

t+...)Xn−1, i.e. g ∈ V .
In particular, Xn ∈ V , i.e. Xn− sn−1(f)Xn−1− sn−2(f)Xn−2− ...− s0(f) = 0,
where sj(f) ∈ K((f)) for any j = 0, 1, ..., n − 1. So that X−1 ∈ V . Now,
any h ∈ K((X)) can be written as h = g

Xl , with g ∈ V . Since V is also a
subfield (being a finite extension of a field) we get that h ∈ V , K((X)) = V .
It results from here that [K((X)) : K((f))] ≤ n. Since K ⊂ K((f)) ⊂ K((X))
and since the residue fields of K((f)) and K((X)) coincide with K, then the
degree [K((X)) : K((f))] is the ramification index of K((f)) ⊂ K((X)) which
is exactly n. Hence [K((X)) : K((f))] = n ¤
Corollary 4. For any f ∈ K((X)) with ordX(f) = n ≥ 1, one has K((f)) =
K((Xn)) if and only if Xn ∈ K((f))

Theorem 5. Let L ⊃ K be a closed subfield of K((X) (relative to the X-adic
topology). Then K((X)) is a finite algebraic extension of L and L = K((f)),
for a f ∈ K((X)).

Proof. Let f ∈ L with ordX(f) ≥ 1. Since K ⊂ K((f)) ⊂ L ⊂ K((X)) (here we
use the fact that L is closed in K((X))), from Theorem 3 one has that K((X))/L
is algebraic and [K((X)) : L] ≤ n, where n = ordX(f). Now, since L is a closed
subfield of K((X)), it is complete. Then, by 4. L = K((f)), where f ∈ L such
that ordX(f) = min{ordX(g) > 0 : g ∈ L}.

¤
Remark 1. If L is not closed, it is possible that L cannot be generated by
one element. Take for instance K = Q, the rational number field, and take
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L = Q(X, eX) ⊂ Q((X)), where eX =
∑∞

x=0
1
n!X

n. Since Q(X) ⊂ L ⊂ Q((X)),
we have L̃ = Q((X)). If L is closed then L must be equal to Q((X)), which
is impossible (as eX2 6∈ L). Since in L we have rational functions in X and
in eX , let us assume that L = Q(f), f ∈ Q((X)). Then X = A(f)/B(f),
where A(X), B(X) ∈ Q[X]. This means that f is algebraic over Q(X). Since
eX = U(f)/V (f), where U(X), V (X) ∈ Q[X] and since f is algebraic over Q(X)
we get that eX is algebraic over Q(X). Hence e is algebraic over Q, which is a
contradiction (see 2., for instance), e being a transcendental number.

Remark 2. The mapping X → f , where ordX(f) ≥ 1 gives a field
K-endomorphism of K((X)). Since K((f)) ⊂ K((X)) is an algebraic extension
of degree n = ordX(f), this last K-endomorphism is K-automorphism if and
only if ordX(f) = 1, i.e. f = a1X + a2X

2 + ..., a1 6= 0. This last result was
directly obtained by Shaheen Nazir in 5.

Let E ⊃ K be a subfield of K(X). From Lüroth theorem (see 3.), we know that
E = K(g) for a rational function g(X) of K(X). If ordX(g) < 0 we shall change
g with 1/g. If ordX(g) = 0 we write g(X) = a0+a1X+...+akXk

b0+b1X+...+blXl and change g with
g − a0

b0
, which has the order ≥ 1. Hence we can always consider g in E = K(g)

with ordX(g) ≥ 1.
Since the X-adic topology on E is the same with g-adic topology of it, the com-
pletion of E in K((X)) is exactly K((g)). Thus we have the following proposi-
tion:

Proposition 6. Let E ⊃ K be a subfield of K(X). Let ω(E) = ordX(g) ≥
1 where g is any generator of E in K(X) i.e. E = K(g), then the X-adic

completion of E in K((X)) is exactly Ẽ = K((g)) and K((X)) = K̃(X) is
algebraic over Ẽ, [K((X)) : Ẽ] = ω(E).

Definition 1. Let K ⊂ E ⊂ K(X). An element g ∈ K(X) s.t. E = K(g)
is said to be a Lüroth generator of E. If L is a closed subfield of K((X)), an
element q ∈ K(X) s.t. L = K((q)) is said to be Lüroth generator of L.

If L is a closed subfield of K((X)), it may not have a Lüroth generator. For
example L = Q((f)), f = eX−1−X. We shall prove that L∩Q(x) = Q. If not,
take q(X) = P (X)

R(X) ∈ L∩Q(X), q(X) 6∈ Q. We can assume that ordX(q(X)) ≥ 1

(see the above reasoning). Suppose q(X) = A0+A1f+A2f2+...
fk . Since ordX(f) = 2

and ordX(q) ≥ 1, we must have k = 0 and A0 = 0. Take a natural number ≥ 2
such that R(m) 6= 0 then R(m) ∈ Q, but A1f(m) + A2f

2(m) + ... is not a
convergent series except An0+1 = An0+2 = ... = 0 for a natural number n0. So
that q(X) = A1f(X) + A2f

2(X) + ... + An0f
n0(X) with A1, A2, ..., An0 ∈ Q.

From here one can see that eX − 1 − X is algebraic over Q(q(X)) i.e. eX is
algebraic over Q(q(X)), since X is algebraic over Q(q(X))(see Lüroth theorem).
Hence does exist a relation of the following type: A0(X) + A1(X)eX + ... +
Ah(X)ehx = 0 for any X, where A0(X), ..., Ah(X) ∈ Q[X]. Take them to be
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coprime and then take X = 1, we obtain a nontrivial relation of the form:
b0 + b1e + b2e

2 + ... + bkek = 0 where b0, b1, ..., bh ∈ Q. This means that e is
algebraic over Q which is a contradiction. Hence L ∩ Q(X) = Q. Therefore L
cannot have a Lüroth generator. The following result will clarify the general
situation.

Theorem 7. A closed subfield L ⊃ K of K((X)), has a Lüroth generator if and

only if ˜L ∩K(X) = L

Proof. Let L = K((g)), where ordX(g) ≥ 1 and g ∈ K(X). Since g ∈ L ∩
K(X) ⇒ K(g) ⊂ L ∩ K(X), taking the completion, we have L = K((g)) ⊆
˜L ∩K(X). Moreover, ˜L ∩K(X) ⊆ L. Thus ˜L ∩K(X) = L. Conversely, since

L 6= K, L ∩K(X) 6= K so there exists q(X) ∈ K(X)\K such that ordX(q) ≥ 1

and K(q) = L ∩ K(X). Then L = ˜L ∩K(X) = K̃(q) = K((q)), because the
X-adic topology on L((q)) is the same with the q-adic topology of it. ¤
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