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Abstract

In this work, we define a more general family of polynomials in several variables satisfying a linear recurrence
relation. We provide explicit formulas and determinantal expressions. Our results are then applied to second-
order recurrent polynomials, presenting several relationships and identities involving Fibonacci polynomials
of order 2, Lucas polynomials of order 2, classical Fibonacci polynomials, classical Lucas polynomials,
Fibonacci numbers, Lucas numbers, and both kinds of Dickson polynomials. Our findings offer a unified
generalization of various existing works, with several well-known results emerging as special cases.
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1. Introduction

The classical Fibonacci polynomials Fn(x) and the classical Lucas polynomials Ln(x) are defined by

F0(x) = 0, F1(x) = 1, Fn+2(x) = xFn+1(x) + Fn(x), n ≥ 0,

L0(x) = 2, L1(x) = x, Ln+2(x) = xLn+1(x) + Ln(x), n ≥ 0.

It is well known that the explicit expressions of the sequences {Fn(x)}n≥0 and {Ln(x)}n≥0 are given by the
Binet formula,

Fn(x) =
1

α− β
(αn − βn), and Ln(x) = αn + βn, for all n ≥ 0,
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where α = 1
2(x+

√
x4 + 4) and β = 1

2(x−
√
x4 + 4).

These polynomials are of great importance in the study of various topics such as number theory, alge-
bra, combinatorics, statistics, geometry, approximation theory, and other areas. It is not easy to describe
versatile applications that rely on the classical Fibonacci polynomials and the classical Lucas polynomials.
For specific references to some applications, the reader can consult for example [4, 5, 18, 24, 26]. The classi-
cal Fibonacci and Lucas polynomials have always attracted the attention of several researchers. Therefore,
many generalizations and research works have been considered in recent studies on the subject; some of them
can be found in [6, 8, 11, 14, 19, 21, 23, 25, 27]. Regardless of the fact that they are of great importance,
to the best of our knowledge, no one has yet considered and studied the general case.

The theory of sequence polynomials can be applied to have powerful results on certain integer sequences
including Fibonacci numbers, Lucas numbers, and a wide range other of sequences.
It is clear that when x = 1, the classical Fibonacci polynomials turn into the well known Fibonacci numbers,
Fn(1) = Fn. Also, it is clear that when x = 1, the classical Lucas polynomials turn into the well known
Lucas numbers, Ln(1) = Ln.
The Fibonacci and Lucas numbers are of intrinsic interest and have various fascinating properties. They
too continue to amaze mathematicians with their splendid beauty, applicability, and ubiquity. They provide
delightful opportunities to explore, experiment, conjecture, and problem-solve. The Fibonacci and Lucas
numbers form a unifying thread intertwining geometry, analysis, trigonometry, and numerous areas of dis-
crete mathematics such as combinatorics, linear algebra, number theory, and graph theory. For a deep and
extensive survey of the theory and applications of the Fibonacci and Lucas numbers, we refer the reader to
the book [10]. That research monograph contains not only a comprehensive treatise on this topic but con-
tains in one location all currently known results concerning these numbers and their numerous applications
and an extensive bibliography.

In this paper, we study general polynomial sequences in several variables of high order. Further, we
investigate these polynomials from different points of view, and we provide interesting explicit formulas and
elegant determinantal expressions. Using these results, we obtain numerous interesting identities involving
the Fibonacci polynomials order 2 and the Lucas polynomials of order 2. Consequently, several relation-
ships between the classical Fibonacci and Lucas polynomials are presented. Also, relationships between the
Dickson polynomials of the first and the second kind are provided. The results presented in this work can
be used to recuperate, generalize, and develop various essential works on this important topic.

2. Recurrent polynomials in several variables over unitary commutative ring

Let R be a commutative ring with identity. In the commutative ring R[x1, x2, · · · , xk] of polynomials in
the variables x1, x2, · · · , xk, we consider the sequence of polynomials (Pn(x1, x2, · · · , xk))n≥0 satisfying the
following general recurrence relation

Pn+k(x1, x2, · · · , xk) =
k∑

i=1

ciPn+k−i(x1, x2, · · · , xk), n ≥ 0, (2.1)

where for i = 1, 2, . . . , k, we have ci = qi(x1, x2, · · · , xk) is a polynomial in x1, x2, · · · , xk.
For j = 0, 1, 2, . . . , k−1, we consider the elements P

(j)
n (x1, x2, · · · , xk) satisfying the recurrence relation (2.1)

with the initial conditions P
(j)
i (x1, x2, · · · , xk) = δij for i = 0, 1, 2, . . . , k − 1.

The polynomial
g(X) = Xk − c1X

k−1 − c2X
k−2 − · · · − ck, (2.2)

is called the characteristic polynomial of each elements solution to this recurrence relation.
In general, we call the polynomials solution to the equation (2.1) the recurrent polynomials of order k, and
it is clear that they can be written as

Pn(x1, x2, · · · , xk) =
k−1∑
i=0

Pi(x1, x2, · · · , xk)P (i)
n (x1, x2, · · · , xk), for n ≥ 0. (2.3)
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Example 2.1. In the case where ci = (−1)i+1, the recurrent polynomials are equivalent to a set of poly-
nomials termed the Dickson polynomials in several variables, which have occurred in many applications in
the theory of finite fields [16].

Example 2.2. In the case of one variable, that is when x1 = x2 = · · · = xk = x, and ci = xk−i, the recurrent
polynomials of order k turn into the k-step Lucas polynomials studied and extended recently in [13] with
the aid of some matrices.

For the remainder of this section, we only consider P
(k−1)
n (x1, x2, · · · , xk) instead of P

(l)
n (x1, x2, · · · , xk), l =

0, . . . , k − 2, because of its simplicity in calculus and the fact that each polynomial P
(l)
n (x1, x2, · · · , xk), l =

0, . . . , k − 2, can be represented in terms of this important recurrent polynomial.

For proving some main results, we need the following lemma, which is a consequence of Theorem1.3 and
Theorem1.4 of [28].

Lemma 2.3. Let c1, c2, . . . , ck be the elements of a commutative ring with unity. Then(
1−

k∑
i=1

ciX
i

)−1

= 1 +
∑
n≥1

bnX
n,

where

bn =
∑

i1+2i2+···+kik=n

(i1 + i2 + · · ·+ ik)!

i1!i2! · · · ik!
ci11 c

i2
2 · · · cikk ,

and

bn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c1 −c2 · · · · · · · · · −cn

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . −c2
0 · · · · · · 0 1 −c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

with cn = 0 if n ≥ k + 1.

Remark 2.4. It is important to note that this lemma has clear potential for broad applications and further
developments, offering a flexible tool that can be adapted to various contexts and contribute to future
research in multiple fields. We encourage interested readers to refer to some applications treated recently
in [20].

In the following theorem, we derive a formula of P
(k−1)
n (x1, x2, · · · , xk) in terms of c1, c2, . . . , ck the

coefficients of the polynomial (2.2) which are polynomials in x1, x2, · · · , xk.
Theorem 2.5. For n ≥ 0, we have

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∑
i1+2i2+···+kik=n

(i1 + i2 + · · ·+ ik)!

i1!i2! · · · ik!
ci11 c

i2
2 · · · cikk ,

and

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 · · · · · · · · · cn

−1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . c2
0 · · · · · · 0 −1 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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with cn = 0 if n ≥ k + 1.

Proof. It is a routine to check that

∑
n=0

P
(k−1)
n+k−1(x1, x2, · · · , xk)X

n =

(
1− (c1X + · · ·+ ckX

k)

)−1

.

Then the rest follows easily from Lemma 2.3.

Now, we recall an important class of recurrent polynomials of order k.

Definition 2.6. The generalized Lucas polynomials in several variables of order k ≥ 2 are defined by

Ln+k(x1, x2, · · · , xk) =
k∑

i=1

(−1)i+1xiLn+k−i(x1, x2, · · · , xk),

with Lj(x1, x2, · · · , xk) = δj,k−1 for 0 ≤ j ≤ k − 1.

R. Barakat and E. Baumann [3] indicated the great importance of the generalized Lucas polynomials in
several variables in many physical problems and asked for obtaining them in a closed-form formula. Here,
we provide the solution to this problem in the following interesting theorem.

Theorem 2.7. For all n ≥ 0, the generalized Lucas polynomials of order k ≥ 2 satisfy the following results

Ln+k−1(x1, x2, . . . , xk) =
∑

i1+2i2+···+kik=n

(i1 + i2 + · · ·+ ik)!

i1!i2! · · · ik!
(−1)k+i1+i2+···+ikxi11 x

i2
2 · · ·xikk ,

and

Ln+k−1(x1, x2, . . . , xk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 −x2 · · · · · · · · · (−1)n+1xn

−1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . −x2
0 · · · · · · 0 −1 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

with xn = 0 if n ≥ k + 1.

Proof. It is obvious that when ci = (−1)i+1xi, we have Ln(x1, x2, . . . , xk) = P
(k−1)
n (x1, x2, · · · , xk). The rest

can be deduced immediately from Theorem 2.5.

3. Linear recurrence sequences via formal power series

In this section, we derive explicit formulas of the recurrent polynomial P
(k−1)
n (x1, x2, · · · , xk) in terms of

the roots of its characteristic polynomial (2.2). In the sequel, we consider only R = C the field of complex
numbers.

Theorem 3.1. Let g(X) =
∏k

i=1(X−αi) = Xk−c1X
k−1−c2X

k−2−· · ·−ck be the characteristic polynomial

of P
(k−1)
n (x1, x2, · · · , xk) having different roots α1 = α1(x1, x2, · · · , xk), α2 = α2(x1, x2, · · · , xk), . . . , αk =

αk(x1, x2, · · · , xk). Then for n ≥ 0, we have

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∑
i1+i2+···+ik=n

αi1
1 α

i2
2 · · ·αik

k .
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Proof. By algebraic manipulations, we can easily show that

∑
n≥0

P
(k−1)
n+k−1(x1, x2, · · · , xk)X

n =

(
1− c1X − · · · − ckX

k

)−1

=
k∏

i=1

(1− αiX)−1

=

k∏
i=1

(
∑
n≥0

αn
i X

n)

=
∑
n≥0

∑
i1+i2+···+ik=n

αi1
1 α

i2
2 · · ·αik

k Xn

Consequently

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∑
i1+i2+···+ik=n

αi1
1 α

i2
2 · · ·αik

k .

as claimed in the result.

The previous result was obtained by C. Levesque in [12]. The general case when the characteristic

polynomial of P
(k−1)
n (x1, x2, · · · , xk) has multiple roots is the following general result.

Theorem 3.2. Let g(X) =
∏s

i=1(X−αi)
mi = Xk−c1X

k−1−c2X
k−2−· · ·−ck be the characteristic polyno-

mial of P
(k−1)
n (x1, x2, · · · , xk) having different roots α1 = α1(x1, x2, · · · , xk), α2 = α2(x1, x2, · · · , xk), . . . , αs =

αs(x1, x2, · · · , xk) with multiplicities m1,m2, . . . ,ms respectively. Then for n ≥ 0, we have the following gen-
eral formula

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∑
i1+i2+···+is=n

(
i1 +m1 − 1

i1

)
αi1
1 · · ·

(
is +ms − 1

is

)
αis
s .

Proof. We clearly have ∑
n≥0

P
(k−1)
n+k−1(x1, x2, · · · , xk)X

n = (1− c1X − · · · − ckX
k)−1

=
s∏

i=1

(1− αiX)−mi .

On the other hand, it is not difficult to show that

(1− αiX)−mi =
∑
n≥0

(
n+mi − 1

n

)
αn
i X

n,

this gives

∑
n≥0

P
(k−1)
n+k−1(x1, x2, · · · , xk)X

n =

s∏
i=1

(∑
n≥0

(
n+mi − 1

n

)
αn
i X

n

)

=
∑
n≥0

( ∑
i1+i2+···+is=n

(
i1 +m1 − 1

i1

)
αi1
1 · · ·

(
is +ms − 1

is

)
αis
s

)
Xn.
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Therefore

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

∑
i1+i2+···+is=n

(
i1 +m1 − 1

i1

)
αi1
1 · · ·

(
is +ms − 1

is

)
αis
s .

Then we reach the desired result.

In the case of a single root, we have

Corollary 3.3. Let g(X) = (X − α)k = Xk − c1X
k−1 − c2X

k−2 − · · · − ck be the characteristic polynomial

of P
(k−1)
n (x1, x2, · · · , xk) having exactly one root α = α(x1, x2, · · · , xk). Then for n ≥ 0, we have

P
(k−1)
n+k−1(x1, x2, · · · , xk) =

(
n+ k − 1

n

)
αn.

4. The Fibonacci polynomials of order 2 and the Lucas polynomials of order 2

This section is devoted to recurrent polynomials of order 2, which are arguably the most important be-
cause they have various remarkable properties and a large number of applications in mathematics, computer
sciences, physics, and other related topics. For some references of these applications see [1, 2, 3, 7, 9, 13,
15, 17] and the references therein.

The results of this section can be seen as the generalization and unification of various previously obtained
results on sequence polynomials satisfying a second order linear recurrence relation. Taking into account
some results of the previous sections, we will split the statements into numerous theorems. Now we are
ready to present and prove our results. Let us first start by defining two class of polynomials.

Definition 4.1. Let q1(x, y) and q2(x, y) be two polynomials in x and y. The Fibonacci polynomials of
order 2 are defined by the recurrence relation

Fn+2(x, y) = q1(x, y)Fn+1(x, y) + q2(x, y)Fn(x, y), n ≥ 0,

with initial conditions F0(x, y) = 0 and F1(x, y) = 1.

Definition 4.2. Let q1(x, y) and q2(x, y) be two polynomials in x and y. The Lucas polynomials of order
2 are defined by the recurrence relation

Ln+2(x, y) = q1(x, y)Ln+1(x, y) + q2(x, y)Ln(x, y), n ≥ 0,

with initial conditions L0(x, y) = 2 and L1(x, y) = q1(x, y).

Remark 4.3. It is clear that the Fibonacci polynomials and the Lucas polynomials of order 2 are a natural
generalization of the classical Fibonacci polynomials and Lucas polynomials treated recently in [13].

The following lemma is a useful result which will be required for proving some statements.

Lemma 4.4. Every recurrent polynomial Pn(x, y) of order 2 with arbitrary initial conditions P0(x, y), P1(x, y)
can be written in terms of the Fibonacci polynomials of order 2 as

Pn(x, y) = q2(x, y)P0(x, y)Fn−1(x, y) + P1(x, y)Fn(x, y), n ≥ 1.

Proof. Obviously these polynomials verify the same recurrence relation and have the same initial conditions.

Theorem 4.5. For n ≥ 1, the following identity holds

Ln(x, y) = 2q2(x, y)Fn−1(x, y) + q1(x, y)Fn(x, y).
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Proof. According to Lemma 4.4, we have

Ln(x, y) = q2(x, y)L0(x, y)Fn−1(x, y) + L1(x, y)Fn(x, y).

In fact this gives the desired formula.

An easy consequence is the following.

Corollary 4.6. For n ≥ 1, the following identity holds

Ln(x) = 2Fn−1(x) + xFn(x) = Fn−1(x) + Fn+1(x).

In particular
Ln = 2Fn−1 + Fn = Fn−1 + Fn+1.

Theorem 4.7. For all n ≥ 0 , we have

2Ln+1(x, y)− q1(x, y)Ln(x, y) =

{
q21(x, y) + 4q2(x, y)

}
Fn(x, y).

Proof. Using the formula (2.3), we obtain Ln(x, y) = L0(x, y)P
(0)
n (x, y) + L1(x, y)P

(1)
n (x, y),

Ln+1(x, y) = L1(x, y)P
(0)
n (x, y) + L2(x, y)P

(1)
n (x, y).

This entails the matrix identity(
Ln(x, y)
Ln+1(x, y)

)
=

(
L0(x, y) L1(x, y)
L1(x, y) L2(x, y)

)(
P

(0)
n (x, y)

P
(1)
n (x, y))

)
.

Consequently  u(x, y)P
(0)
n (x, y) = L2(x, y)Ln(x, y)− L1(x, y)Ln+1(x, y),

u(x, y)P
(1)
n (x, y) = L0(x, y)Ln+1(x, y)− L1(x, y)Ln(x, y),

where u(x, y) = L0(x, y)L2(x, y)− (L1(x, y))
2. From this, we deduce the result.

We easily deduce the following corollary.

Corollary 4.8. For all n ≥ 0 , we have

2Ln+1(x)− xLn(x) = (x2 + 4)Fn(x).

In particular
2Ln+1 − Ln = 5Fn.

Theorem 4.9. For n ≥ 1 and p ≥ 0, we have

Ln+p(x, y) = q2(x, y)Lp(x, y)Fn−1(x, y) + Lp+1(x, y)Fn(x, y).

In particular
L2n(x, y) = q2(x, y)Ln(x, y)Fn−1(x, y) + Ln+1(x, y)Fn(x, y).

Proof. This is result can be easily deduced from Lemma 4.4.

An immediate consequence is obtained in the following result.
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Corollary 4.10. For n ≥ 1 and p ≥ 0, we have the following relations

Ln+p(x) = Lp(x)Fn−1(x) + Lp+1(x)Fn(x),

and
L2n(x) = Ln(x)Fn−1(x) + Ln+1(x)Fn(x).

In particular
Ln+p = LpFn−1 + Lp+1Fn,

and
L2n = LnFn−1 + Ln+1Fn.

In the following theorem, we express L2n(x, y) only in terms of the Fibonacci polynomials of order 2.

Theorem 4.11. For any n ≥ 1, we have the following identity

L2n(x, y) = F 2
n+1(x, y) + 2q2(x, y)F

2
n(x, y) + q22(x, y)F

2
n−1(x, y).

Proof. Using Theorem 4.9, we have

L2n(x, y) = q2(x, y)Ln(x, y)Fn−1(x, y) + Ln+1(x, y)Fn(x, y).

and by Theorem 4.5, we have
Ln(x, y) = 2q2(x, y)Fn−1(x, y) + q1(x, y)Fn(x, y),

Ln+1(x, y) = q1(x, y)q2(x, y)Fn−1(x, y) +

{
2q2(x, y) + q21(x, y)

}
Fn(x, y).

It follows that

L2n(x, y) = q2(x, y)

{
2q2(x, y)Fn−1(x, y) + q1(x, y)Fn(x, y)

}
Fn−1(x, y)

+

{
q1(x, y)q2(x, y)Fn−1(x, y) +

(
2q2(x, y) + q21(x, y)

)
Fn(x, y)

}
Fn(x, y)

=

(
2q2(x, y) + q21(x, y)

)
F 2
n(x, y) + 2q22(x, y)F

2
n−1(x, y)

+ 2q1(x, y)q2(x, y)Fn−1(x, y)Fn(x, y)

= q21(x, y)F
2
n(x, y) + q22(x, y)F

2
n−1(x, y)

+ 2q1(x, y)q2(x, y)Fn−1(x, y)Fn(x, y)

+ 2q2(x, y)F
2
n(x, y) + q22(x, y)F

2
n−1(x, y)

=

(
q1(x, y)Fn(x, y) + q2(x, y)Fn−1(x, y)

)2

+ 2q2(x, y)F
2
n(x, y)

+ q22(x, y)F
2
n−1(x, y)

= F 2
n+1(x, y) + 2q2(x, y)F

2
n(x, y) + q22(x, y)F

2
n−1(x, y).

as claimed.

The last theorem can be used to establish further identities for the classical Fibonacci and Lucas numbers
or polynomials. For example, we state the following corollary.
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Corollary 4.12. For any n ≥ 1, we have the following identity

L2n(x) = F 2
n+1(x) + 2F 2

n(x) + F 2
n−1(x).

In particular
L2n = F 2

n+1 + 2F 2
n + F 2

n−1.

In the following theorem, we show that the Fibonacci polynomials of order 2 have an elegant determi-
nantal expression.

Theorem 4.13. For any two polynomials q1(x, y) and q2(x, y) and for every n ≥ 1, the following determi-
nantal identity holds

Fn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q1(x, y) q2(x, y) 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . q2(x, y)
0 · · · · · · 0 −1 q1(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Proof. Using standard algebraic techniques, we can write∑
n≥0

Fn+1(x, y)X
n = (1− q1(x, y)X − q2(x, y)X

2)−1.

and the result follows easily by Lemma 2.3.

From this theorem, we easily deduce the following.

Corollary 4.14. For all n ≥ 0, the classical Fibonacci polynomials Fn(x) can be represented in the following
determinantal expression

Fn+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

In particular, we can express the Fibonacci numbers Fn in terms of a tridiagonal determinant as follows:

Fn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

for n ≥ 0.
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Theorem 4.15. For all n ≥ 0, there is a relationship between the Fibonacci polynomials of order 2 and the
Lucas polynomials of order 2 given by

Ln(x, y) = 2Fn+1(x, y)− q1(x, y)Fn(x, y).

Proof. An easy computation shows that

∑
n≥0

Ln(x, y)X
n =

(
2− q1(x, y)X

)(
1− q1(x, y)X − q2(x, y)X

2

)−1

.

This implies ∑
n≥0

Ln(x, y)X
n =

(
2− q1(x, y)X

)∑
n≥0

Fn+1(x, y)X
n.

Thus ∑
n≥0

Ln(x, y)X
n = 2 +

∑
n≥1

(2Fn+1(x, y)− q1(x, y)Fn(x, y))X
n.

Consequently, the identification of coefficients gives

Ln(x, y) = 2Fn+1(x, y)− q1(x, y)Fn(x, y), n ≥ 0.

this proves the result.

Corollary 4.16. For n ≥ 0, we have

Ln(x) = 2Fn+1(x)− xFn(x).

In particular
Ln = 2Fn+1 − Fn.

In the following result, we develop an interesting explicit formula for Fn(x, y).

Theorem 4.17. For any two polynomials q1(x, y) and q2(x, y), the Fibonacci polynomials of order 2 can be
expressed in terms of powers of q1(x, y) and q2(x, y) as follows:

Fn+1(x, y) =

[n
2
]∑

i=0

(
n− i

i

)
(q1(x, y))

n−2i(q2(x, y))
i, n ≥ 0.

Proof. Since
Fn(x, y) = P (1)

n (x, y).

Then using Theorem 2.5, we have

Fn+1(x, y) =
∑

i1+2i2=n

(i1 + i2)!

i1!i2!
(q1(x, y))

i1(q2(x, y))
i2

=

[n
2
]∑

i=0

(
n− i

i

)
(q1(x, y))

n−2i(q2(x, y))
i.

Therefore the formula is proved.

As a consequence, we obtain explicit formulas for Fn(x) and Fn.
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Corollary 4.18. For any n ≥ 0, the classical Fibonacci polynomials can be expressed as follows:

Fn+1(x) =

[n
2
]∑

i=0

(
n− i

i

)
xn−2i,

and the Fibonacci numbers can be written as:

Fn+1 =

[n
2
]∑

i=0

(
n− i

i

)
.

The following theorem provides an explicit formula for Ln(x, y).

Theorem 4.19. For any two polynomials q1(x, y) and q2(x, y), the Lucas polynomials of order 2 can be
expressed in terms of powers of q1(x, y) and q2(x, y) as follows:

Ln(x, y) =

[n
2
]∑

i=0

n

n− i

(
n− i

i

)
(q1(x, y))

n−2i(q2(x, y))
i, n ≥ 1.

Proof. Theorem4.15 tells us
Ln(x, y) = 2Fn+1(x, y)− q1(x, y)Fn(x, y).

And by Theorem 4.17, we have

Ln(x, y) = 2

[n
2
]∑

i=0

(
n− i

i

)
(q1(x, y))

n−2i(q2(x, y))
i

− q1(x, y)

[n−1
2

]∑
i=0

(
n− i− 1

i

)
(q1(x, y))

n−2i−1(q2(x, y))
i

=

[n
2
]∑

i=0

{
(2q1(x, y)

(
n− i

i

)
− q1(x, y)

(
n− i− 1

i

)}
(q1(x, y))

n−2i−1(q2(x, y))
i

=

[n
2
]∑

i=0

{
2

(
n− i

i

)
−
(
n− i− 1

i

)}
(q1(x, y))

n−2i(q2(x, y))
i

=

[n
2
]∑

i=0

n

n− i

(
n− i

i

)
(q1(x, y))

n−2i(q2(x, y))
i.

This completes the proof.

Correspondingly, we can derive explicit formulas for the classical Lucas numbers and polynomials.

Corollary 4.20. For any n ≥ 0, the classical Lucas polynomials can be expressed as follows:

Ln(x) =

[n
2
]∑

i=0

n

n− i

(
n− i

i

)
xn−2i.

As a consequence, the Lucas numbers can be written as:

Ln =

[n
2
]∑

i=0

n

n− i

(
n− i

i

)
, n ≥ 0.



S. Zriaa, M. Mouçouf, Journal of Prime Research in Mathematics, 20(2) (2024), 30–47 41

Theorem 4.21. For any two polynomials q1(x, y) and q2(x, y). Let

α(x, y) =
1

2

(
q1(x, y) +

√
(q1(x, y))2 + 4q2(x, y)

)
and

β(x, y) =
1

2

(
q1(x, y)−

√
(q1(x, y))2 + 4q2(x, y)

)
be the roots of the polynomial P (t) = t2 − q1(x, y)t− q2(x, y), then

1) For every n ≥ 0, we have

Fn(x, y) =
αn(x, y)− βn(x, y)

α(x, y)− β(x, y)
.

2) For every n ≥ 0, we have
Ln(x, y) = αn(x, y) + βn(x, y).

3) For every n ≥ 0 and m ≥ 0, we have(
Ln(x, y) +

√
(q1(x, y))2 + 4q2(x, y)Fn(x, y)

)m

=

2m−1

(
Lnm(x, y) +

√
(q1(x, y))2 + 4q2(x, y)Fnm(x, y)

)
.

4) For every n ≥ 0 and m ≥ 0, we have(
Ln(x, y)−

√
(q1(x, y))2 + 4q2(x, y)Fn(x, y)

)m

=

2m−1

(
Lnm(x, y)−

√
(q1(x, y))2 + 4q2(x, y)Fnm(x, y)

)
.

5) For n ≥ 0 and m ≥ 0, we have(
Ln(x, y) +

√
(q1(x, y))2 + 4q2(x, y)Fn(x, y)

)m

+

(
Ln(x, y)−

√
(q1(x, y))2 + 4q2(x, y)Fn(x, y)

)m

= 2mLnm(x, y).

Proof. Using (2.3), we can easily obtain αn(x, y) = q2(x, y)Fn−1(x, y) + α(x, y)Fn(x, y),

βn(x, y) = q2(x, y)Fn−1(x, y) + β(x, y)Fn(x, y).

This implies

Fn(x, y) =
αn(x, y)− βn(x, y)

α(x, y)− β(x, y)
.

On the other hand, we have by Theorem 4.5

Ln(x, y) = 2q2(x, y)Fn−1(x, y) + q1(x, y)Fn(x, y).
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Using the last identity and the fact that α(x, y)β(x, y) = −q2(x, y), we have

Ln(x, y) = 2q2(x, y)
αn−1(x, y)− βn−1(x, y)

α(x, y)− β(x, y)
+ q1(x, y)

αn(x, y)− βn(x, y)

α(x, y)− β(x, y)

=
q1(x, y)α(x, y) + 2q2(x, y)

α(x, y)− β(x, y)
αn−1(x, y)

− q1(x, y)β(x, y) + 2q2(x, y)

α(x, y)− β(x, y)
βn−1(x, y)

=
q1(x, y)− 2β(x, y)

α(x, y)− β(x, y)
αn(x, y) +

2α(x, y)− q1(x, y)

α(x, y)− β(x, y)
βn(x, y).

Since α(x, y) + β(x, y) = q1(x, y), then

Ln(x, y) = αn(x, y) + βn(x, y).

Now, it is clear that(
Ln(x, y) +

√
(q1(x, y))2 + 4q2(x, y)Fn(x, y)

)m

=

(
αn(x, y) + βn(x, y) + αn(x, y)− βn(x, y)

)m

= 2m−1(2αnm(x, y) + βnm(x, y)− βnm(x, y))

= 2m−1(Lnm(x, y) +
√
(q1(x, y))2 + 4q2(x, y)Fnm(x, y)).

The rest of the proof is similar.

Using Theorem 4.21, we can immediately obtain the following interesting corollary.

Corollary 4.22. For every n ≥ 0 and m ≥ 0, the classical Fibonacci polynomials Fn(x) and the classical
Lucas polynomials Ln(x) satisfy

1) (
Ln(x) +

√
x2 + 4Fn(x)

)m

= 2m−1

(
Lnm(x) +

√
x2 + 4Fnm(x)

)
.

2) (
Ln(x)−

√
x2 + 4Fn(x)

)m

= 2m−1

(
Lnm(x)−

√
x2 + 4Fnm(x)

)
.

3) (
Ln(x) +

√
x2 + 4Fn(x)

)m

+

(
Ln(x)−

√
x2 + 4Fn(x)

)m

= 2mLnm(x).

As a direct consequence of the previous corollary, we obtain the following interesting identities.

Corollary 4.23. For every n ≥ 0 and m ≥ 0, the Fibonacci numbers Fn and the Lucas numbers Ln satisfy

1)

(Ln +
√
5Fn)

m = 2m−1(Lnm +
√
5Fnm).

2)

(Ln −
√
5Fn)

m = 2m−1(Lnm −
√
5Fnm).

3)

(Ln +
√
5Fn)

m + (Ln −
√
5Fn)

m = 2mLnm.
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5. Consequences on the Dickson polynomials of the first and the second kind

Dickson polynomials, named after the American mathematician Leonard Eugene Dickson, were first
introduced in the early 20th century. Leonard E. Dickson, known for his work in algebra and number theory,
developed these polynomials as part of his broader investigations into algebraic structures and polynomial
functions. The initial work on Dickson polynomials aimed to explore their properties and applications within
the context of algebraic number theory.

Dickson’s foundational work laid the groundwork for subsequent research into these polynomials. In
his seminal papers, Dickson analyzed the structure and behavior of these polynomials, deriving important
properties and relations. Over the decades, mathematicians expanded on Dickson’s work, exploring various
aspects of these polynomials, including their recurrence relations, algebraic properties, and applications in
different mathematical fields.

In modern mathematics, Dickson polynomials have found applications in areas such as cryptography,
pseudoprimality testing, coding theory, and combinatorial design theory, and related topics. Their proper-
ties, including their relation to other polynomial sequences and their role in various mathematical structures,
have been extensively studied. Researchers have developed numerous results and generalizations, including
connections with classical polynomials like the Fibonacci and Lucas polynomials.

The influence of Dickson polynomials extends beyond their immediate applications. They have served
as a bridge between different areas of mathematics, providing insights into polynomial theory and its ap-
plications. Ongoing research continues to explore new properties and applications of Dickson polynomials,
contributing to a deeper understanding of their role in mathematical theory and practice.

In this section, we investigate this important family of sequence polynomials. Notably, we apply the
results of the last section to produce a number of interesting statements. We refer the interested reader to
the very nice book on Dickson polynomials [16], that presents a comprehensive collection of results of these
polynomials and provides a number of applications. Dickson polynomials as one of the timeless mathematical
topics attracted the attention of many researchers since their appearance. Actually, Dickson polynomials
are an essential research topic open to further progress.

The Dickson polynomials of the first kind Dn(x, a) can be generated by

D0(x, a) = 2, D1(x, a) = x, Dn+2(x, a) = xDn+1(x, a)− aDn(x, a), n ≥ 0,

The first few examples of the Dickson polynomials of the first kind are

D1(x, a) = x,

D2(x, a) = x2 − 2a,

D3(x, a) = x3 − 3xa,

D4(x, a) = x4 − 4x2a+ 2a2,

D5(x, a) = x5 − 5x3a+ 5xa2.

The Dickson polynomials of the second kind En(x, a) can be defined by

E0(x, a) = 1, E1(x, a) = x, En+2(x, a) = xEn+1(x, a)− aEn(x, a), n ≥ 0,

These polynomials have not studied much in the literature. The first few examples of the Dickson polyno-
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mials of the second kind are

E1(x, a) = x,

E2(x, a) = x2 − a,

E3(x, a) = x3 − 2xa,

E4(x, a) = x4 − 3x2a+ a2,

E5(x, a) = x5 − 4x3a+ 3xa2.

It is clear that the Dickson polynomials of the first kind are particular cases of the Lucas polynomials of
order 2, that is when q1(x, a) = x, q2(x, a) = −a. In the rest of the paper, we assume that q1(x, a) =
x, q2(x, a) = −a.

In the following result, we establish a relationship between the Dickson polynomials of the second kind
and the Fibonacci polynomials of order 2.

Theorem 5.1. The Dickson polynomials of the second kind satisfy the following

En(x, a) = Fn+1(x, a), n ≥ 0.

Proof. By (2.3), it is clear that for every n ≥ 1 we have

En(x, a) = P (0)
n (x, a) + xP (1)

n (x, a)

= −aP
(1)
n−1(x, a) + xP (1)

n (x, a)

= −aFn−1(x, a) + xFn(x, a)

= Fn+1(x, a).

which gives the desired formula.

In determinant form, the Dickson polynomials of the second kind are given by

Theorem 5.2. For every n ≥ 1

En(x, a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x a 0 · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . a
0 · · · · · · 0 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Proof. According to the above Theorem, we have En(x, a) = Fn+1(x, a), n ≥ 1, and by using Theorem 4.13,
we deduce that

En(x, a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −a 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −a
0 · · · · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.
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On the other hand, it is not hard to prove that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b c 0 · · · · · · 0

a
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . c
0 · · · · · · 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=


(b+

√
b2 − 4ac)n+1 − (b−

√
b2 − 4ac)n+1

2n+1
√
b2 − 4ac

, b2 ̸= 4ac,

(n+ 1)

(
b

2

)n

, b2 = 4ac.

Consequently, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −a 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −a
0 · · · · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x a 0 · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . a
0 · · · · · · 0 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This proves the desired determinantal formula.

For a = 1, we get the following result stated in [16] and [22] without proof.

Corollary 5.3. For every n ≥ 1

En(x, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 · · · · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
0 · · · · · · 0 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Remark 5.4. Note that the polynomial En(x, 1) appears as the numerator and the denominator of the
approximant to some continued fractions, for more details see [16, p.15].

In the following result, we provide explicit formulas for the Dickson polynomials of the first and the
second kind.

Theorem 5.5. For n ≥ 0, the following identities hold true

Dn(x, a) =

[n
2
]∑

i=0

n

n− i

(
n− i

i

)
xn−2i(−a)i,

and

En(x, a) =

[n
2
]∑

i=0

(
n− i

i

)
xn−2i(−a)i.

Proof. It is clear that Dn(x, a) = Ln(x, a) when q1(x, a) = x and q2(x, a) = −a, so the first identity follows
form Theorem 4.19. The second identity can be proved easily with the aid of Theorem 4.17.
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Taking into account Theorem 4.21, we can easily derive the following interesting identities.

Theorem 5.6. 1) For every n ≥ 1 and m ≥ 1, we have(
Dn(x, a) +

√
x2 − 4aEn−1(x, a)

)m

= 2m−1

(
Dnm(x, a) +

√
x2 − 4aEnm−1(x, a)

)
.

2) For every n ≥ 1 and m ≥ 1, we have(
Dn(x, a)−

√
x2 − 4aEn−1(x, a)

)m

= 2m−1

(
Dnm(x, a)−

√
x2 − 4aEnm−1(x, a)

)
.

3) For every n ≥ 1 and m ≥ 0, we have(
Dn(x, a) +

√
x2 − 4aEn−1(x, a)

)m

+

(
Dn(x, a)−

√
x2 − 4aEn−1(x, a)

)m

= 2mDnm(x, a).

Finally, using the results from the previous section, we derive the following theorem, which establishes
relationships between the Dickson polynomials of the first and second kinds.

Theorem 5.7. The following identities hold true:

a)

Dn(x, a) = xEn−1(x, a)− 2aEn−2(x, a), n ≥ 2,

b)

2Dn+1(x, a)− xDn(x, a) = (x2 − 4a)En−1(x, a), n ≥ 1,

c)

Dn+p(x, a) = Dp+1(x, a)En−1(x, a)− aDp(x, a)En−2(x, a), n ≥ 2, p ≥ 0,

d)

D2n(x, a) = Dn+1(x, a)En−1(x, a)− aDn(x, a)En−2(x, a), n ≥ 2,

d)

D2n(x, a) = E2
n+1(x, a)− 2aE2

n−1(x, a) + a2E2
n−2(x, a), n ≥ 2,

e)

Dn(x, a) = 2En(x, a)− xEn−1(x, a), n ≥ 1.

6. Conclusion

This paper presents a comprehensive study of polynomial sequences in multiple variables, focusing on
both general and specific cases. It introduces a broader family of polynomials that satisfy a linear recurrence
relation and provides explicit formulas and determinantal expressions for these polynomials. The research
highlights several significant identities and relationships involving Fibonacci and Lucas polynomials of order
2, classical Fibonacci and Lucas polynomials, as well as Dickson polynomials of both kinds.

By integrating results from high-order polynomial sequences and second-order recurrent polynomials,
the paper offers a unified generalization of existing works. It not only recapitulates and generalizes estab-
lished results but also presents new insights into the interrelationships among these polynomial sequences.
This work enhances the understanding of some polynomial theory and establishes a solid basis for future
investigation and advancement in this field.
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