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Hamiltonicity in directed Toeplitz graphs having
increasing edges of length 1, 3 and 7
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Abstract

A directed Toeplitz graph Tn⟨a1, . . . , ap; b1, . . . , bq⟩ with vertices 1, 2, . . . , n, where the edge (i, j) occurs if
and only if j − i = as or i− j = bt for some 1 ≤ s ≤ p and 1 ≤ t ≤ q, is a digraph whose adjacency matrix
is a Toeplitz matrix. In this paper, we study hamiltonicity in directed Toeplitz graphs having increasing
edges of length 1, 3 and 7, only.
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1. Introduction

A directed or undirected Toeplitz graph is a graph whose adjacency matrix is a Toeplitz matrix, a square
matrix which has constant values along all diagonals parallel to the main diagonal. Toeplitz matrices arise in
a many problems in engineering and applied mathematics, for example in signal processing, queuing theory,
time series analysis, integral equations, etc.

A directed Toeplitz graph Tn⟨a1, . . . , ap; b1, . . . , bq⟩ is a diagraph of order n > max{ap, bq}, with vertices
1, 2, . . . , n, where the edge (i, j) occurs if and only if the increasing edges (the edges of the type (i, j) where
i < j) and decreasing edges (the edges of the type (i, j) where i > j) are of length as and bt, respectively,
for some 1 ≤ s ≤ p and 1 ≤ t ≤ q. We consider finite simple directed graphs.

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connectivity, cycle discrep-
ancy, edge irregularity strength, decomposition, labeling, and metric dimension have been studied in [1]-[6],
[8]-[12], [14]-[15], and [27]. Hamiltonian properties of Toeplitz graphs were first investigated by R. van Dal
et al. in [7] and then studied in [13, 26, 28], while the hamiltonicity in directed Toeplitz graphs was first
studied by S. Malik and T. Zamfirescu in [25], by S. Malik in [16], by S. Malik and A.M. Qureshi in [24], by
S. Malik in [17]-[22], and then by S. Malik and A.M. Qureshi in [23].
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For a1 = 1 and a2 = 3, in [20] and [21], the hamiltonicity of Toeplitz graphs with a3 = 4 was investigated,
while in [23], it was investigated for Toeplitz graphs with a3 = 5, and for a3 = 6 it is under review in a
paper. In this paper we still keep a1 = 1 and a2 = 3 but then we consider a3 = 7, that is, we investigate
the hamiltonicity in Toeplitz graphs Tn⟨1, 3, 7; b⟩.

For a vertex v of Tn⟨1, 3, 7; b⟩, we define paths Av→v−10, Bv→v+10, Cv→v+4, and Dv→v−7 in Tn⟨1, 3, 7; b⟩
as Av→v−10 = (v, v− 3, v− 6, v− 9, v− 2, v− 5, v− 4, v− 7, v− 10), Bv→v+10 = (v, v+3, v+10), Cv→v+4 =
(v, v + 3, v + 4), and Dv→v−7 = (v, v − 2, v − 4, v − 6, v − 3, v − 5, v − 7), respectively, see Figure 1.
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Figure 1: Paths Av→v−10, Bv→v+10, Cv→v+4 and Dv→v−7 in Tn⟨1, 3, 7; b⟩

We underline a pair of consecutive vertices (say n − 2 and n − 1) as (n− 2, n− 1) to emphasize that
(n− 2, n− 1) is an edge in the hamiltonian cycle. Note that Cn−5→n−1 = (n− 5, n− 2, n− 1).

Remark 1: If the Toeplitz graph Tn⟨1, 3, 7; b⟩ has a hamiltonian cycle containing the edge (n − 2, n − 1),
then Tn+(b−1)⟨1, 3, 7; b⟩ enjoys the same property. Because such a hamiltonian cycle in Tn⟨1, 3, 7; b⟩ can be
transformed into a hamiltonian cycle in Tn+(b−1)⟨1, 3, 7; b⟩, by replacing the edge (n − 2, n − 1) with the
path (n− 2, n+ 1, n+ 2, . . . , n+ (b− 3), n+ (b− 2), n+ (b− 1), n− 1), which preserves the same property.
For example, see Figure 2, where a hamiltonian cycle in T8⟨1, 3, 7; 6⟩ is transformed into a hamiltonian cycle
in T13⟨1, 3, 7; 6⟩ by replacing the edge (6, 7) with the path (6, 9, 10, 11, 12, 13, 7), which preserves the same
property so T14⟨1, 3, 7; 5⟩ can be transformed into a hamiltonian cycle in T18⟨1, 3, 7; 6⟩, and so on.

3   5             1 4 2 6 7   8 

9             10 11   13             12 3   5             1 4 2 6 7   8 

Figure 2: Hamiltonian cycles in T8⟨1, 3, 7; 6⟩ and T13⟨1, 3, 7; 6⟩

2. Toeplitz Graphs Tn⟨1, 3, 7; b⟩ for odd b

In this section, we will discuss the hamiltonicity in Toeplitz Graphs Tn⟨1, 3, 7; b⟩ for odd b. For b = 1,
clearly Tn⟨1, 3, 7; 1⟩ is hamiltonian if and only if n = 8, because the decreasing edges are of length one only
and this is only possible when n = 8 and it is easily seen that T8⟨1, 3, 7; 1⟩ has the unique hamiltonian cycle
(1, 8, 7, 6, 5, 4, 3, 2, 1).

Now we will investigate the hamiltonicity in Tn⟨1, 3, 7; b⟩ for odd b > 1.
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Theorem 2.1. Tn⟨1, 3, 7; 3⟩ is hamiltonian if and only if n is even.

Proof. Let n be even. Clearly n ≥ 8.
If n ∼= 0mod 10, then a hamiltonian cycle in Tn⟨1, 3, 7; 3⟩ is (1, 2, 9)∪B9→19∪B19→29∪· · ·∪Bn−11→n−1∪

(n− 1, n) ∪An→n−10 ∪An−10→n−20 ∪ · · · ∪A20→10 ∪ (10, 7, 8, 5, 6, 3, 4, 1), see Figure 3.

8   10 6 9 75 3 4 11 13 14    15 19 20   

12 

16 17 18 1 2     

Figure 3: Hamiltonian cycle in T20⟨1, 3, 7; 3⟩

If n ∼= 2mod 10, then a hamiltonian cycle in Tn⟨1, 3, 7; 3⟩ is (1, 2, 5, 8, 11) ∪ B11→21 ∪ B21→31 ∪ · · · ∪
Bn−11→n−1 ∪ (n− 1, n) ∪An→n−10 ∪An−10→n−20 ∪ · · · ∪A22→12 ∪ (12, 9, 6, 3, 10, 7, 4, 1), see Figure 4.
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Figure 4: Hamiltonian cycle in T22⟨1, 3, 7; 3⟩

If n ∼= 4mod 10, then a hamiltonian cycle in Tn⟨1, 3, 7; 3⟩ is (1, 2, 3)∪B3→13∪B13→23∪· · ·∪Bn−11→n−1∪
(n− 1, n) ∪An→n−10 ∪An−10→n−20 ∪ · · · ∪A14→4 ∪ (4, 1), see Figure 5.

If n ∼= 6mod 10, then a hamiltonian cycle in Tn⟨1, 3, 7; 3⟩ is (1, 2, 5)∪B5→15∪B15→25∪· · ·∪Bn−11→n−1∪
(n− 1, n) ∪An→n−10 ∪An−10→n−20 ∪ · · · ∪A16→6 ∪ (6, 3, 4, 1), see Figure 6.
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Figure 5: Hamiltonian cycle in T14⟨1, 3, 7; 3⟩
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Figure 6: Hamiltonian cycle in T16⟨1, 3, 7; 3⟩

If n ∼= 8mod 10 and n ̸= 8, then a hamiltonian cycle in Tn⟨1, 3, 7; 3⟩ is (1, 2, 3, 10, 17)∪B17→27∪B27→37∪
· · · ∪ Bn−11→n−1 ∪ (n − 1, n) ∪ An→n−10 ∪ An−10→n−20 ∪ · · · ∪ A18→8 ∪ (8, 5, 6, 7, 4, 1), see Figure 7. And a
hamiltonian cycle in T8⟨1, 3, 7; 3⟩ is (1, 8, 5, 2, 3, 6, 7, 4).

Conversely, Tn⟨1, 3, 7; 3⟩ is bipartite and, being hamiltonian, n must be even. □

Theorem 2.2. Tn⟨1, 3, 7; 5⟩ is hamiltonian if and only if n is even.

Proof. Let n be even. Clearly n ≥ 8.
If n ∼= 0mod 4.

The smallest n is 8. A hamiltonian cycle in T8⟨1, 3, 7; 5⟩ is (1, 8, 3, 4, 7, 2, 5, 6, 1), which does not contain
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Figure 7: Hamiltonian cycle in T18⟨1, 3, 7; 3⟩

the edge (6, 7). The next representative in this class is 12, and a hamiltonian cycle in T12⟨1, 3, 7; 5⟩ is
(1, 8, 9, 10, 11, 12, 7, 2, 3, 4, 5, 6, 1).

If n ∼= 2mod 4.
The smallest n is 10. A hamiltonian cycle in T10⟨1, 3, 7; 5⟩ is (1, 2, 3, 4, 7, 8, 9, 10, 5, 6, 1).

Note that for n = 10 and 12, these hamiltonian cycles contain the edge (n−2, n−1). Thus, by Remark 1,
these hamiltonian cycles in Tn∈{10,12}⟨1, 3, 7; 5⟩ can be transformed into hamiltonian cycles in Tn+4⟨1, 3, 7; 5⟩
by replacing the edge (n−2, n−1) with the path (n−2, n+1, n+ 2, n+ 3, n+4, n−1), which preserves the
same property. Suppose, for some non-negative integer r, Tn=no+4r⟨1, 3, 7; 5⟩, where n is even and different
from 12, has a hamiltonian cycle containing the edge (n − 2, n − 1) then Tn+4⟨1, 3, 7; 5⟩ enjoys the same
property and thus Tn⟨1, 3, 7; 5⟩ is hamiltonian for all even n.

Conversely, Tn⟨1, 3, 7; 5⟩ is bipartite and, being hamiltonian, n must be even. □

Theorem 2.3. Tn⟨1, 3, 7; 7⟩ is hamiltonian if and only if n is even.

Proof. Let n be even. Clearly n ≥ 8.
If n ∼= 0mod 6.

The smallest n is 12, and a hamiltonian cycle in T12⟨1, 3, 7; 7⟩ is (1, 2, 9, 10, 3, 4, 11, 12, 5, 6, 7, 8, 1), which
does not contain the edge (10, 11). The next representative in this class is 18, and a hamiltonian cycle in
T18⟨1, 3, 7; 7⟩ is (1, 4, 7, 14, 15, 18, 11, 12, 13, 16, 17, 10, 3, 6, 9, 2, 5, 8, 1).

If n ∼= 2mod 6.
The smallest n is 8. A hamiltonian cycle in T8⟨1, 3, 7; 7⟩ is (1, 2, 3, 4, 5, 6, 7, 8, 1).

If n ∼= 4mod 6.
The smallest n is 10, and a hamiltonian cycle in T10⟨1, 3, 7; 7⟩ is (1, 2, 9, 10, 3, 4, 5, 6, 7, 8, 1), which does not
contain the edge (8, 9). The next representative in this class is 16, and a hamiltonian cycle in T16⟨1, 3, 7; 7⟩
is (1, 4, 5, 12, 13, 16, 9, 2, 3, 6, 7, 10, 11, 14, 15, 8, 1).

Note that for n = 8, 16 and 18, these hamiltonian cycles contain the edge (n−2, n−1). Thus, by Remark 1,
these hamiltonian cycles in Tn∈{8,16,18}⟨1, 3, 7; 7⟩ can be transformed into hamiltonian cycles in Tn+6⟨1, 3, 7; 7⟩
by replacing the edge (n− 2, n− 1) with the path (n− 2, n+1, n+2, n+3, n+ 4, n+ 5, n+6, n− 1), which
preserves the same property. Thus Tn⟨1, 3, 7; 7⟩ is hamiltonian for all even n.

Conversely, Tn⟨1, 3, 7; 7⟩ is bipartite and, being hamiltonian, n must be even. □

Theorem 2.4. For odd b, 9 ≤ b ≤ 15, Tn⟨1, 3, 7; b⟩ is hamiltonian if and only if n is even.

Proof. Let b be odd and 9 ≤ b ≤ 15, and n be even. Clearly n ≥ b+ 1.
Case 1. Let n ∼= 0mod (b − 1). The smallest n is 2b − 2. For b ∈ {9, 13}, hamiltonian cycles in

Tn=2b−2⟨1, 3, 7; b⟩ is (1, 2, . . . , b − 4, b − 1, b + 2, b + 3, b + 4) ∪ Cb+4→b+8 ∪ Cb+8→b+12 ∪ · · · ∪ Cn−7→n−3 ∪
(n − 3, n, n − b = b − 2, b + 5, b + 6) ∪ Cb+6→b+10 ∪ Cb+10→b+14 ∪ · · · ∪ Cn−5→n−1 ∪ (n − 1, n − b − 1 =
b − 3, b, b + 1, 1), see Figure 8. For b = 11, a hamiltonian cycle in T20⟨1, 3, 7; 11⟩ is (1, 2, 3, 10, 13, 14, 17,
18, 19, 20, 9, 16, 5, 6, 7, 8, 15, 4, 11, 12, 1). And for b = 15, a hamiltonian cycle in T28⟨1, 3, 7; 15⟩ is (1, 2, 3, 6, 7, 14,
17, 18, 21, 22, 25, 26, 27, 28, 13, 20, 23, 24, 9, 10, 11, 12, 19, 4, 5, 8, 15, 16, 1).

Case 2. Let n ∼= 2mod (b − 1). The smallest n is b + 1. A hamiltonian cycle in Tn=b+1⟨1, 3, 7; b⟩ is
(1, 2, 3, . . . , n− 2, n− 1, n = b+ 1, 1).

Case 3. Let n ∼= 4mod (b−1). The smallest n is b+3. For b = 9 and 13, hamiltonian cycles in T12⟨1, 3, 7; 9⟩
and T16⟨1, 3, 7; 13⟩ are (1, 4, 7, 8, 11, 2, 5, 12, 3, 6, 9, 10, 1) and (1, 4, 7, 10, 13, 16, 3, 6, 9, 12, 15, 2, 5, 8, 11, 14, 1),
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Figure 8: Hamiltonian cycle in T24⟨1, 3, 7; 13⟩

respectively. And for b ∈ {11, 15}, hamiltonian cycles in Tn=b+3⟨1, 3, 7; b⟩ is (1, 2) ∪ C2→6 ∪ C6→10 ∪ · · · ∪
Cn−4→n ∪ (n, 3, 4)∪C4→8 ∪C8→12 ∪ · · · ∪Cb−3→b+1 ∪ (b+1, 1), see Figure 9. All these hamiltonian cycles in

14 16 1817 8 1310 12 9 11 1521 54 7 63 

Figure 9: Hamiltonian cycle in T18⟨1, 3, 7; 15⟩

Tn=b+3⟨1, 3, 7; b⟩ do not contain the edge (n−2, n−1). Now the next representative in this class is n = 2b+2.
For b ∈ {9, 13}, hamiltonian cycles in Tn=2b+2⟨1, 3, 7; b⟩ is (1, 2, . . . , b−2, b+5, b+6)∪Cb+6→b+10∪Cb+10→b+14∪
· · · ∪Cn−5→n−1 ∪ (n− 1, n, n− b = b+2, b+3, b+4)∪Cb+4→b+8 ∪Cb+8→b+12 ∪ · · · ∪Cn−7→n−3 ∪ (n− 3, n−
3 − b = b − 1, b, b + 1, 1) , see Figure 10. And for b ∈ {11, 15}, hamiltonian cycles in Tn=2b+2⟨1, 3, 7; b⟩ is
C1→5∪C5→9∪· · ·∪Cb−6→b−2∪(b−2, b+5, b+6)∪Cb+6→b+10∪Cb+10→b+14∪· · ·∪Cn−7→n−3∪(n−3, n, n−b =
b+ 2, 2, 3) ∪ C3→7 ∪ C7→10 ∪ · · · ∪ Cn−5→n−1 ∪ (n− 1, n− b− 1 = b+ 1, 1), see Figure 11.
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Figure 10: Hamiltonian cycle in T28⟨1, 3, 7; 13⟩
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Figure 11: Hamiltonian cycle in T24⟨1, 3, 7; 11⟩

14 16 1817 8 1310 12 9 11 1521 54 7 63 

Figure 12: Hamiltonian cycle in T18⟨1, 3, 7; 13⟩

Case 4. Let n ∼= 6mod (b − 1). The smallest n is b + 5. For b ∈ {9, 13}, a hamiltonian cycle in
Tn=b+5⟨1, 3, 7; b⟩ is (1, 2, 3, 4) ∪ C4→8 ∪ C8→12 ∪ · · · ∪ Cb−6→n−2 ∪ (n− 2, n− 1, n = b + 5, 5, 6) ∪ C6→10 ∪
C10→14∪· · ·∪Cb−3→b+1∪(b+1, 1), see Figure 12. For b = 11 and 15, hamiltonian cycles in T16⟨1, 3, 7; 11⟩ and
T20⟨1, 3, 7; 15⟩ are (1, 8, 11, 14, 15, 4, 7, 10, 13, 2, 3, 6, 9, 16, 5, 12, 1) and (1, 8, 15, 18, 19, 4, 7, 14, 17, 2, 3, 10, 11,
12, 13, 20, 5, 6, 9, 16, 1)
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Case 5. Let n ∼= 8mod (b − 1). The smallest n is b + 7. Clearly here b > 9. For b = 13, a hamiltonian
cycle in T20⟨1, 3, 7; 13⟩ is (1, 2, 3, 4, 5, 12, 15, 18, 19, 6, 13, 16, 17, 20, 7, 8, 9, 10, 11, 14, 1). For b ∈ {11, 15},
a hamiltonian cycle in Tn=b+7⟨1, 3, 7; b⟩ is (1, 2, . . . , 6) ∪ C6→10 ∪ C10→14 ∪ · · · ∪ Cn−8→n−4 ∪ (n − 4, n −
3, n− 2, n− 1, n = b+ 7, 7, 8) ∪ C8→12 ∪ C12→16 ∪ · · · ∪ Cb−3→b+1 ∪ (b+ 1, 1), see Figure 13.

14 1916 1817 2120 8 1310 12 9 11 15 2221 54 7 63 

Figure 13: Hamiltonian cycle in T22⟨1, 3, 7; 15⟩

Case 6. Let n ∼= 10mod (b−1). The smallest n is b+9. Clearly here b > 11. For b = 13, a hamiltonian cy-
cle in T22⟨1, 3, 7; 13⟩ is (1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 9, 10, 13, 14, 1). For = 15, a hamil-
tonian cycle in T24⟨1, 3, 7; 15⟩ is (1, 4, 5, 12, 15, 18, 19, 22, 23, 8, 11, 14, 17, 2, 3, 6, 7, 10, 13, 20, 21, 24, 9, 16, 1).

Case 7. Let n ∼= 12mod (b− 1). The smallest n is b+11. Clearly here b > 13. For b = 15, a hamiltonian
cycle in T26⟨1, 3, 7; 15⟩ is (1, 2, . . . , 10, 13, 14, 17, 18, . . . , 24, 25, 26, 11, 12, 15, 16, 1).

All these hamiltonian cycles in each class (except n = b+3) contain the edge (n−2, n−1). Suppose, for
some non-negative integer r, Tn=no+r(b−1)⟨1, 3, 7; b⟩ has a hamiltonian cycle containing the edge (n−2, n−1),
where n is even and different from b + 3, then, by Remark 1, Tn+b−1⟨1, 3, 7; b⟩ enjoys the same property.
Thus Tn⟨1, 3, 7; b⟩ is hamiltonian for all even n, where b is odd and 9 ≤ b ≤ 15.

Conversely, Tn⟨1, 3, 7; b⟩ is bipartite and, being hamiltonian, n must be even. □

Theorem 2.5. For odd b > 15, Tn⟨1, 3, 7; b⟩ is hamiltonian for all even n except (n ∼= 6, 10, . . . , b−3mod (b−
1) and b ∼= 3mod 4) or (n ∼= 8, 12, . . . , b− 3mod (b− 1) and b ∼= 1mod 4).

Proof. Let b be odd and greater that 15, and n be even.
Case 1. Let n ∼= 0mod (b−1). The smallest n > b, is 2b−2. If b ∼= 1mod 4, then a hamiltonian cycles in

Tn=2b−2⟨1, 3, 7; b⟩ is (1, 2, . . . , b−4, b, b+2, b+3, b+4)∪Cb+4→b+8∪Cb+8→b+12∪· · ·∪Cn−7→n−3∪(n−3, n, n−b =
b−2, b+5, b+6)∪Cb+6→b+10∪Cb+10→b+14∪ · · ·∪Cn−5→n−1∪ (n−1, n− b−1 = b−3, b, b+1, 1), see Figure
14. If b ∼= 3mod 4, then a hamiltonian cycle in Tn⟨1, 3, 7; b⟩ is (1, 2, 3) ∪ C3→7 ∪ C7→11 ∪ · · · ∪ Cb−12→b−8 ∪

22 2724 2625 2928 16 2118 20 17 19 23 3130 32 21 1312 

. . . 

15 14

Figure 14: Hamiltonian cycle in T32⟨1, 3, 7; 17⟩

(b− 8, b− 1) ∪Cb−1→b+3 ∪Cb+3→b+7 ∪ · · · ∪Cn−6→n−2 ∪ (n− 2, n− 1, n, n− b = b− 2, b+ 5) ∪Cb+5→b+9 ∪
Cb+9→b+13 ∪ · · · ∪Cn−8→n−4 ∪ (n− 4, n− 4− b = b− 6, b− 5, b− 4, b− 3, b+ 4, 4, 5) ∪C5→9 ∪C9→13 ∪ · · · ∪
Cb−14→b−10 ∪ (b− 10, b− 7, b, b+ 1, 1), see Figure 15.

18 23

20 

2221 2524 12 1714 16 13 15 19 2726 28 
76 98 11 1021 43 5

Figure 15: Hamiltonian cycle in T28⟨1, 3, 7; 15⟩

Case 2. Let n ∼= 2mod (b − 1). The smallest n is b + 1. A hamiltonian cycle in Tn=b+1⟨1, 3, 7; b⟩ is
(1, 2, 3, . . . , n− 2, n− 1, n = b+ 1, 1).
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Case 3. Let n ∼= 4mod (b− 1). The smallest n is b+ 3.
(i) Let b ∼= 1mod 4. If n ∼= 0mod 3, then a hamiltonian cycle in Tn=b+3⟨1, 3, 7; b⟩ is (1, 4, 7, . . . , n − 5, n −
4, n− 1 = b+ 2, 2, 5, 8, . . . , n− 7, n = b+ 3, 3, 6, 9, . . . , n− 3, n− 2 = b+ 1, 1), see Figure 16.

3 1 

8 5 

6    

11 

12 9 15 

14    20 17 

18    

23 

24 21 

Figure 16: Hamiltonian cycles in T24⟨1, 3, 7; 21⟩

If n ∼= 1mod 3, then a hamiltonian cycle in Tn=b+3⟨1, 3, 7; b⟩ is (1, 4, 7, . . . , n, 3, 6, 9, . . . , n− 1, 2, 5, 8, . . . , n−
2, 1), see Figure 17. If n ∼= 2mod 3, then a hamiltonian cycle in Tn=b+3⟨1, 3, 7; b⟩ is (1, 4, 7, . . . , n −
1, 2, 5, 8, . . . , n, 3, 6, 9, . . . , n− 2, 1), see Figure 18.
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Figure 17: Hamiltonian cycles in T28⟨1, 3, 7; 25⟩
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Figure 18: Hamiltonian cycles in T20⟨1, 3, 7; 17⟩

(ii) If b ∼= 3mod 4, then a hamiltonian cycle in Tn=b+3⟨1, 3, 7; b⟩ is (1, 2) ∪ C2→6 ∪ C6→10 ∪ · · · ∪ Cn−4→n ∪
(n, 3, 4) ∪ C4→8 ∪ C8→12 ∪ · · · ∪ Cb−3→b+1 ∪ (b+ 1, 1), see Figure 19.

14 1916 1817 2120 8 1310 12 9 11 15 2221 54 7 63 

Figure 19: Hamiltonian cycles in T22⟨1, 3, 7; 19⟩

These hamiltonian cycles in Tn=b+3⟨1, 3, 7; b⟩ do not contain the edge (n − 2, n − 1). Now the next
representative in this class is n = 2b + 2. If b ∼= 1mod 4, then a hamiltonian cycles in Tn=2b+2⟨1, 3, 7; b⟩
is (1, 2, . . . , b − 2, b + 5, b + 6) ∪ Cb+6→b+10 ∪ Cb+10→b+14 ∪ · · · ∪ Cn−5→n−1 ∪ (n − 1, n, n − b = b + 2, b +
3, b + 4) ∪ Cb+4→b+8 ∪ Cb+8→b+12 ∪ · · · ∪ Cn−7→n−3 ∪ (n − 3, n − 3 − b = b − 1, b, b + 1, 1), see Figure
20. If b ∼= 3mod 4, then a hamiltonian cycles in Tn=2b+2⟨1, 3, 7; b⟩ is Tn=2b+2⟨1, 3, 7; b⟩ is C1→5 ∪ C5→9 ∪
· · · ∪ Cb−6→b−2 ∪ (b − 2, b + 5, b + 6) ∪ Cb+6→b+10 ∪ Cb+10→b+14 ∪ · · · ∪ Cn−7→n−3 ∪ (n − 3, n, n − b =
b+ 2, 2, 3) ∪ C3→7 ∪ C7→10 ∪ · · · ∪ Cn−5→n−1 ∪ (n− 1, n− b− 1 = b+ 1, 1), see Figure 21.
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Figure 20: Hamiltonian cycles in T36⟨1, 3, 7; 17⟩
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Figure 21: Hamiltonian cycles in T40⟨1, 3, 7; 19⟩

Case 4. Let n ∼= smod (b− 1), where s ∈ {6, 10, . . . , b− 3}, and b ∼= 1mod 4. The smallest n is s+ b− 1.
Then a hamiltonian cycle in Tn=s+b−1⟨1, 3, 7; b⟩ is (1, 2, . . . , s− 2)∪Cs−2→s+2∪Cs+2→s+6∪ · · · ∪Cb−1→b+3∪
(b+3, b+4, . . . , n− 2, n− 1, n, n− b = s−1, s)∪Cs→s+4∪Cs+4→s+8∪ · · ·∪Cb−3→b+1∪ (b+1, 1), see Figure
22.
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Figure 22: Hamiltonian cycles in T22⟨1, 3, 7; 17⟩ with s = 6
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Figure 23: Hamiltonian cycles in T22⟨1, 3, 7; 15⟩ with r = 8

Case 5. Let n ∼= rmod (b− 1), where r ∈ {8, 12, . . . , b− 3} and b ∼= 3mod 4. The smallest n is r+ b− 1.
Then a hamiltonian cycle in Tn=r+b−1⟨1, 3, 7; b⟩ is (1, 2, . . . , r−2)∪Cr−2→r+2∪Cr+2→r+6∪ · · ·∪Cb−1→b+3∪
(b+3, b+4, . . . , n− 2, n− 1, n, n− b = r−1, r)∪Cr→r+4∪Cr+4→r+8∪ · · ·∪Cb−3→b+1∪ (b+1, 1), see Figure
23.

All these hamiltonian cycles (except for n = b+3) contain the edge (n−2, n−1), by using the technique
of Remark 1, these hamiltonian cycles in Tn⟨1, 3, 7; b⟩, can be transformed into those in Tn+b−1⟨1, 3, 7; b⟩
which enjoys the same property. Thus Tn⟨1, 3, 7; b⟩ is hamiltonian for all even n except (n ∼= 6, 10, . . . , b −
3mod (b− 1) and b ∼= 3mod 4) or (n ∼= 8, 12, . . . , b− 3mod (b− 1) and b ∼= 1mod 4). □

Conjecture: For odd b > 15, Tn⟨1, 3, 7; b⟩ is hamiltonian for all even n and (n ∼= 6, 10, . . . , b−3mod (b−1)
and b ∼= 3mod 4) or (n ∼= 8, 12, . . . , b− 3mod (b− 1) and b ∼= 1mod 4).

For odd b > 1, if Tn⟨1, 3, 7; b⟩ is hamiltonian, then n must be even because Tn⟨1, 3, 7; b⟩ is bipartite. Then
the above conjecture, along with Theorem 2.5, will imply that for odd b > 1, Tn⟨1, 3, 7; b⟩ is hamiltonian if
and only if n is even.
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3. Toeplitz Graphs Tn⟨1, 3, 7; b⟩ for even b

Now we will discus the hamiltonicity of Tn⟨1, 3, 7; b⟩ for even b. We will see that for b < 15, only for
fintie many exception of n, Tn⟨1, 3, 7; b⟩ is hamiltonian for all n.

Theorem 3.1. Tn⟨1, 3, 7; 2⟩ is hamiltonian for all n different from 8, 11, 12, 13, 14, 18, 19, 20, 25, 26, 32.

Proof.
If n ∼= 0mod 7 and n ̸= 14. Then a hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is (1, 8, 15, . . . , n − 6, n − 8, n −

1, n, n− 2, n− 4, n− 3, n− 5, n− 7, n− 9, n− 11, n− 10, n− 12)∪Dn−12→n−19 ∪Dn−19→n−26 ∪ · · · ∪D16→9 ∪
(9, 7, 5, 6, 4, 2, 3, 1), see Figure 24.
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Figure 24: Hamiltonian cycles in T28⟨1, 3, 7; 2⟩

If n ∼= 1mod 7 and n ̸= 8. Then a hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is (1, 2, 9, 16, 23, . . . , n− 6, n− 4, n−
1, n, n−2, n−4, n−3, n−5, n−7, n−9, n−11, n−10, n−12)∪Dn−12→n−19∪Dn−19→n−26∪· · ·∪D10→3∪(3, 1),
see Figure 25.
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Figure 25: Hamiltonian cycles in T22⟨1, 3, 7; 2⟩

If n ∼= 2mod 7. Then a hamiltonian cycle in Tn̸=9⟨1, 3, 7; 2⟩ is (1, 8, 15, . . . , n−1, n−3, n, n−2, n−4, n−
6, n− 5, n− 7) ∪Dn−7→n−14 ∪Dn−14→n−21 ∪ · · · ∪D16→9 ∪ (9, 7, 5, 6, 4, 2, 3, 1). And a hamiltonian cycle in
T9⟨1, 3, 7; 2⟩ is (1, 8, 6, 4, 2, 9, 7, 5, 3, 1), see Figure 26.

If n ∼= 3mod 7. Then a hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is (1, 2, 9, 16, . . . , n−1, n−3, n, n−2, n−4, n−
6, n− 5, n− 7) ∪Dn−7→n−14 ∪Dn−14→n−21 ∪ · · · ∪D10→3 ∪ (3, 1), see Figure 27.
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Figure 26: Hamiltonian cycles in T23⟨1, 3, 7; 2⟩
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Figure 27: Hamiltonian cycles in T17⟨1, 3, 7; 2⟩

If n ∼= 4mod 7 and n /∈ {11, 18, 25, 32}. Clearly here n ≥ 39. A hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is
(1, 2, 9, 16, 23, . . . , n− 30, n− 32, n− 25, n− 18, n− 20, n− 13, n− 6, n− 8, n− 1, n, n− 2, n− 4, n− 3, n−
5, . . . , n− 11, n− 10, n− 12, n− 14, n− 16, n− 15, n− 17, n− 19, n− 21, n− 23, n− 22, n− 24, n− 26, n−
28, n− 27, n− 29, n− 31, n− 33, n− 35, n− 34, n− 36) ∪Dn−36→n−43 ∪Dn−43→n−50 ∪ · · · ∪D10→3 ∪ (3, 1).

If n ∼= 5mod 7 and n /∈ {12, 19, 26}. Clearly here n ≥ 33. A hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is
(1, 8, 15, 13, 20, 27, 34, . . . , n− 6, n− 4, n− 1, n, n− 2, n− 4, n− 3, n− 5, n− 7, n− 9, n− 11, n− 10, n− 12)∪
Dn−12→n−19 ∪Dn−19→n−26 ∪ · · · ∪D28→21 ∪ (21, 19, 17, 18, 16, 14, 12, 10, 11, 9, 7, 5, 6, 4, 2, 3, 1).
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If n ∼= 6mod 7 and n /∈ {13, 20}. Clearly here n ≥ 27. A hamiltonian cycle in Tn⟨1, 3, 7; 2⟩ is
(1, 8, 15, 13, 20, 27, 34, . . . , n, n−2, n−1, n−3, n−5, n−4, n−6)∪Dn−6→n−13∪Dn−13→n−20∪· · ·∪D28→21∪
(21, 19, 17, 18, 16, 14, 12, 10, 11, 9, 7, 5, 6, 4, 2, 3, 1).

This finishes the proof. □

Conjecture: Tn⟨1, 3, 7; 2⟩ is non hamiltonian for n ∈ {8, 11, 12, 13, 14, 18, 19, 20, 25, 26, 32}.

Theorem 3.2. Tn⟨1, 3, 7; 4⟩ is hamiltonian for all n different from 12.

Proof.
If n ∼= 0mod 3 and n ̸= 12. The smallest n is 9, and the unique hamiltonian cycle in T9⟨1, 3, 7; 4⟩ is

(1, 8, 4, 7, 3, 6, 2, 9, 5, 1) which does not contain the edge (7, 8). Now the next representative in this class, dif-
ferent from 12, is 15, and a hamiltonian cycle in T15⟨1, 3, 7; 4⟩ is (1, 2, 3, 10, 6, 9, 12, 13, 14, 15, 11, 7, 8, 4, 5, 1).

If n ∼= 1mod 3. The smallest n is 10, and the unique hamiltonian cycle in T10⟨1, 3, 7; 4⟩ is (1, 8, 4, 7, 3, 10, 6,
2, 9, 5, 1) which does not contain the edge (8, 9). Now the next representative in this class is 13, and a
hamiltonian cycle in T13⟨1, 3, 7; 4⟩ is (1, 2, 3, 10, 6, 7, 8, 4, 11, 12, 13, 9, 5, 1).

If n ∼= 2mod 3. The smallest n is 8, and a hamiltonian cycle in T8⟨1, 3, 7; 4⟩ is (1, 2, 3, 6, 7, 8, 4, 5, 1).
These hamiltonian cycles for n ∈ {8, 13, 15} contain the edge (n − 2, n − 1), by using the technique of

Remark 1, Tn+b−1⟨1, 3, 7; 4⟩ enjoys the same property. Thus Tn⟨1, 3, 7; 4⟩ is hamiltonian for all n different
from 12.

This finishes the proof. □

Conjecture: T12⟨1, 3, 7; 4⟩ is non hamiltonian.

Theorem 3.3. Tn⟨1, 3, 7; 6⟩ is hamiltonian for all n.

Proof. Clearly n > 7.
If n ∼= 0mod 5. The smallest n is 10, and a hamiltonian cycle in T10⟨1, 3, 7; 6⟩ is (1, 8, 2, 9, 3, 10, 4, 5, 6, 7, 1)

which does not contain the edge (8, 9). Now the next representative in this class is 15, and a hamiltonian
cycle in T15⟨1, 3, 7; 6⟩ is (1, 2, 5, 6, 13, 14, 8, 11, 12, 15, 9, 3, 10, 4, 7, 1).

If n ∼= 1mod 5. The smallest n is 11, and a hamiltonian cycle in T11⟨1, 3, 7; 6⟩ is (1, 8, 2, 9, 3, 10, 4, 11, 5, 6, 7, 1)
which does not contain the edge (9, 10). A hamiltonian cycle in T16⟨1, 3, 7; 6⟩ is (1, 8, 2, 5, 12, 6, 9, 3, 4, 11, 14, 15,
16, 10, 13, 7, 1).

If n ∼= 2mod 5. The smallest n is 12, and a hamiltonian cycle in T12⟨1, 3, 7; 6⟩ is (1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 6,
7, 1).

If n ∼= 3mod 5. The smallest n is 8, and a hamiltonian cycle in T8⟨1, 3, 7; 6⟩ is (1, 4, 5, 8, 2, 3, 6, 7, 1).
If n ∼= 4mod 5. The first and second smallest n are 9 and 14, and hamiltonian cycles in T9⟨1, 3, 7; 6⟩ and

T14⟨1, 3, 7; 6⟩ are (1, 8, 2, 9, 3, 4, 5, 6, 7, 1) and (1, 4, 11, 14, 8, 2, 5, 12, 6, 9, 3, 10, 13, 7, 1), respectively. But, in
both these cases, the edge (n− 2, n− 1) is not in its hamiltonian cycle. A hamiltonian cycle in T19⟨1, 3, 7; 6⟩
is (1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 8, 15, 16, 17, 18, 12, 19, 13, 7, 1).

For n ∈ {8, 12, 15, 16, 19}, these hamiltonian cycles in Tn⟨1, 3, 7; 6⟩ contain the edge (n − 2, n − 1). By
using the technique of Remark 1, these hamiltonian cycles can be transformed into those in Tn+b−1⟨1, 3, 7; 6⟩
which enjoys the same property. Thus Tn⟨1, 3, 7; 6⟩ is hamiltonian for all n.

This finishes the proof. □

Theorem 3.4. For b ∈ {8, 10}, Tn⟨1, 3, 7; b⟩ is hamiltonian for all n different from 2b− 6.

Proof. Let b ∈ {8, 10}. We need to show that Tn⟨1, 3, 7; 8⟩ and Tn⟨1, 3, 7; 10⟩ are hamiltonian for all n,
differenet from 10 and 14, respectively.

If n ∼= 0mod b − 1. The smallest n is 2b − 2. Hamiltonian cycles in T14⟨1, 3, 7; 8⟩ and T18⟨1, 3, 7; 10⟩
are (1, 8, 11, 3, 4, 5, 12, 13, 14, 6, 7, 10, 2, 9, 1) and (1, 2, 3, 6, 13, 16, 17, 7, 14, 4, 5, 12, 15, 18, 8, 9, 10, 11, 1), re-
spectively.
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If n ∼= 1mod b − 1. The smallest n is 2b − 1. Hamiltonian cycles in T15⟨1, 3, 7; 8⟩ and T19⟨1, 3, 7; 10⟩
are (1, 2, 3, 10, 11, 12, 4, 5, 6, 13, 14, 15, 7, 8, 9, 1) and (1, 4, 7, 14, 17, 18, 8, 15, 5, 12, 2, 3, 6, 13, 16, 19, 9, 10, 11, 1),
respectively.

If n ∼= 2mod b − 1. The smallest n is b + 1, and a hamiltonian cycle in Tn=b+1⟨1, 3, 7; b⟩ is (1, 2, 3, . . . ,
n− 2, n− 1, n, 1).

If n ∼= 3mod b − 1. The smallest n is b + 2. For b = 8, the smallest n, different from 10, is 17, and
a hamiltonian cycle in T17⟨1, 3, 7; 8⟩ is (1, 4, 7, 10, 2, 5, 12, 15, 16, 8, 11, 3, 6, 13, 14, 17, 9, 1). For b = 10, a
hamiltonian cycle in T12⟨1, 3, 7; 10⟩ is (1, 4, 5, 8, 9, 12, 2, 3, 6, 7, 10, 11, 1).

If n ∼= 4mod b − 1. The smallest n is b + 3. Hamiltonian cycles in T11⟨1, 3, 7; 8⟩ and T13⟨1, 3, 7; 10⟩ are
(1, 8, 11, 3, 4, 5, 6, 7, 10, 2, 9, 1) and (1, 8, 9, 12, 2, 5, 6, 13, 3, 4, 7, 10, 11, 1), respectively. These hamiltonian cy-
cles in Tb+3⟨1, 3, 7; b⟩ do not contain the edge (n−2, n−1). Now the next representative in this class is n = 2b+
2, and hamiltonian cycles in T18⟨1, 3, 7; 8⟩ and T22⟨1, 3, 7; 10⟩ are (1, 8, 11, 18, 10, 2, 3, 4, 5, 12, 15, 7, 14, 6, 13,
16, 17, 9, 1) and (1, 2, 3, 10, 17, 18, 19, 9, 16, 6, 7, 14, 4, 5, 8, 15, 22, 12, 13, 20, 21, 11, 1), respectively.

If n ∼= 5mod b − 1. The smallest n is b + 4. For b = 8, a hamiltonian cycle in T12⟨1, 3, 7; 8⟩ is
(1, 2, 3, 6, 7, 10, 11, 12, 4, 5, 8, 9, 1). For b = 10, the smallest n, different from 14, is 23, and a hamiltonian
cycle in T23⟨1, 3, 7; 10⟩ is (1, 8, 15, 16, 23, 13, 3, 4, 5, 6, 7, 14, 17, 18, 19, 20, 21, 22, 12, 2, 9, 10, 11, 1).

If n ∼= 6mod b − 1. The smallest n is b + 5. Hamiltonian cycles in T13⟨1, 3, 7; 8⟩ and T15⟨1, 3, 7; 10⟩ are
(1, 8, 11, 3, 6, 13, 5, 12, 4, 7, 10, 2, 9, 1) and (1, 8, 15, 5, 12, 2, 9, 10, 13, 3, 6, 7, 14, 4, 11, 1), respectively. These
hamiltonian cycles in Tb+5⟨1, 3, 7; b⟩ do not contain the edge (n − 2, n − 1). Now, hamiltonian cycles in
T20⟨1, 3, 7; 6⟩ and T24⟨1, 3, 7; 10⟩ are (1, 2, 3, 10, 11, 18, 19, 20, 12, 4, 5, 6, 13, 16, 8, 15, 7, 14, 17, 9, 1) and (1, 2, 3, 6,
9, 16, 17, 7, 8, 15, 18, 21, 24, 14, 4, 5, 12, 19, 22, 23, 13, 20, 10, 11, 1), respectively.

If n ∼= 7mod b−1. Clearly here b > 8, so we consider only b = 10. The smallest n is 16, and a hamiltonian
cycle in T16⟨1, 3, 7; 10⟩ is (1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16, 6, 7, 10, 11, 1).

If n ∼= 8mod b−1. Clearly here b > 9, so we consider only b = 10. The smallest n is 17, and a hamiltonian
cycle in T17⟨1, 3, 7; 10⟩ is (1, 2, 3, 4, 5, 12, 15, 16, 6, 13, 14, 17, 7, 8, 9, 10, 11, 1).

By using the technique of Remark 1, these hamiltonian cycles in Tn⟨1, 3, 7; b⟩ containing the edge (n −
2, n−1), can be transformed into those in Tn+b−1⟨1, 3, 7; b⟩ which enjoys the same property. Thus Tn⟨1, 3, 7; b⟩
is hamiltonian for all n different from 2b− 6.

This finishes the proof. □

Conjecture: T10⟨1, 3, 7; 8⟩ and T14⟨1, 3, 7; 10⟩ are non hamiltonian.

Theorem 3.5. Tn⟨1, 3, 7; 12⟩ is hamiltonian for all n different from 14 and 18.

Proof. Clearly n > 13.
If n ∼= 0mod 11. The smallest n is 22, and a hamiltonian cycle in T22⟨1, 3, 7; 12⟩ is (1, 4, 5, 12, 15, 18, 19, 7, 8,

9, 16, 17, 20, 21, 22, 10, 11, 14, 2, 3, 6, 13, 1).
If n ∼= 1mod 11. The smallest n is 23, and a hamiltonian cycle in T23⟨1, 3, 7; 12⟩ is (1, 4, 5, 8, 9, 12, 15, 16, . . . ,

21, 22, 23, 11, 14, 2, 3, 6, 7, 10, 13, 1).
If n ∼= 2mod 11. The smallest n is 13, and a hamiltonian cycle in T13⟨1, 3, 7; 12⟩ is (1, 2, 3, . . . , 11, 12, 13, 1).
If n ∼= 3mod 11. The smallest n, different from 14, is 25, and a hamiltonian cycle in T25⟨1, 3, 7; 12⟩ is

(1, 2, 9, 16, 19, 20, 23, 24, 12, 15, 3, 4, 5, 6, 7, 8, 11, 14, 21, 22, 10, 17, 18, 25, 13, 1).
If n ∼= 4mod 11. The smallest n is 15, and a hamiltonian cycle in T15⟨1, 3, 7; 12⟩ is (1, 8, 15, 3, 4, 5, 6, 7, 10, 11,

14, 2, 9, 12, 13, 1) which does not contain the edge (13, 14). Now, a hamiltonian cycle in T26⟨1, 3, 7; 12⟩ is
(1, 4, 5, 12, 15, 22, 23, 11, 18, 6, 7, 8, 9, 16, 19, 26, 14, 2, 3, 10, 17, 20, 21, 24, 25, 13, 1).

If n ∼= 5mod 11. The smallest n is 16, and a hamiltonian cycle in T16⟨1, 3, 7; 12⟩ is (1, 2, 3, 6, 7, 10, 11, 14, 15,
16, 4, 5, 8, 9, 12, 13, 1).

If n ∼= 6mod 11. The smallest n is 17, and a hamiltonian cycle in T17⟨1, 3, 7; 12⟩ is (1, 8, 15, 3, 10, 17, 5, 6, 7, 14,
2, 9, 16, 4, 11, 12, 13, 1) which does not contain the edge (15, 16). Now, a hamiltonian cycle in T28⟨1, 3, 7; 12⟩
is (1, 2, 3, 4, 5, 8, 15, 22, 10, 11, 18, 6, 7, 14, 17, 20, 21, 9, 12, 19, 26, 27, 28, 16, 23, 24, 25, 13, 1).
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If n ∼= 7mod 11. The smallest n, different from 18, is 29, and a hamiltonian cycle in T29⟨1, 3, 7; 12⟩ is
(1, 2, 3, 4, 11, 12, 15, 18, 19, 20, 27, 28, 16, 23, 24, 25, 26, 14, 21, 22, 29, 17, 5, 6, 7, 8, 9, 10, 13, 1).

If n ∼= 8mod 11. The smallest n, is 19, and a hamiltonian cycle in T19⟨1, 3, 7; 12⟩ is (1, 4, 5, 8, 11, 12, 15, 16,
17, 18, 19, 7, 14, 2, 3, 6, 9, 10, 13, 1).

If n ∼= 9mod 11. The smallest n, is 20, and a hamiltonian cycle in T20⟨1, 3, 7; 12⟩ is (1, 2, 3, 4, 5, 6, 7, 10, 11, 14,
15, 16, 17, 18, 19, 20, 8, 9, 12, 13, 1).

If n ∼= 10mod 11. The smallest n, is 21, and a hamiltonian cycle in T20⟨1, 3, 7; 12⟩ is (1, 2, 3, 6, 7, 14, 17, 5, 12,
19, 20, 8, 15, 16, 4, 11, 18, 21, 9, 10, 13, 1).

By using the technique of Remark 1, these hamiltonian cycles in Tn⟨1, 3, 7; 12⟩ containing the edge
(n − 2, n − 1), can be transformed into those in Tn+b−1⟨1, 3, 7; b⟩ which enjoys the same property. Thus
Tn⟨1, 3, 7; b⟩ is hamiltonian for all n different from 14 and 18.

This finishes the proof. □

Conjecture: Tn∈{14,18}⟨1, 3, 7; 12⟩ is non hamiltonian.

Theorem 3.6. Tn⟨1, 3, 7; 14⟩ is hamiltonian for all n different from 19.

Proof. Clearly n > 14.
If n ∼= 0mod 13. The smallest n is 26, and a hamiltonian cycle in T26⟨1, 3, 7; 14⟩ is (1, 2, 3, 6, 7, 14, 17, 20, 21,

24, 25, 26, 12, 13, 16, 19, 22, 23, 9, 10, 11, 18, 4, 5, 8, 15, 1).
If n ∼= 1mod 13. The smallest n is 27, and a hamiltonian cycle in T27⟨1, 3, 7; 14⟩ is (1, 2, 3, 4, 7, 14, 17, 18, 21,

22, 25, 26, 27, 13, 20, 6, 9, 16, 23, 24, 10, 11, 12, 19, 5, 8, 15, 1).
If n ∼= 2mod 13. The smallest n is 15, and a hamiltonian cycle in T15⟨1, 3, 7; 14⟩ is (1, 2, 3, . . . , 13, 14, 15, 1).
If n ∼= smod 13, where s ∈ {3, 7, 11}. The smallest n is s+13. A hamiltonian cycle in Tn=s+13⟨1, 3, 7; 14⟩

is (1, 2, . . . , s−2)∪Cs−2→s+2∪Cs+2→s+6∪· · ·∪C1→13∪(13, 16, 17, 18, . . . , n− 2, n− 1, n, s−1, s)∪Cs→s+4∪
Cs+4→s+8 ∪ · · · ∪ Cb−3→b+1 ∪ (b+ 1, 1).

If n ∼= 4mod 13. The smallest n is 17, and a hamiltonian cycle in T17⟨1, 3, 7; 14⟩ is (1, 8, 11, 14, 3, 4, 5, 6, 7, 10,
13, 16, 2, 9, 12, 15, 1) which does not contain the edge (15, 16). Now, a hamiltonian cycle in T30⟨1, 3, 7; 14⟩ is
(1, 2, 3, 4, 11, 18, 25, 26, 12, 13, 20, 6, 7, 14, 21, 22, 23, 9, 10, 17, 24, 27, 28, 29, 30, 16, 19, 5, 8, 15, 1).

If n ∼= 5mod 13. The smallest n is 18, and a hamiltonian cycle in T18⟨1, 3, 7; 14⟩ is (1, 8, 11, 18, 4, 5, 6, 7, 14, 17,
3, 10, 13, 16, 2, 9, 12, 15, 1) which does not contain the edge (16, 17). Now, a hamiltonian cycle in T31⟨1, 3, 7; 14⟩
is (1, 2, 9, 12, 19, 20, 27, 28, 31, 17, 3, 4, 5, 6, 7, 8, 11, 18, 21, 22, 25, 26, 29, 30, 16, 23, 24, 10, 13, 14, 15, 1).

If n ∼= 6mod 13. The smallest n, different from 19, is 32, and a hamiltonian cycle in T32⟨1, 3, 7; 14⟩ is
(1, 2, 3, 10, 17, 24, 25, 11, 12, 13, 20, 6, 7, 14, 21, 22, 23, 9, 16, 19, 26, 27, 28, 29, 30, 31, 32, 18, 4, 5, 8, 15, 1).

If n ∼= 8mod 13. The smallest n is 21, and a hamiltonian cycle in T21⟨1, 3, 7; 14⟩ is (1, 2, 3, 4, 5, 12, 19, 20, 6, 13,
16, 17, 18, 21, 7, 8, 9, 10, 11, 14, 15, 1).

If n ∼= 9mod 13. The smallest n is 22, and a hamiltonian cycle in T22⟨1, 3, 7; 14⟩ is (1, 4, 5, 6, 13, 20, 21, 7, 14, 17,
18, 19, 22, 8, 9, 16, 2, 3, 10, 11, 12, 15, 1).

If n ∼= 10mod 13. The smallest n is 23, and a hamiltonian cycle in T23⟨1, 3, 7; 14⟩ is (1, 4, 7, 14, 17, 3, 6, 13, 16, 2,
5, 12, 19, 20, 23, 9, 10, 11, 18, 21, 22, 8, 15, 1).

If n ∼= 12mod 13. The smallest n is 25, and a hamiltonian cycle in T25⟨1, 3, 7; 14⟩ is (1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 19,
20, 23, 24, 10, 17, 18, 21, 22, 25, 11, 12, 13, 14, 15, 1).

By using the technique of Remark 1, these hamiltonian cycles in Tn⟨1, 3, 7; 14⟩ containing the edge
(n − 2, n − 1), can be transformed into those in Tn+b−1⟨1, 3, 7; 14⟩ which enjoys the same property. Thus
Tn⟨1, 3, 7; 14⟩ is hamiltonian for all n different from 19.

This finishes the proof. □

Conjecture: T19⟨1, 3, 7; 14⟩ is non hamiltonian.

Conjecture: For even b ≥ 16.
(a) If b ∼= 0mod 4, then Tn⟨1, 3, 7; b⟩ is hamiltonian for all n different from b+ 2.
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(b) If b ∼= 2mod 4, then Tn⟨1, 3, 7; b⟩ is hamiltonian for all n.

Concluding Remark: In literature the hamiltonicity of Toeplitz graphs Tn⟨1, 3, a3; b⟩, upto a3 = 6, has
been investigated. In this paper we investigated it for a3 = 7, that is, we investigated the hamiltonicity in
Toeplitz graphs Tn⟨1, 3, 7; b⟩ and stated some conjecture regarding this. The next task in our opinion is to
complete the hamiltonicity investigation in Toeplitz graphs Tn⟨1, 3, 7, a4, a5, . . . , ap; b1, b2, . . . , bq⟩ by solving
the stated conjectures in this paper.
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