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Abstract

The aim of this paper is to investigate reflexive edge strength in graph theory, defined as the specialized
area of an edge that is irregularly labeled, where both vertices and edges are labeled. The reflexive edge
strength, res(G), is the minimal value of k for which the sum of weights of any two different edges in a
graph is distinct. In this paper, reflexive edge strength of b-subdivided ladder graphs and the triangular
ladder graph studied.
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1. Introduction

Graph labeling is the procedure in graph theory where either vertices or edges or both in a graph are
assigned labels, usually numbers or other symbols according to certain pre-defined rules. The graph labeling
can be vertex labeling, edge labeling, or total labeling and serves different purposes. Graph labeling has
wide applications to computer science, telecommunications, and biology. Graph labeling in network design,
for instance, enables the effective frequency or channel allocation so that interferences can be avoided. In
coding theory, it could be employed to assist in error detection and correction, whereas in DNA sequencing,
molecular biology labeling may represent different types of relationships or interactions among genes or
proteins. Graph labeling also has some practical applications in scheduling, where tasks are represented as
vertices, and dependencies are shown as edges.

In 1988 Chartand et al. [1] gave the idea for edge labeling in a special way that the weight of any two
distinct vertices is not equal. This labeling is named as irregular labeling and the maximum number k that
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is used in graph G for irregular labeling is called irregularity strength s(G). In 2012 Al-Mushayt et al. [2]
calculates the exact value of edge irregularity strength of hexagonal grid graphs. Amar et al. calculates
irregularity strength of trees [3].

Baca et al. [4] get motivations from these papers and gave a new idea of edge irregular total k -labeling of a
graph (G) i.e. If V(G) and E(G) are the vertex and edge set of a graph G then f : V ∪E → 1, 2, 3, 4, . . . , k
is an edge irregular total k-labeling if the weight of any two different edges is different i.e. for all edges

wf (xy) ̸= wf

(
x

′
y
′
)
, forall xy ̸= x

′
y
′
, where wf (xy) = f (x) + f (xy) + f(y). Baca et al. [5] calculates

total edge irregularity strength of prism. Ivančo and Jendro calculates the value of total edge irregularity
strength of tress [6].

Tanna et al. in [7] give a new thought of edge irregular reflexive k-labeling i.e. If we label both the edges
and vertices of the graph such that

fe : E (G) → {1, 2, 3, 4, . . . , ke}

fv : V (G) → {0, 2, 4, 6, . . . , 2kv}.

Where k = max{ke, 2kv}. Then this kind of labeling is named as edge irregular reflexive k-labeling whenever
weight of en ̸= weight of em ∀ en ̸= em and en, em ∈ E(G), here the minimum possible value of k in which
graph exists such sort of labeling is named as reflexive edge strength and written as res(G).

Edge irregular reflexive labeling has been one of the most important areas of study in graph theory,
whereby labeling of edges is performed so that certain specific conditions on irregularity are met. In this
review, some key found studies put together various graph structures and labeling techniques.

The reflexive strength of edges can make the optimization of designs in networks, for instance, in telecom-
munication, where it ensures that there are unique paths or routes hence time avoiding interference or colli-
sion. Labeling edges in networks, such that paths have different values, could help in the algorithms routing
to ensure at least congestion and maximum reliability. The distribution of computing systems needs a much-
needed resource control and allocation at different nodes uniquely for the prevention of possible conflicts or
redundancies. The reflexive edge strength can be used to label various links between distributed resources
uniquely, and their usage in load balancing can help in much better processing with reduced conflicts.

Agustin et al. in [8] initiated the study of edge irregular reflexive labeling with some applications to
tree graphs. Their work presented fundamental insights on how the reflexive labeling could be applied
systematically to tree structures, thereby setting initial benchmarks for further extended graph analyses.
Extending the investigation on corona graphs, Indriati and Rosyida [9, 10] continued consideration on the
specific topic of the corona of path graphs and related graph types. Their two related publications this year
provide a thorough review of how the corona operation impacts embeddability number along with other
parameters of edge irregular reflexive labeling.

Further broadening the scope, Yoong et al. [11] considered the corona product of graphs with paths,
addressing challenges and remedies on keeping the edge irregularity in these composite structures. In the
2021 study, subtle differences about how path graphs combine with other graph types in reflexive labeling
constraints were placed in context. Budi et al. presented in [12] an investigation of the so-called tadpole
graphs Tm,1 and Tm,2 examining how the Edge Irregular Reflexive Labeling could be used on such hybrid
structures containing cycles and paths. This paper showed that reflexive labeling methods were flexible
enough to be adapted to more complicated configurations of graphs. Junetty et al. [13], focused on palm
tree graphs C3 −B2,r and C3 −B3,r, presenting for the classes of such graphs exact methods by which edge
irregular reflexive labelings are transmitted. Their results contributed to a better understanding of how
some transformations of graphs did influence the approach to labeling.

For the banana tree graph B2,n and B3,n, Novelia and Indriati [14] gave some properties under which
it is possible to have irregular labeling. The symmetry and structure of such a graph where labeling is
possible were evident through their study. Agustin et al. [15] focus mainly on almost regular graphs and
their reflexive edge strength, their 2021 study shed a significant amount of light on how near-regularity in
graph structures affects robustness and applicability of reflexive labeling schemes. Finally, the last related
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Figure 1: Subdivider ladder graph Lb
4

work which is found is by Setiawan and Indriati [16] on sun graphs and the corona of cycle graphs with null
graphs containing two vertices. Their work provided insights into the complexities introduced by bringing
together different graph types and resultant impact thereof on edge irregular reflexive labeling.

Let us recall the following lemma proved in [7].

Lemma 1.1. For every graph G, res(G) ≥


⌈
|E|
3

⌉
, |E| ̸≡ 2, 3(mod 6)⌈

|E|
3

⌉
+ 1, |E| ≡ 2, 3(mod 6)

2. Main Results

In this section, first we show the results of the ladder graph.

2.1. Reflexive edge strength of sub-divided ladder graph

Let Lb
a be the b sub-divisions of the ladder graph. It is formed by the vertex set V

(
Lb
a

)
= {xi; 1 ≤ i ≤

a}
⋃
{zi; 1 ≤ i ≤ a}

⋃
{wj

i ; 1 ≤ i ≤ a−1, 1 ≤ j ≤ b}
⋃
{uji ; 1 ≤ i ≤ a−1, 1 ≤ j ≤ b}

⋃
{yji ; 1 ≤ i ≤ a, 1 ≤

j ≤ b} and edge set E
(
Lb
a

)
= {xiw1

i ; 1 ≤ i ≤ a−1}
⋃
{wj

iw
j+1
i ; 1 ≤ i ≤ a−1, 1 ≤ j ≤ b−1}

⋃
{wj

ixi+1; 1 ≤
i ≤ a, j = b}

⋃
{xiy1i ; 1 ≤ i ≤ a}

⋃
{yji y

j+1
i ; 1 ≤ i ≤ a, 1 ≤ j ≤ b − 1}

⋃
{yji zi; 1 ≤ i ≤ a, j =

b}
⋃
{ziu1i ; 1 ≤ i ≤ a − 1}

⋃
{ujiu

j+1
i ; 1 ≤ i ≤ a − 1, 1 ≤ j ≤ b − 1}

⋃
{ujizi+1; 1 ≤ i ≤ a, j = b}.

Cardinality of edges in Lb
a is 3 (ab+ a)− 2(b+ 1). See Figure 1.

Theorem 2.1. Let Lb
a be the b sub-divisions of the ladder graph, then for a > 1, 1 ≤ b ≤ 5,

res
(
Lb
a

)
=


⌈
3(ab+a)−2(b+1)

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

3(ab+a)−2(b+1)
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

Proof. Let Lb
a be the b sub-divisions of the ladder graph then the lower bound of reflexive edge strength is

given by Lemma 2.1 is

res
(
Lb
a

)
≥


⌈
|3(ab+a)−2(b+1)|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

|3(ab+a)−2(b+1)|
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

To show that

res
(
Lb
a

)
≤


⌈
|3(ab+a)−2(b+1)|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

|3(ab+a)−2(b+1)|
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

We define vertex and edge labeling in the following five different cases for 1 ≤ b ≤ 5 :



Mohammed Ali Alghamdi et al., Journal of Prime Research in Mathematics, 20(2) (2024), 77-92 80

Case 1. When b = 1
We define a vertex labeling

f (x1) = 0, f
(
x1y

1
1

)
= 2, f

(
y11z1

)
= 1

f (xi+1) = 2i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w1
i

)
= 2i− 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
y12i−1

)
= 4i− 4, 1 ≤ i ≤ a+ 1

2
, a = 1, 3, 5, . . .

f
(
y12i

)
= 4i− 4, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f (zi) = 2i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
u1i

)
= 2i− 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

And we define an edge labeling

f
(
xiw

1
i

)
= 2i− 1, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w1
i xi+1

)
= 2i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
x2iy

1
2i

)
= 4i− 1, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
x2i+1y

1
2i+1

)
= 4i− 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
y12iz2i

)
= 4i− 2, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
y12i+1z2i+1

)
= 4i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
ziu

1
i

)
= 2i, 1 ≤ i ≤ a− 1

f
(
u1i zi+1

)
= 2i− 1, 1 ≤ i ≤ a− 1

Edge weights are shown below which can be seen that all weights are distinct

wt

(
xiw

1
i

)
=

{
1; i = 1
6i− 3; i > 1

wt

(
w1
i xi+1

)
= 6i+ 2

wt

(
xiy

1
i

)
=

2, i = 1
6i+ 1, i > 1

wt

(
y1i zi

)
=

3, i = 1
6i, i > 1

wt

(
ziu

1
i

)
= 6i− 2

wt

(
u1i zi+1

)
= 6i− 1

Hence,

res
(
L1
a

)
=

⌈
6a− 4

3

⌉
+ 1.

Case 2. For b = 2
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We define a vertex labeling

f (x1) = 0, f (z1) = 0, f
(
wj
1

)
= 2; j = 1, 2, f

(
u11

)
= 2

f (x2i) = 6i− 2, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f (x2i+1) = 6i+ 2, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f (z2i) = 6i− 2, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f (z2i+1) = 6i+ 2, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
wj
2i

)
= 6i, 1 ≤ i ≤ a

2
, j = 1, 2, a = 2, 4, 6, . . .

f
(
wj
2i+1

)
= 6i+ 4, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
yj1

)
= 0, j = 1, 2

f
(
yj2i

)
= 6i− 2, 1 ≤ i ≤ a

2
, j = 1, 2, a = 2, 4, 6, . . .

f
(
yj2i+1

)
= 6i+ 4, 1 ≤ i ≤ a− 1

2
, j = 1, 2, a = 3, 5, 7, . . .

f
(
u22i−1

)
= 6i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
u22i

)
= 6i+ 2, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
u12i

)
= 6i, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

And we define an edge labeling

f
(
x1w

1
1

)
= 2, f

(
w1
1w

2
1

)
= 1, f

(
w2
1x2

)
= 1, f

(
x1y

1
1

)
= 3

f
(
x2iw

1
2i

)
= 6i− 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
w1
2iw

2
2i

)
= 6i− 4, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
w1
2i+1w

2
2i+1

)
= 6i− 3, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
w2
2ix2i

)
= 6i− 4, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
w2
2i+1x2i+1

)
= 6i− 1, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
x2iy

1
2i

)
= 6i− 2, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
x2i+1y

1
2i+1

)
= 6i− 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
y11y

2
1

)
= 2, f

(
y21z1

)
= 1, f

(
z1u

1
1

)
= 4, f

(
u11u

2
1

)
= 2

f
(
y12iy

2
2i

)
= 6i− 3, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .
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f
(
y12i+1y

2
2i+1

)
= 6i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
y22iz2i

)
= 6i− 4, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
y22i+1z2i+1

)
= 6i− 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
z2iu

1
2i

)
= 6i− 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
z2i+1u

1
2i+1

)
= 6i, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
u12iu

2
2i

)
= 6i− 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
u12i+1u

2
2i+1

)
= 6i, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
u22i−1z2i

)
= 6i− 5, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
u22iz2i+1

)
= 6i− 4, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

Edge weights are shown below which can be seen that all weights are distinct

wt

(
xiw

1
i

)
= 9i− 5, wt

(
w1
iw

2
i

)
= 9i− 4, wt

(
w2
i xi+1

)
= 9i− 2, wt

(
xiy

1
i

)
= 9i− 6

wt

(
y1i y

2
i

)
= 9i− 7, wt

(
y2i zi

)
= 9i− 8, wt

(
ziu

1
i

)
= 9i− 3, wt

(
u1iu

2
i

)
= 9i+ 1 , wt

(
u2i zi+1

)
= 9i

Hence,

res
(
L2
a

)
=

{ ⌈
9a−6
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

9a−6
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

.

Case 3. For b = 3
We define a vertex labeling

f (x1) = 0, f (z1) = 0

f (xi+1) = 4i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f (zi+1) = 4i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w1
i

)
= f

(
w2
i

)
= 4i− 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w3
i

)
= 4i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
uji

)
= 4i, 1 ≤ i ≤ a− 1, j = 1, 2, 3, a = 2, 3, 4, . . .

f
(
yj1

)
= 0, j = 1, 2, 3

f
(
yji+1

)
= 4i+ 2, 1 ≤ i ≤ a− 1, j = 1, 2, 3, a = 2, 3, 4, . . .

And we define an edge labeling

f
(
x1w

1
1

)
= 3, f

(
w2
1w

3
1

)
= 1, f

(
w3
1x1

)
= 1, f

(
x1y

1
1

)
= 1, f

(
y11y

2
1

)
= 2, f

(
y21y

3
1

)
= 3, f

(
y31z1

)
= 4, f

(
z1u

1
1

)
= 4

f
(
xi+1w

1
i+1

)
= 4i+ 1, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
w1
iw

2
i

)
= 4i− 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w2
i+1w

3
i+1

)
= 4i+ 3, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .
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f
(
w3
i+1xi+2

)
= 4i− 3, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
xi+1y

1
i+1

)
= 4i− 3, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
yji+1y

j+1
i+1

)
= 4i+ j − 3, j = 1, 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
y3i+1zi+1

)
= 4i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
zi+1u

1
i+1

)
= 4i+ 2, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
u1iu

2
i

)
= 4i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
u3i zi+1

)
= f

(
u2iu

3
i

)
= 4i− 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

Edge weights are shown below which can be seen that all weights are distinct

wt

(
xiw

1
i

)
= 12i− 7, wt

(
w1
iw

2
i

)
= 12i− 6, wt

(
w2
iw

3
i

)
= 12i− 5, wt

(
w3
i xi+1

)
= 12i− 1

wt

(
ziu

1
i

)
= 12i− 4, wt

(
u1iu

2
i

)
= 12i− 3, wt

(
u2iu

3
i

)
= 12i− 2, wt

(
u3i zi+1

)
= 12i

wt

(
xiy

1
i

)
= 12i− 11, wt

(
y1i y

2
i

)
= 12i− 10, wt

(
y2i y

3
i

)
= 12i− 9, wt

(
y3i zi

)
= 12i− 8

Hence,

res
(
L3
a

)
=

⌈
12a− 8

3

⌉
.

Case 4. For b = 4
We define a vertex labeling

f (x1) = 0, f (z1) = 0, f
(
yj1

)
= 0, ∀j

f (x2i) = 10i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f (z2i) = 10i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f (x2i+1) = 10i+ 2, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f (z2i+1) = 10i+ 2, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
wj
2i−1

)
= 10i− 8, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
wj
2i

)
= 10i− 2, 1 ≤ i ≤ a− 1, ∀j, a = 2, 3, 4, . . .

f
(
uj2i−1

)
= 10i− 6, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
uj2i

)
= 10i, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
y12i

)
= 10i− 4, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
y12i+1

)
= 10i, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
yj2i

)
= 10i− 2, j > 1, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
yj2i+1

)
= 10i+ 2, j > 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .
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And we define an edge labeling

f
(
x1w

1
1

)
= 4, f

(
z1u

1
1

)
= 6, f

(
u11u

2
1

)
= 3, f

(
u21u

3
1

)
= 4, f

(
u31u

4
1

)
= 5, f

(
w4
1x2

)
= 4,

f
(
x3w

1
3

)
= 12, f

(
w4
3x4

)
= 10, f

(
x1y

1
1

)
= 1,

f
(
y11y

2
1

)
= 2, f

(
y21y

3
1

)
= 3, f

(
y31y

4
1

)
= 4, f

(
y41z1

)
= 5

f
(
wj
2i−1w

j+1
2i−1

)
= 10i+ j − 8, j = 1, 2, 3, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
x2iw

1
2i

)
= 10i− 5, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
wj
2iw

j+1
2i

)
= 10i+ j − 5, j = 1, 2, 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
w4
2ix2i+1

)
= 10i− 5, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
x2i+1w

1
2i+1

)
= 10i+ 2, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
w4
2i+1x2i+2

)
= 10i, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
x2iy

1
2i

)
= 10i− 8, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
x2i+1y

1
2i+1

)
= 10i− 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
yj2i+1y

j+1
2i+1

)
= 10i+ 6j − 13, j = 1, 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
yj2iy

j+1
2i

)
= 10i+ j − 10, j = 2, 3, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
y32i+1y

4
2i+1

)
= 10i, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
y42iz2i

)
= 10i− 6, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
y42i+1z2i+1

)
= 10i+ 1, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
u42i−1z2i

)
= 10i− 7, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
z2iu

1
2i

)
= 10i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
uj2iu

j+1
2i

)
= 10i+ j − 4, j = 1, 2, 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
u42iz2i+1

)
= 10i− 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
z2i+1u

1
2i+1

)
= 10i+ 5, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

f
(
uj2i+1u

j+1
2i+1

)
= 10i+ j + 3, j = 1, 2, 3, 1 ≤ i ≤ a− 2

2
, a = 4, 6, 8, . . .

Edge weights are shown below which can be seen that all weights are distinct
wt

(
xiw

1
i

)
= 15i − 9, wt

(
w1
iw

2
i

)
= 15i − 8, wt

(
w2
iw

3
i

)
= 15i − 7, wt

(
w3
iw

4
i

)
= 15i − 6, wt

(
ziu

1
i

)
=

15i − 5, wt

(
u1iu

2
i

)
= 15i − 4, wt

(
u2iu

3
i

)
= 15i − 3, wt

(
u3iu

4
i

)
= 15i − 2, wt

(
u4i zi+1

)
= 15i, wt

(
xiy

1
i

)
=

15i− 14, wt

(
y1i y

2
i

)
= 15i− 13, wt

(
y2i y

3
i

)
= 15i− 12, wt

(
y3i y

4
i

)
= 15i− 11, wt

(
y4i zi

)
= 15i− 10,
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wt

(
w4
i xi+1

)
=

{
15i+ 10; i > 1
14; i = 1

Hence,

res
(
L4
a

)
=

{ ⌈
15a−10

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

15a−10
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

.

Case 5. For b = 5
We define a vertex labeling

f (x1) = 0, f (z1) = 0, f
(
yj1

)
= 0, ∀j, f

(
uji

)
= 6i, ∀i, j

f (xi+1) = 6i+ 2, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f (zi+1) = 6i+ 2, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
wj
1

)
=

2, j = 1, 2, 5
4, j = 3, 4

f
(
yji+1

)
= 6i+ 2, 1 ≤ i ≤ a− 1, ∀j, a = 2, 3, 4, . . .

f
(
wj
i+1

)
=

6i+ 4, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . . , j = 1, 2, 5
6i+ 6, 1 ≤ i ≤ a− 1, a = 2, 3, 4, .., j = 3, 4

And we define an edge labeling
f
(
x1w

1
1

)
= 5, f

(
x1y

1
1

)
= 1

f
(
xi+1w

1
i+1

)
= 6i+ 1, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
w1
1w

2
1

)
= 4, f

(
w2
1w

3
1

)
= 3, f

(
w3
1w

4
1

)
= 2, f

(
w4
1w

5
1

)
= 5, f

(
w5
1x2

)
= 2

f
(
wj
i+1w

j+1
i+1

)
= 6i− j + 1, j = 1, 2, 3, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
w4
i+1w

5
i+1

)
= 6i+ 1, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
w5
i+1xi+2

)
= 6i, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f
(
xi+1y

1
i+1

)
= 6i− 3, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
y11y

2
1

)
= 2, f

(
y21y

3
1

)
= 3, f

(
y31y

4
1

)
= 4, f

(
y41y

5
1

)
= 5, f

(
y51z1

)
= 6

f
(
yji+1y

j+1
i+1

)
= 6i+ j − 3, j = 1, 2, 3, 4, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
y5i+1zi+1

)
= 6i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
z1u

1
1

)
= 7, f

(
u11u

2
1

)
= 2, f

(
u21u

3
1

)
= 3, f

(
u31u

4
1

)
= 4, f

(
u41u

5
1

)
= 5, f

(
u51x2

)
= 4

Edge weights are shown below which can be seen that all weights are distinct wt

(
xiw

1
i

)
= 18i −

11, wt

(
w1
iw

2
i

)
= 18i − 10, wt

(
w2
iw

3
i

)
= 18i − 9, wt

(
w3
iw

4
i

)
= 18i − 8, wt

(
w4
iw

5
i

)
= 18i − 7, wt

(
w5
i xi+1

)
=

18i − 6, wt

(
ziu

1
i

)
= 18i − 5, wt

(
u1iu

2
i

)
= 18i − 4, wt

(
u2iu

3
i

)
= 18i − 3, wt

(
u3iu

4
i

)
= 18i − 2, wt

(
u4iu

5
i

)
=

18i − 1, wt

(
u5i zi+1

)
= 18i, wt

(
xiy

1
i

)
= 18i − 17, wt

(
y1i y

2
i

)
= 18i − 16, wt

(
y2i y

3
i

)
= 18i − 15, wt

(
y3i y

4
i

)
=

18i− 14, wt

(
y4i y

5
i

)
= 18i− 13, wt

(
y5i zi

)
= 18i− 12 Hence,

res
(
L5
a

)
=

⌈
18a− 12

3

⌉
.
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Figure 2: Subdivider triangular ladder graph

2.2. Reflexive edge strength of sub-divided triangular ladder graph

Let TL1
a be the one sub-division of the triangular ladder graph. It is formed by the vertex set V

(
TL1

a

)
=

{xi, 1 ≤ i ≤ a}
⋃
{zi, 1 ≤ i ≤ a}

⋃
{w1

i , 1 ≤ i ≤ a−1}
⋃
{u1i , 1 ≤ i ≤ a−1}

⋃
{y1i , 1 ≤ i ≤ a}

⋃
{t1i , 1 ≤

i ≤ a− 1} and the edge set is E
(
TL1

a

)
= {xiw1

i , 1 ≤ i ≤ a− 1}
⋃
{w1

i xi+1, 1 ≤ i ≤ a− 1}
⋃
{ziu1i , 1 ≤

i ≤ a − 1}
⋃
{u1i zi+1, 1 ≤ i ≤ a − 1}

⋃
{xiy1i , 1 ≤ i ≤ a}

⋃
{y1i zi, 1 ≤ i ≤ a}

⋃
{xi+1t

1
i , 1 ≤ i ≤

a− 1}
⋃
{zit1i , 1 ≤ i ≤ a− 1}. The cardinality of edges in TL1

a is 8a− 6. See Figure 2

Theorem 2.2. Let TL1
a be the one sub-division of the triangular ladder graph, then

res
(
TL1

a

)
=

{ ⌈
8a−6
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−6
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

Proof. Let TL1
a be the one sub division of the ladder graph then the lower bound of reflexive edge strength

is given by Lemma 2.1 is

res
(
TL1

a

)
≥

{ ⌈
|8a−6|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−6
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

To show that

res
(
TL1

a

)
≤


⌈
|8a−6|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

|8a−6|
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

We define a vertex labeling
f(x1) = 0, f

(
u11

)
= 0

f (x3i−1) = 8i− 4, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f (x3i) = 8i− 2, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f (x3i+1) = 8i+ 2, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f (z3i−1) = 8i− 4, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f (z3i) = 8i− 2, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .
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f (z3i+1) = 8i+ 2, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
y13i−1

)
= 8i− 4, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
y13i

)
= 8i− 2, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f(y13i+1) = 8i+ 2, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
w1
3i−2

)
= 8i− 6, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
w1
3i−1

)
= 8i− 4, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f(w1
3i) = 8i, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
u13i−1

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
u13i

)
= 8i, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
u13i+1

)
= 8i+ 3, 1 ≤ i ≤ a− 2

3
, a = 5, 8, 11, . . .

f
(
t13i−2

)
= 8i− 5, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
t13i − 1

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
t13i

)
= 8i+ 1, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

And we define an edge labeling
f
(
x1w

1
1

)
= 3, f

(
z1u

1
1

)
= 3

f
(
x3i−1w

1
3i−1

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
x3iw

1
3i

)
= 8i− 1, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
x3i+1w

1
3i+1

)
= 8i+ 1, 1 ≤ i ≤ a− 2

3
, a = 5, 8, 11, . . .

f
(
z3i−1u

1
3i−1

)
= 8i− 6, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
z3iu

1
3i

)
= 8i− 3, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
z3i+1u

1
3i+1

)
= 8i− 2, 1 ≤ i ≤ a− 2

3
, a = 5, 8, 11, . . .

f
(
w1
3i−2x3i−1

)
= 8i− 7, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
w1
3i−1x3i

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
w1
3ix3i+1

)
= 8i− 3, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
u11x2

)
= 2, f

(
x1y

1
1

)
= 1, f

(
y11z1

)
= 2
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f
(
u13i−1z3i

)
= 8i− 5, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
u13iz3i+1

)
= 8i− 4, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
u13i+1z3i+2

)
= 8i− 1, 1 ≤ i ≤ a− 2

3
, a = 5, 8, 11, . . .

f
(
x3i−1y

1
3i−1

)
= 8i− 7, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
x3iy

1
3i

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
x3i+1y

1
3i+1

)
= 8i− 3, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
y13i−1z3i−1

)
= 8i− 6, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
y13iz3i

)
= 8i− 2, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
y13i+1z3i+1

)
= 8i− 2, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
x3i−1t

1
3i−2

)
= 8i− 7, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
x3it

1
3i−1

)
= 8i− 3, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
x3i+1t

1
3i

)
= 8i− 3, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
z3i−2t

1
3i−2

)
= 8i− 7, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
z3i−1t

1
3i−1

)
= 8i− 5, 1 ≤ i ≤ a+ 1

3
, a = 3, 6, 9, . . .

f
(
z3it

1
3i

)
= 8i− 3, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 11, . . .

Edge weights are shown below which can be seen that all weights are distinct

wt

(
xiw

1
i

)
= 8i− 3, wt

(
w1
i xi+1

)
= 8i− 1, wt

(
ziu

1
i

)
= 8i− 5

wt

(
u1i zi+1

)
= 8i− 2, wt

(
xiy

1
i

)
= 8i− 7, wt

(
y1i zi

)
= 8i− 6, wt

(
xi+1t

1
i

)
= 8i, wt

(
zit

1
i

)
= 8i− 4

Hence,

res
(
TL1

a

)
=

{ ⌈
8a−6
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−6
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

.
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Figure 3: PTL4

2.3. Reflexive edge strength with pendent edges of triangular ladder graph

Let PTLa be the pendent edges of the triangular ladder graph. It is formed by the vertex set V (PTLa) =
xi, 1 ≤ i ≤ a− 1, a ≥ 2

⋃
zi, 1 ≤ i ≤ a− 1, a ≥ 2

⋃
w1
i , 1 ≤ i ≤ a, a ≥ 1

⋃
zi, 1 ≤ i ≤ a, a ≥ 1 and

the edge set is E (PTLa) = {xixi+1, 1 ≤ i ≤ a−1, a ≥ 2}
⋃
{zizi+1, 1 ≤ i ≤ a−1, a ≥ 2}

⋃
{xi+1zi, 1 ≤

i ≤ a− 1, a ≥ 2}
⋃
{xiw1

i , 1 ≤ i ≤ a, a ≥ 1}
⋃
{ziu1i , 1 ≤ i ≤ a, a = 1, 2, 3, . . . }. Cardinality of edges

in PTLa is 6a− 3. See Figure 3.

Theorem 2.3. Let PTLa be the pendent edges of the triangular ladder graph, then

res (PTLa) =

{ ⌈
6a−3
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

6a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

Proof. Let PTLa be the pendent edges of triangular ladder graph then the lower bound of reflexive edge
strength is given by Lemma 2.1 is

res (PTLa) ≥

{ ⌈
|6a−3|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

6a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

To show that

res
(
TL1

a

)
≤


⌈
|6a−3|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

|6a−3|
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

We define a vertex labeling
f (x1) = 1, f (z1) = 1, f

(
w1
1

)
= 0

f (zi+1) = f (xi+1) = 2i− 1, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
w1
i+1

)
= 2i+ 2, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
u1i

)
= 2i, 1 ≤ i ≤ a, a = 1, 2, 3, . . .

And we define an edge labeling

f (x1x2) = 2, f (x1z1) = 2, f
(
x1w

1
1

)
= 1, f

(
z1u

1
1

)
= 1
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Figure 4: PTL1
4

f (xi+1xi+2) = 2i, 1 ≤ i ≤ a− 2, a = 3, 4, 5, . . .

f (zizi+1) = 2i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f (xi+1zi+1) = 2i, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

f
(
xi+1w

1
i+1

)
= f

(
zi+1u

1
i+1

)
= f (xi+1zi) = 2i− 1, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . .

Edge weights are shown below which can be seen that all weights are distinct

wt (xixi+1) = 6i, wt (zizi+1) = 6i−2, wt (xizi) = 6i−4, wt

(
xiw

1
i

)
= 6i−5, wt

(
ziu

1
i

)
= 6i−3, wt (xi+1zi) = 6i−1

Hence,

res (PTLa) =

{ ⌈
6a−3
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

6a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

.

2.4. Reflexive edge strength of sub-division of triangular ladder graph with pendent edges

Let PTL1
a be the one sub division of pendent edges of the triangular ladder graph. It is formed by the

vertex set
V
(
PTL1

a

)
= {xi, 1 ≤ i ≤ a − 1, a = 2, 3, 4, . . . }

⋃
{zi, 1 ≤ i ≤ a − 1, a = 2, 3, 4, . . . }

⋃
{wj

i , j =

1, 2, 1 ≤ i ≤ a, a = 1, 2, 3, . . . }
⋃
{uji , j = 1, 2, 1 ≤ i ≤ a, a = 1, 2, 3, . . . } and the edge set E

(
PTL1

a

)
=

{xixi+1, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . . }
⋃
{zizi+1, 1 ≤ i ≤ a− 1, a = 2, 3, 4, . . . }

⋃
{xi+1zi, 1 ≤ i ≤ a−

1, a = 2, 3, 4, . . . }
⋃
{xiw1

i , 1 ≤ i ≤ a, a = 1, 2, 3, . . . }
⋃
{w1

iw
2
i , 1 ≤ i ≤ a, a = 1, 2, 3, . . . }

⋃
{ziu1i , 1 ≤

i ≤ a, a = 1, 2, 3, . . . }
⋃
{u1iu2i , 1 ≤ i ≤ a, a = 1, 2, 3, . . . }. Cardinality of edges in PTL1

a is 8a − 3, see
Figure 4.

Theorem 2.4. Let PTL1
a be the one sub division of pendent edges of the triangular ladder graph, then

res
(
PTL1

a

)
=

{ ⌈
8a−3
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

Proof. Let PTL1
a be the one sub division of the pendent edges of triangular ladder graph then the lower

bound of reflexive edge strength is given by Lemma 2.1 is

res
(
PTL1

a

)
≥

{ ⌈
|8a−3|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)
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To show that

res
(
PTL1

a

)
≤


⌈
|8a−3|

3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

|8a−3|
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

We define a vertex labeling
f (x1) = 0, f (z1) = 0

f (x2i) = 5i, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f (x2i+1) = 5i+ 3, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f (z2i) = 5i, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
w1
2i+1

)
= 5i+ 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

f
(
w2
2i

)
= 5i− 2, f

(
w1
2i

)
= 5i− 1, 1 ≤ i ≤ a

2
, a = 2, 4, 6, . . .

f
(
w2
2i+1

)
= 5i+ 1, f (z2i+1) = 5i+ 3, 1 ≤ i ≤ n− 1

2
, n = 3, 5, 7, . . .

f
(
u11

)
= 0, f

(
u21

)
= 0, f

(
w2
1

)
= 0, f

(
w1
1

)
= 0

f
(
uj2i

)
= 5i, 1 ≤ i ≤ a

2
, j = 1, 2, a = 2, 4, 6, . . .

f
(
uj2i+1

)
= 5i+ 3, j = 1, 2, 1 ≤ i ≤ a− 1

2
, a = 3, 5, 7, . . .

And we define an edge labeling

f (xi+2xi+3) = 5i− 1, 1 ≤ i ≤ a− 3, a = 4, 5, 6, . . .

f (xi+3xi+4) = 5i+ 2, 1 ≤ i ≤ a− 4, a = 5, 6, 7, . . .

f (z1z2) = 3, f (z2z3) = 3, f (x1x2) = 1, f (x2x3) = 1

f (zi+2zi+3) = 5i+ 1, 1 ≤ i ≤ a− 3, a = 4, 5, 6, . . .

f (zi+3zi+4) = 5i+ 4, 1 ≤ i ≤ a− 4, a = 5, 6, 7, . . .

f
(
x1w

1
1

)
= 2, f

(
x2w

1
2

)
= 1, f

(
z1u

1
1

)
= 3, f

(
z2u

1
2

)
= 3, f (x1z1) = 3

f
(
xi+2w

1
i+2

)
= −2 + 5i, f

(
xi+3w

1
i+3

)
= 2 + 5i, f

(
zi+2u

1
i+2

)
= 5i + 1, f

(
zi+3u

1
i+3

)
= 5i + 4, 1 ≤ i ≤

a− 3, a = 4, 5, 6, . . .

f (x3i+1z3i+1) = 8i− 1, 1 ≤ i ≤ a+ 1

3
, a = 4, 7, 10, . . .

f (x3i−1z3i−1) = 8i− 7, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f (x3iz3i) = 8i− 5, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
w1
1w

2
1

)
= 1, f

(
u11u

2
1

)
= 5

f
(
w1
3i−1w

2
3i−1

)
= 8i− 6, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
w1
3iw

2
3i

)
= 8i− 4, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .
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f
(
w1
3i+1w

2
3i+1

)
= 8i, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

f
(
u13i−1u

2
3i−1

)
= −5 + 8i, 1 ≤ i ≤ a+ 1

3
, a = 2, 5, 8, . . .

f
(
u13iu

2
3i

)
= −3 + 8i, 1 ≤ i ≤ a

3
, a = 3, 6, 9, . . .

f
(
u13i+1u

2
3i+1

)
= 1 + 8i, 1 ≤ i ≤ a− 1

3
, a = 4, 7, 10, . . .

Edge weights are shown below which can be seen that all weights are distinct

wt (xixi+1) = 8i− 2, wt (zizi+1) = 8i, wt (xizi) = 8i− 5, wt

(
w1
iw

2
i

)
= 8i− 7

wt

(
xiw

1
i

)
= 8i− 6, wt

(
u1iu

2
i

)
= 8i− 3, wt

(
ziu

1
i

)
= 6i− 4, wt (xi+1zi) = 8i− 1

Hence,

res
(
PTL1

a

)
=

{ ⌈
8a−3
3

⌉
; |E| ̸≡2, 3 (mod 6)⌈

8a−3
3

⌉
+ 1; |E| ≡ 2, 3 (mod 6)

.

3. Conclusion

In this paper, we determine the previse value of reflexive edge strength of different families of subdivided
ladder graphs. In particular subdivided ladder graph Lb

a, subdivided triangular ladder graph TL1
a, and

triangular ladder graph PTL1
a with pendant vertices.
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