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Abstract

We provide a thorough examination of the graph energies in regular graphs that arise from the vertex
duplication process in this paper. Understanding the numerous structural components of graphs requires
understanding the thought of graph energy, known as a measurement obtained by computing eigenvalues
the adjacency matrix of a graph. We derived generalized closed-form expressions for a number of important
energy metrics, such as minimum degree, energy maximum degree energy, first Zagreb energy, second Zagreb
energy and degree square sum energy, utilizing proficient algebraic graph theory techniques and eigenvalue
spectrum analysis. Our work emphasizes on vertex duplication techniques and the impact they have on
these energy metrics, primarily on regular graphs, a basic class of graphs where every vertex has the same
degree. The resulting formulations offer further explanations for the behavior and attributes of these energy
functions within the framework of regular graphs, providing a more comprehensive knowledge of how these
operations affect the structural complexity of the graph. These findings greatly expand the conceptual
model of graph energy and have potential uses in fields like combinatorics, chemistry, and network analysis
where the energy models of graphs are extensively employed.

Keywords: Vertex duplication of graph, matrices, regular graph, minimum degree energy, maximum
degree energy, first Zagreb energy, second Zagreb energy, degree square sum energy, graph energy,
eigenvalues.
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1. Introduction

Spectral graph theory provides a powerful framework for analyzing the structure and properties of graphs
through matrix representations and their eigenvalues. Concepts such as graph energy, the characteristic
equation, the spectrum, and graph operations are central tools in this theory, offering deep insights into
various graph properties and applications in fields ranging from network science to quantum chemistry.
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In the context of molecular graphs, graph energy was initially developed in 1978 [I] and was used to
approximate the total m-electron energy of a molecule. Graph energy, derived from the eigenvalues of the
adjacency matrix, provides a useful measure of a graph’s structure. Through graph operations, the energy
of more complex graphs can be calculated, offering insights into their properties and applications in various
fields. A key idea in linear algebra, especially when studying matrices and linear transformations, is the
characteristic equation.The characteristic equation is derived from a square matrix

det(nl — A) =0,

where 7 represents an eigenvalue of A(G) and I is the identity matrix. A method for determining a matrix’s
eigenvalues is provided by the characteristic equation. Understanding the behavior of differential equation
systems and linear transformations requires an understanding of eigenvalues. The eigenvalues of the graph
change when a vertex is duplicated, and this, in turn, affects the energy of the graph. Since graph energy
E(QG) is the sum of the absolute values of the eigenvalues, duplicating a vertex is typically used to increase
the graph energy. The exact impact on the spectrum and energy depends on the specific structure of
the graph and the vertex being duplicated. For instance, duplicating a highly connected vertex (i.e., a
vertex with many neighbors) tends to have a larger effect on the spectrum than duplicating an isolated
or less connected vertex.The spectrum can provide crucial information about the properties of the matrix,
such as stability, invertibility, and the nature of its associated dynamical systems [2]. Eigenvalues play a
vital role in various applications across mathematics, physics, and engineering, including stability analysis,
vibrations analysis, and quantum mechanics, where they represent measurable quantities like energy levels.
The study of eigenvalues and spectra extends to infinite-dimensional spaces and operators in functional
analysis, leading to rich theoretical developments and applications in fields such as quantum mechanics
and differential equations.Understanding the concepts of eigenvalues and spectra is essential for further
exploration of linear algebra, differential equations, and their numerous applications in both theoretical and
applied contexts.

In network design, duplicating critical nodes (vertices) can provide fault tolerance. If one node fails,
its duplicate can maintain network connectivity. Vertex duplication in communication or transportation
networks can improve reliability by creating alternative routes for data or traffic in case of node failures.
Vertex duplication can help identify overlapping communities. By duplicating nodes that connect different
communities, researchers can analyze connections between groups more effectively. In biological networks,
vertex duplication is used to model gene duplication events in evolutionary biology. Duplicating a gene
vertex and its interactions allows researchers to study how duplicate genes evolve different functions over
time. In biological networks, vertex duplication is used to model gene duplication events in evolutionary
biology. Duplicating a gene vertex and its interactions allows researchers to study how duplicate genes evolve
different functions over time. The connection between energy and Sombor energy of the m-splitting graph
and the m-shadow graph of the k-regular graph was discovered by the author in [3]. The author presented
the partition energy of an m-splitting graph and their generalized complements in [4]. A statistical overview
of graph energies research and applications may be found in [5]. The author of [6] computed the graph
energy of particular graph operations using block matrix partition. Results for m-splitting and m-shadow of
a graph energy of a graph are provided by the author in [7]. In [§], Kousar and Nazeer presented findings for
multiple graph energies of both complete graph and regular subdivision graphs. Maximum and minimum
energy of p-splitting and p-shadow graphs as a multiple of maximum and minimum energy of graph G were
reported by Rao and Srinivasa in [9]. The Randié energy of an m-splitting graph, m-shadow graph, and
m-duplicate graph of a given graph are computed in [I0]. For notations and fundamental definitions, we
refer to the readers [11, 12, [13].

The structure of this article is as follows: Basic definitions of various graph energies are provided in
Section 2. Section 3 gives the result of the maximum degree energy, minimum degree energy, first Zagreb
energy, second Zagreb energy and degree square sum energy of regular graph for vertex duplication.
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2. Preliminaries

The adjacency matrix A(G) of a graph G with n vertices wi, ws, ..., w, is an n X n matrix where each
entry a;; is given by [14]
o 1, if w;w; € E(G)
i = 0, otherwise.

The energy E(G) of the graph G is defined as [15]:
E(G) =Y |ml,
i=1

where the adjacency matrix A(G)’s eigenvalues are 11,72, ..., 7.
The characteristic polynomial of a matrix A(G) is given by [1]

pa(n) = det(A —nl)

where 7 is a scalar and [ is the identity matrix of the same dimension as A(G). The roots of ¢4(n) = 0 are
the eigenvalues of A(G).
Given a graph G, its spectrum is given as

Spec(G):(m N2 ... 77n>.

my; Mo ... Mp

We define the vertex duplication of a graph G, denoted by G, as the graph obtained by duplicating each
vertex of G [16]. Duplication of a vertex wy by a new edge e = w'w” in a graph G produces a new graph
G1 such that N(w') = wg,w” and N(w") = {wg, w'}.
The matrix of maximum degree M.(G) = [M;;] Of G, is described as [17]
dy,,dy.), if wyw; € E(G
(M| = {maac( wi> dw;), it wiw; € E(Q)

0, otherwise

For a simple connected graph G, the author defined the maximum degree energy M (G) as the sum of the
absolute values of the eigenvalues of the maximum degree matrix M;; of G. The minimum degree matrix
me(G) = [my;] of G is defined as [1§]

min(dy,, dw,), if ww; € E(G)
[m”] = * J .
0, otherwise

The sum of the absolute values of the eigenvalues of the minimum degree matrix mj;; of a simple connected
graph G is the minimal degree energy m(G) of G. In [19] using the first and second Zagreb topological indices,
Gutman introduced the First Zagreb Energy and Second Zagreb Energy. A simple connected graph G’s
first Zagreb energy ZFj is defined as the sum of the absolute values of the first Zagreb matrix’s eigenvalues.
ZW(@) of G where ZW(G) = [zl(jl)] and
L) _ {dwi tdy, if ww; € B(G)

K 0, otherwise

A simple connected graph G’s second Zagreb energy ZFs is equal to the sum of the absolute values of its
second Zagreb matrix’s Z(®) (@) eigenvalues of G where Z)(G) = [zg)] and

Z(Q) _ dwi.dwj, if w;wW; € E(G)
K 0, otherwise
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According to [20], the degree square sum energy Epss(G) of a simple connected graph G is defined as the sum
of the absolute values of the eigenvalues of the degree square sum matrix DSS(G). Here DSS(G) = [dssi;]
where

d2 +d2,, if wiw; € E(G)
dSSZ‘j = ¢ 7 .
0, otherwise

Let C € R™*" D € RP*4. Then the Kronecker product (or tensor product) of C' and D is defined as the
matrix

CllD e ClnD
C®D= . :
cm1D - cpnD
Proposition 2.1. [2]] If X € R™"™ and Y € R™™" be invertible matrices then
(XeY)l=x"1tey!
Proposition 2.2. [22, [2]] Let M, N, P,Q € be matrices, Q be invertible and
M N

s=|% a

Then,
det(S) = det [Q] .det [M — NQ™'P].

3. Main Results

3.1. Mazimum Degree Energy of Vertex Duplication of Regular Graph

The maximum degree energy of vertex duplication is shown in this section in terms of the adjacency ma-
trix’s eigenvalues for a regular graph G. An example of vertex duplication of Cy is provided for explanation.

Theorem 3.1. The mazimum degree energy Epn(G1) of the vertex-duplicated graph Gy of a given t-regular
graph G, where n; are the eigenvalues of A(G), is given as:

Eyn(Gy) =2n+ > VI(t+2)mi + 22 — 420+ 2)m — 2(t+2)% + D _[(t+2)mi +2)]-
17: <3 ;>3

Proof. Consider a connected, undirected, simple t-regular graph G with n vertices and m edges. Subse-
quently, the incidence matrix B(G) and adjacency matrix A(G) are provided by

Wi Wy W3 - Wy
wi 0 a2 a3z -+ amn
AC wy a1 0 a3 -+ aoy
(G) = w3 a3z; azx 0 asp | °
|Wn Qnl Gp2 Qnp3 - 0 |
i wi wl wi wl w, wl
w; 1 1 0 0 0 0
B(G)=|w2 0 0 1 1 0 0
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We duplicate the vertices wy, ws, ..., w, all together by the edges ey, e, ..., ey,, respectively, such that:
/ /! / 1 / !
€1 = wwq, €2 = WoWy, ceey En = W, Wy,

to obtain graph G1. The following is the maximum degree matrix of Gy in terms of block matrices:

i w1 w2 s Wn, wy wy wh wy T wy, wy,
w1 0 (t+2)ax -+ (t+2)a, (E+2) (t+2) 0 0 e 0 0
wy  (t4+2)an  (t+2)ans 0 0 0 0 0 (t+2) (t+2)
w42 0 0 0 2 0 0 0 0
M(Gy) = w!  (t+2) 0 0 2 0 0 0 0 0
w) 0 (t+2) 0 0 0 0 2 0 0
wy 0 (t+2) 0 0 0 2 0 0 0
:/ . . T . .
w!, 0 0 e (t+2) 0 0 0 0 e 0 2
| w!! 0 0 e (t+2) 0 0 0 0 2 0 |
That is
M(Gy) = (t+2)A(G) (t+2)B(G)
(t+2)BT(G) I,®24(K))|’

The characteristic polynomial ¢(G1, z), which is provided by, is first computed in order to find the eigenvalues
of M(Gl)
d(Gy, z) = det(zI3, — M(Gy)).

The block matrix determinant formula allows us to have:

2, — (t+2)A(G) (t+2)B(G)

¢(G1,2) = (t+2)BT(G) I, ® (212 — 2A(K3))

By taking into account the block matrix’s structure, this can be made simpler

B(G1,2) =|In ® (2Iz — 2A(K2)) | |2In — (t + 2)A(G) — (t + 2)B(G) (I ® 2l — 2A(K2)) 7} (t + 2) BT(G)|
=(2* = 4)" |l — (t + 2)A(G) — G BAELDAKIOME () ‘

22—4

=|(z% = 4) (2l — (t +2)A(G)) — (t + 2)?B(G)(211 + 2A(K3) ® I,) BT(G)] .

Now,
1o o Sy [2 200 0 0\ /1 0 0
0110 C o)z s 00 0ool|ll1 o0 0
00 2 2 0o ofllo 1 0
oo 1 00

B((2I + 2A4(K»)) @ I,,) BT = ' 00 2 2 0 o0llo 1 0
8888 iioooo-z 00 1
000 0 2 00 ]

10 0

242 242 0 0 - 0 L0 0

0 0 242 242 - 0 01 0

= . . . . . 01 0

0 0 0 0 - 242 ; :
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22 +4 0 0 0
0 2z +4 0 0
= 0 0 2244 - 0
0 0 0 e 2244
= 2z +4)1,.

Continuing the theorem’s proof
$(G1,2) = |(2°
= ](z:2 —4) (20, — (t+2)A(Q)) — (t +2)%(2z + 4)In| :

In the situation 7; represents the eigenvalues of A(G), with i =1,2,....,n

n

#(G1,z) = H (22— 4)(z — (t+2)m;) — (t +2)%(22 + 4)]

—.

Il
MR

=(z+4+2)" [(z —2)(z=(t+2)m) —2(t+ 2)2]

7

= (z+2)"

.

s
I
—

[(z = 2)(z — (t+2)m) — 2(t + 2)°

=

= (z+2)" | [1(z* = 2(t + 2)m; — 22 + 2(t + 2)m; — 2(t + 2)7)].

.
=

The characteristic polynomial above has the following roots:

2 = —2(n-times), 2= (t 4 2)m; + 2 + /[t + 2)m; + 22 — 4[2(t + 2)m; — 2(t + 2)?]
T 2

For each i =1,2,...,n.

-2 o1... Qg

n 1 1
Spec(M(Gl)): a3 O04... Of

11 1
where
oy — T 2m 24 VI + 2y + 2 — 4R+ 2)m — 2t + 2
5 ,
g — (t+ 2000 + 2+ /[t +2)n, + 22 — 412(t + 2)n, — 2(t + 2)?]
5 ;
s — (t+2)m +2— /[t +2)m + 22— 4[2(¢t + 2)m — 2(t + 2)?]
5 ,
_ (¢ 2)m422 — /[(+ 2)m + 22 — 4[2(¢ + 2)m2 — 2(¢ + 2)7]
2 )
and

o — (t+2)nn 4+ 2 — /[(t + 2)nn + 2] — 412t + 2)n, — 2(t + 2)?]
5 :

—4)(2I, — (t+2)A(Q)) — (t+ 2)2B(G) (2L, + 2A(K») ® 1,) BT (G)|.



A. Ibrahim, S. Nazeer, Journal of Prime Research in Mathematics, 20(2) (2024), 93-116 99

The calculation of energy considers only positive eigenvalues. For the graph under consideration, the

positivity of eigenvalues depends upon the value ((t+2)n1+2)—/[(t + 2)m1 + 2]2 — 4[2(¢ + 2)m — 2(t + 2)2].
This gives rise to the following two possibilities:

(r+2)m +2) < V/[(t+2)ms + 22 — 4[2(t + 2)m; — 2(t +2)2] ifm; < 3

((t +2)m; +2) 2 V/[(t +2)m; + 22 — 4[2(¢ + 2)m; — 2t +2)7] ifr; >3

Here,

3n
En(G1) = Inil
i=1

n

:zn:|—2|+z

=1

((t+2)m +2) + VIt +2)m + 212 — 4[2(t + 2)m; — 2(¢ + 2)?]
2

n

2

=1

((t+2)m; +2) — /[t +2)mi + 212 — 4[2(¢ + 2)m; — 2(¢ + 2)7]
2

n

EM(Gl):Z|_2|+Z
i=1

7:<3

((t+2)mi +2) + /[t + 2)m; + 22 — 4[2(t + 2)m; — 2(¢ + 2)?]
2

VG +2)m 22 — 420t + 2)m = 20+ 2)] = ((+ 2)mi +2)
2

n

2

17:>3
(2 +2) /[ 2+ 2 — AR 2 — 20+ 2P((¢ + 2 +9)
2

=20+ Y VIt +2)m + 27 — 420t +2)m — 20t +2)2 + D _[(t+2)mi +2)].
7:<3 ;>3

((t+2)m; +2) + /[(t+2)m; + 22 — 4[2(t + 2)m; — 2(¢ + 2)?]
2

This concludes the theorem’s proof O

INlustration 3.1. Let us consider cycle Cy and a graph (let’s say G1) produced by duplicating every vertex

in each edge of Cy.
-2 0 2
Spec(Cy) = < 1 o 1)

(a) Cy (b) G1

Figure 1: Vertex Duplication of C4
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wy we wy wg wp w] wh wi wh; wi w) wf
wp 0 4 0 4 4 4 0 0 0 0 0 O
w 4 0 4 0 O 0 4 4 0 0 0 O
w3 0 4 0 4 0 O O O 4 4 0 O
wy 4 0 4 0 O O O O O 0 4 4
wy 4 0 0 0O 0O 2 0 0 0 0 0 O
MG)=|wf 4 0 0 0 2 0 0 0 0 0 0 ©0
wy 0 4 0 0O 0O O O 2 0 0 0 O
wy 0 4 0 0 0 O 2 0 0 0 0 O
wy 0 0 4 0 0O 0O O O O 2 0 O
wg 0 0 4 0 0 O O O 2 0 0 O
wy 0 0 O 4 0 O O O O O 0 2
wy 0 0 O 4 0 O O O O 0 2 0
Spec(M(Gy)) = ( 10.15489 4.;446 42 1.111031 4.5;198 6.7;146 11.%031) '
Table 1:
spectrum of C4 | spectrum of M(G’) = (t+2)77i+2i\/[(t+2)77i+22]2_4[2(t+2)77i_2(t+2)2]
m = —2 V228
N2 =2 V164
n3 =0 132, /132

En(Gy) = 58.8842.

8.2. Minimum Degree Energy of Vertex Duplication of Regular Graph

In terms of the adjacency matrix’s eigenvalues, the minimal degree energy of vertex duplication of a
regular graph G is presented in this section. Vertex duplication of Cy is given as an example.

Theorem 3.2. The minimum degree energy E,(G1) of the vertex-duplicated graph G1 of a given t-regular
graph G, where (; are the eigenvalues of A(G), is given as:

En(G1)=2n+ ) V[t +2)G+2% - 420t +2)G — =8 + Y _[(t +2)¢ +2)]-

Gi<1 Gi>1

Proof. Let G be a simple, undirected, and connected t-regular graph with n vertices, and m edges. Then,
the adjacency matrix A(G) and incidence matrix B(G) are given by

[ Wi Wy W3 oo Wy
wi 0 a2 a3z -+ amn
A(C wy a1 0 a3 -+ aoy
(G) = w3 a3z; azxx 0 asp | °
| Wn Anl Gp2 Aap3 - 0 ]
I wi wi wi wl \
wip 1 1 0 0 0 0
B(G) = | W2 0 0 1 1 0 0
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We duplicate the vertices wy, ws, ..., w, all together by the edges ey, e, ..., ey,, respectively, such that:
/ " / 1 / "
el = wlwl, €9 = w2w2, ey Cpn = wnwn

to obtain graph G;. The minimum degree matrix of (G1 is given in terms of block matrices as follows:

r / / 117

w1 w2 e Wn wy wi owy owhy o wy, wy
w 0 (t+2)aiz -+ (t+2ay, 2 2 0 0 --- 0 0
wy  (t+ 2)an 0 o (t4+2az, 0 0 2 2 .o 0 0
Wy (t+2)anr (4 2)an2 0 0O 0 0 0 2 2
/
! 2 0 0 0 2 0 0 0 0
m(Gr) = | 2 0 0 2 0 0 0 0 0
w) 0 2 0 0 0 0 2 0 0
w!! 0 2 0 0 0 2 0 0 0
w, 0 2 0 0 0 0 2
| w! 0 2 0 0 0 2 0]

e (t+24C)  2B(C)
[t +2)AG 2B(G
m(Gh) = [ 2B7(G) In®2A(K2)] ’
Calculating the characteristic polynomial ¢(G1, z) is the first step towards determining the eigenvalues of
m(G1)
d(Gy, z) = det(zI3, — m(Gy)).

Applying the formula for the block matrix determinant, we have:

6(Gh, 2) = zI, — (t+2)A(G) 2B(G)
L= 2B7(G) I, ® (21, — 2A(K))|
By taking into account the block matrix’s structure, this can be made simpler:
P(G1,2) = |Ih® (2l —2A(K2))| |21, — (t + 2)A(G) — 2B(G) (I, ® 21y — 2A(K3)) 2B (G))|
= (=" ek (t + DA(G) ~ EOLHAEISLET(G)

= |(22=4) (21, — (t+2)A(G)) — 4B(G) (22 + 2A(K2) © 1,) BT (@) .

Now,
1o o SN [7 200 0 0\ /1 0 0
0110 0ol [z s 00 00|10 0
00 2 2 00|01 0
oo 0 0
B (2L + 2A(K2)) ® L) BT = ' 00 2 2 00|01 0
P L)oo oo = 2] {0 0 1
0000 2 2] \o 0 1
10 0
242 242 0 0 - 0o\ |}" 0
0 0 242 z+2 o o |2} 0
- 0 e "o 1 0
0 0 0 0 o z+2 ; :
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22+ 4 0 0 0
0 2z +4 0 0
= 0 0 22+4 - 0
0 0 0 e 2244
=(2z+4)I,.

Continuing proof of theorem

O(G1,2) = (2% = 4) (2, — (t + 2)A(G)) — 4B(G) (212 + 2A(K>) ® I,) BT (G))|
=[(z2 = 4) (2], — (t +2)A(G)) — 42z + 4)1,,] .

Given that ¢;, where i = 1,2, ...,n, is the eigenvalue of A(G)

n

¢(Gr,2) =[] [(z* - Dz — (t+2)¢) — 4(2z + 4)]

=1

=

@
Il
i

=(z+2)" ] 1(z=2)(z = (t+2)G:) — 8

=

@
Il
—_

=(=z+2)"|]lz-2)(z = (t+2)G) -8

(2% — 2(t +2)¢ — 22+ 2(t +2)¢; — 8]

=

@
I
—

—(z+2)"

The characteristic polynomial mentioned above has the roots

(t+2)¢G 42+ /[(t+2)¢ + 212 — 4[2(t + 2)¢ — 8]
: .

z=—=2(n— —times), z=

For each i =1,2,...,n.
—2 a1... Q9

Spec(m(Gy)) = " 1 !
a3  O4... Q5
111
where
o — (t+2)¢ +2+ V[t +2)¢ + 2% — 4)2(t +2)G —§]
5 ,
_ (#+2)G+ 2+ V[t +2)Gn + 2 — 4[2(t + 2)Ga — 8]
5 ,
oy — (t+2)G +2 = V[t +2)G + 27 - 42(t +2)¢1 — §]
5 ,
_ (4 2)G 42— VIt +2)¢ + 22 — 4[2(¢ + 2)¢ — 8]
5 7
and

(t+2)C +2— /[t +2)¢n + 22 — 42( + 2)(, — 8]
. .
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Energy is calculated with only positive eigenvalues taken into account. The positivity of the eigenvalues
for the graph in question is dependent upon the value ((t +2)¢; +2) — /[(t +2)¢ + 2]2 — 4[2(t + 2)¢ — 8].
This gives rise to the following two possibilities:

(r+2)G+2) > V][{t+2)¢G+ 22 —4)2(t +2)¢ — 8] if¢ > 1,

(t+2)G+2) < VI[E+2)G+ 212 —42(t +2)¢ — 8] if ¢ < 1.

Here,

3n

En(Gh) = Z |Gil

=1

n

_z::y—zerZ

i=1

((t+2)¢ +2) + V[t +2)¢ + 22 — 412(t + 2)¢ — 8§
2

n

2

i=1

(t+2)¢+2) — V[t +2)¢ + 212 — 412(¢ + 2)¢ — 8§
2

En(Gy) = Z | — 2|+ Z ’((t+2)Cz‘+2)+\/[(t+2)2§¢+2]2*4[2(t+2)CF8] + \/[(t+2)C¢+2]2*4[2(@2)@*8]*((t+2)Ci+2)

_i:lz": ((t +C2<)1< +2) + V[t +2)G +22]2 —4[2(t +2)G — 2(t +2)]
j(i 2)G+2) — VIt +2)G+ 2 — ;1[2@ +2)G =20+ 2)2((t+2)G +2)
=2+ > VIt +2)G+ 27 —42(t+2)G — 8]+ D _[(t+2)¢ + 2)).
i<1 =
The theorem’s ;roof is now complete. C O

Ilustration 3.2. Examine cycle Cy and a graph (let’s say 1) created by duplicating every vertex by edge
in Cy, as illustrated in Figure
-2 0 2
Spec(Cy) = ( 1 9 1)

w; wy wy wg wp w] wh wi wi wi wj w]
wp 0 4 0 4 2 2 0 0 0 0 0 O
wy 4 0 4 0 O O 2 2 0 0 0 O
w3 0 4 0 4 0 O O 0 2 2 0 O
wge 4 0 4 0 0O O O O O 0 2 2
wy 2 0 0 0 0O 2 0 0 0 0 0 O
mG)=|w/ 2 0 0 0 2 0 0 0 0 0 0 0
wy 02 0 0 0 0O 0 2 0 0 0 O
wy 0 2 0 0 0 0 2 0 0 0 0 O
wy 00 2 0 0 0 O 0 0 2 0 O
wy 0 0 2 0 0 0O 0O 0 2 0 0 0
wy 0 0 O 2 0 0 O 0 0 0 0 2
wy 0 0 0O 2 0 0O 0O 0 0 0 2 0
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—8.7446 —2 0.8769 2.7446 4 9.1231
Spec(m(Gﬂ)—( 1 6 1 1 5 1 )

Enm(G) = 41.4891.

Table 2:
spectrum of Cy | spectrum of m(G;) = (t+2)Ci+2E/[(t+2) ¢ +2]2—4[2(t+2)(; —8]
2
G =-2 —8.7446,2.7446
G2=0 —2,4
(3=2 0.8769,9.1231

3.8. First Zagreb Energy of Vertex Duplication of Regular Graph

The first Zagreb energy of vertex duplication of a regular graph G is presented in this section using
the eigenvalues of the graph’s adjacency matrix. An example of vertex duplication of Cy is provided for
understanding.

Theorem 3.3. Given a t-reqular graph G, its vertex-duplicated graph G1, where n; are the eigenvalues of
A(G), the first Zagreb energy ZFE1(G1) is given as:

ZE\(Gr) =4n+ Y V@t +4)mi + 42 =822t + 4)mi — (t+4)2 + Y [(2t+ ) +4].
;<2 ni>3

Proof. Let G be a simple, undirected, and connected t-regular graph with n vertices, and m edges. Then,
the adjacency matrix A(G) and incidence matrix B(G) are given by

Wi W3 W3 W,
W1 0 a2 a13 A1n
wy a1 0 ass aonp
AG) = |wy ag a0 azp |
| Wn  anl Gp2 Gap3 - 0 ]
oW W W W, W
w; 1 1 0 o --- 0 0
BG) = |w2 0 0 1 1 0 0
w, 0 0 0 0 11|

We duplicate the vertices wy, ws, ..., w, all together by the edges ey, e, ..., e,, respectively, such that:

_ /) _ AW/ _ / "
el—wlwl, 62—11)2'11}2, ceey en—w

to obtain graph G1. n terms of block matrices, the first Zagreb matrix of G is provided as follows:

zY(G1) =

Mwy
w1
w2

wa
0
(2t +4)az

(2t +4)an1
(t+4)
(t+4)

0
0

o

(2t + 4)aq2
0

(2t +4)an2
0

0
(t+4)
(t+4)

Wn,

w)
(2t +4)ain
(2t 4+ 4)azn,

(t+4)
(t + 4)

wy/
(t+4)
0

w)
(t +4)
0

1"
w

2
0
(t+4)

=
(t+4)

"
Wn

0 0
0 0
(t+4) (@44
0 0
0 0

0
0

o o
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That is
(Gh) = (2t +4)A(G) (t+4)B(G)
VTt +4)BT(G) I, ®4A(Ks)|’
The characteristic polynomial ¢(G1, z) is first computed in order to obtain the eigenvalues of Z1(G1):

gf)(Gl, Z) == det(Zlgn - Zl(Gl))

Applying the formula for the block matrix determinant, we have:

¢(G17 Z) =

zI, — (2t + 4)A(G) (t +4)B(G)
(t+4)BT(G) I, @ (21 — 4A(K2))‘ '

Taking into account the block matrix’s structure will simplify this:
O(G1,2) = |I, @ (zIy — 4A(K2))| |2In — (2t + 4)A(G) — (t + 4) B(G) (I, ® zI — 4A(K3)) "} (t + 4) BT (G))|
—(z2 —16)" |21, — (2t + 4)A(G) — (t+4)QB(G)(212+4A(K2)®In)BT(G)‘

22-16
=|[(22 = 16)(21, — (2t + ) A(G)) — (t + 4)*B(G)(z12 + 4A(K2) ® I,) BT (G)| .

Now,
1100 0 0 z 4 0 0 00 10 0
4 2z 00 0 0 10 0
01 10 0 0
00 =z 4 00 0 1 0
T 00 11 00 0 0 4 00 0 1 0
B ((zIs + 4A(Ky)) ® I,,) B = ) z
8 8 8 8 1 1 0 00O - z 0 1
0 00O 4 z 0 1
10 0
z+4 z+4 0 0 0 (1) (1) 8
A | TR
0 0 0 0 z+4 00 . 1
0 0 1
22 +8 0 0 0
0 2z +8 0 0
- 0 0 2248 0
0 0 0 2z + 8
(22 +8)1,
Continuing proof of theorem
P(G1,2) = | (22 = 16) (2, — (2t + 4)A(G)) — (t +4)?B(G) (212 + 4A(K2) ® I,) BT (G)|

= [(2% = 16) (21, — (2t + 4)A(G)) — (t +4)%(22 + 8) L] .

Given that the eigenvalues of A(G) are 7;, where i = 1,2,...,n

#(Gy, 2) f[ (22 —16)(2 — (2t + 4)m;) — (t +4)*(22 + 8)]
=1
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= (z+ )" [] [z = 0)(z = 2t + 9)ms) — 2(t +4)]
=1
= (z+ 9" []I(z = 9)(z — (2t + Dm) — 2(t +4)?]
=1
= (z+4)" ﬁ[ZQ — 2(2t + 4)n; — 4z + 42t + 4)m; — 2(t + 4)7].

@
Il
=

The characteristic polynomial mentioned above has the following roots

(24 + 4 + 4 /(20 + Dy + 47 = SRE+ D — (4

z = —4(n — —times), z= 5
For each i =1,2,....n.
—4 a1... Q9
n 1 1
Spec(m(Gh)) = a3 Q4... Qs
11 1
where
NG U VIt 4 + 42 - 8[2(2t + 4)m — (t + 4)?]
1= 5
2
o = 2t + 4+ V[t + o + 47 — 8[2(2 + ) — (¢ +4)°]
2 = ;
2
B T e VIt + 4 + 42 — 8[2(2t + 4)m — (¢ + 4)?]
3 = )
2
G VIt +4)ne + 42 = 8[2(2t + 4)mg — (t + 4)7]
4 = )
2
and
e 2+ d)ny 44— VIt +4)no + 42 — 8[2(2t + 4)ny — (t + 4)2]
5= .

2

Energy is calculated with only positive eigenvalues taken into account. The positivity of the eigenvalues for
the graph in question is dependent upon the value [(2t-+4)n;+4]—+/[(2t + 4)m; + 4]2 — 8[2(2t + 4)m; — (t + 4)2].
This gives rise to the following two possibilities:

(2t + 4)m; + 4] < /[(2t +4)m; +4]2 — 8[2(2t + 4)m; — (t +4)2] ifny; < 2.

(2t + 4)n; + 4] > V[(2t + 4)m; +4]2 — 8[2(2t + 4)m; — (t +4)2] ifn; > 3.

Here,
3n
ZE1(Gh) =) Inil
i=1

DOIEISS

i=1 i=1
(12t + ) + 4] — VIR + D+ 42 - 822t + i — (E+4)7]

+Z 5

=1

[(2t + )i + 4] + V1t + D + 4 — 822t + D — (t +4)7]
2
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ZE((G1) =) | 4|
i=1

+ Z [(t+)ni+4]++/[(2t+4)mi +4]2 —8[2(2t+4)n; — (t+4)?] n \/[(2t+4)77i+4]2—8[2(2t+4)m—(t+4)2]—[(2t+4)ni+4}‘
2 2
ni<2

+3 ’[(2t+4)m+4]+\/[(2t+4)m+4]2—8[2(2t+4)77i—(t+4)2] | [t - [OE A 47 =8Pt A (1)
2 2

ni>3
=dn+ > V@t +4)n + 42 — 822t + )i — (E+ 42+ Y _[(2t + 4)mi +4].
;<2 ni>3
Now the theorem is fully proved. O

Illustration 3.3. Let us examine cycle Cy and a graph (let’s say G1) that is derived from Cy by duplicating
every vertex by edge, as illustrated in Figure

-2 0 2
Spec(C’4):<1 5 1)

wy Wy w3 o wll wlll w/2 1 / 4 / "

8 0 8 6 6

A
g
w
g
w
g
W~
g
~

[en}
[an)
[an}
[an}
[es}

ZHG) = | wy

S OO R OO ODODOD™
SO OO kOO OO OO
Ok OO OO OO OO
SO R OO OO O OO
DO DD OO OO OO O
_ o O O OO oo o O

O OO OO OO O oo
O O OO oo O OO o
O OO O O OO O o
DO O OO OO OO wo
O O OO OO OO oo
O OO OO OO kO oo

(e
(e
(e
(e
W~
o

—19.1149 —6.7178 —4 —0.3923 7.1149 10.7178 20.3923
Spec(Zl(Gl)):< 1 2 4 1 1 2 1 >

ZEy(Gy) = 97.8856.

Table 3:
spectrum of Cy | spectrum of Z1(Gy) = (2t+4)m+4i\/[(2t+4)ni-§4]2—8[2(2t+4)77i—(t+4)2]
n = —2 —7.1149, —19.1149
ne=0 —0.3923,20.3923

N3 =2 —6.7178,10.7178
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8.4. Second Zagreb Energy of Vertex Duplication of Regular Graph

The second Zagreb energy of vertex duplication of a regular graph G is presented in this section using
the eigenvalues of the graph’s adjacency matrix. An example of vertex duplication of Cy is provided for
understanding.

Theorem 3.4. The second Zagreb energy ZFE2(G1) of the vertex-duplicated graph Gi of a given t-regular
graph G, where (; are the eigenvalues of A(G), is given as:

ZEy(Gr) =4n+ > /I(t+2)%n; + 42 = 8[2(t + 2)2¢; — (2t +4)2 + > _[(t+2)°G +4].
ni<2 Gi>2

Proof. Let G be a connected, simple, undirected t-regular graph with n vertices and m edges. Subsequently,
the incidence matrix B(G) and adjacency matrix A(G) are obtained by

w1 W2 W3 - Wp
W1 0 a2 aig -+ Qlp
wy a1 0 ags -+ ag,
A(G) = w3 az azz 0 - agy|”
| Wn Anl Gp2 AaAn3 - 0 |
I wi wl wl wl wi w!
wip 1 1 0 O 0 0
B(G)=|w2 0 0 1 1 0 0
lw, 0 0 0 O 1 1
We duplicate the vertices wy, ws, ..., w, all together by the edges ey, e, ..., ey,, respectively, such that:
e = wiw, e =whwh, ..., e, =wlw)

to obtain graph G. In terms of block matrices, the second Zagreb matrix of G is provided as follows:

’ 1" ’ ’

wn 0 G+ 2%12 o (42%a. @44 @44 O o B 0
wo  (t+2)%ag; 0 o (t+2)2%a0n 0 0 (2t +4) (2t +4) 0 0
wy, (t+ 2§2a,L1 (t+ 2-)2%2 0 0 0 0 0 (2t n 1) (2t n 1)
22(Gy) = w}’l (2t +4) 0 0 0 4 0 0 0 0
= w}/ (2t + 4) 0 0 4 0 0 0 0 0
wh 0 (2t + 4) 0 0 0 0 4 0 0
wl 0 (2t + 4) 0 0 0 4 0 0 0
W’ 0 0 e @ttt 0 0 0 0 0 4
wh 0 0 (2t + 4) 0 0 0 0 4 0
That is
22(Gy) = (t+2)*A(G) (2t+4)B(G)
(2t +4)BT(GQ) I, ®4A(Ky) |’

The characteristic polynomial ¢(G1, 2) is first computed in order to obtain the eigenvalues of Z2(G1). This
is provided by:
¢(G1,2) = det(z13, — Z*(G1)).

Using the block matrix determinant formula, we have:

zI, — (t +2)2A(G) (2t +4)B(G)

¢(G1,2) = (2t +4)BT(G) I, ® (2l — 4A(K>))
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Taking into account the block matrix’s structure will simplify this:
B(G1,2) =1 ® (213 — 4A(K2)) | |2In — (t + 2)?A(G) — (2t + 4)B(G) (I ® 212 — 4A(K2)) ' (2t + 4)BT(G)|

=(2 = 16)" |2, — (1 + 2PA(G) — CHEBACL U000 BIG)|

=|[(2% = 16)(21,, — (t +2)?A(G)) — (2t + 4)?B(G)(2z + 4A(K3) ® I,) BT(G)] .

Now,
110 0 0 0 z 4 00 0 0 10 0
011 0 0 0 4 2 0 0 0 0 10 0
0 0 2 4 0 0 0 1 0
- 0 11 0 0
B((zIs + 4A(Ks)) ® I,) B' = o 0 0 4 =z 0 0 01 0
8 8 8 8 1 } 0O 000 - z 0 1
0 00O 4 z 0 1
10 0
44 244 00 0 10 0
0 0 z+4 244 0 01 0
= . . 0 1 0
0 0 0 0 z+4 0 0 )
0 0 1
2248 0 0 0
0 22+ 8 0 0
— 0 0 22+ 8 0
0 0 0 22+ 8

= (22 + 8)I,.
Continuing the theorem’s proof
¢(G1,2) = [(2% = 16) (21, — (t + 2)2A(G)) — (t + 4)*B(G) (212 + 4A(K3) @ I,) BT(G)|
= [(22 = 16)(21,, — (t +2)?A(G)) — (2t + 4)%(2z + 8)I,| .
Civen that the eigenvalue of A(G) is (;, where i = 1,2, ...,n
#(G1,2) = ﬂ (22 —16)(z — (t+2)°¢) — (2t +4)*(22 + 8)]
=1

= (24"

.

-
l
—

[(z = 4)(z = (t+2)°G) — 2(2t + 4)°]

=+ "z -4z - t+2)72¢) — 22t +4)7

—.

w
Il
—

= (z+ )" [1(z* — 2(t +2)%G — 42 + 4(t +2)%¢; — 2(2t + 4)?)].

s.
=
A

The roots of the previously mentioned characteristic polynomial are as follows

(t42)2G +4+ /[t +2)2¢ +4]2 — 8[2(t + 2)2¢; — (2t + 4)?]
2

z = —4(n — —times), z=
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For each i =1,2,....n.
-4 o1... Q9

Specm(@)) =" 11,
a3 Q4... Q5
111
where
o = (t+2)2¢ + 4+ /[t +2)2G +4]2 — 8[2(t + 2)2¢; — (2t + 4)?]
5 ;
g — (t+2)%C 4+ 4+ V[(t+2)2C, + 4]2 — 8[2(t + 2)2¢, — (2t + 4)7]
5 ,
_ (422G +4 - VIt +2)%G + 47 — 8[2(t +2)2%¢ — (2t +4)7]
5 ;
oy = EE226 44 - VI[E+276 1 4P — 820t +2)°G — (2 + 477
5 ;
and
s — (t+2)%C + 4 — /[t +2)2¢, + 412 — 8[2(t + 2)2¢,, — (2t + 4)?] |

2

Only positive eigenvalues are taken into account when calculating energy. The value of the given graph
determines the positivity of the eigenvalues. (t +2)2¢; +4 — /[(t +2)2¢ + 4]2 — 8[2(¢ + 2)2¢1 — (2t + 4)2].
This gives rise to the following two possibilities:

[(t+2)°C+ 4] < VI(E+2)2C +42 = 8[2(t +2)°C — (2t +4)7] ifG <2

[(t+2)2¢ +4] > V][t +2)2¢ + 42 — 8[2(t + 2)2¢; — (2t +4)?2] if G > 2.

Here,

ZE5(Gh) Z |Gil
[+ 2)2G + 4]+ V(84 2)2¢ + 4]2 — 8[2(¢ + 2)2¢ — (2t + 4)?]
- Z | =4[+ Z 92
] =1
[(t+2)2G + 4] — V][t +2)2¢ + 42 — 8[2(t + 2)2¢; — (2t +4)?]
g 2
ZEy(Gh) Z | —4]
+ Z [(t42)2¢+4]++/[(t42) <Z+4]2 8[2(t+2)2¢; — (2t +4)?] \/[ t+2)2¢;+4]2— 8[2(t+2)2g, (2t4+4)2]—[(t+2)2¢1+4] ‘

Gi<2

+ Z [(t42)2Ci+4]++/[(14+2)2 ¢ +4]2—8[2(t+2)2¢; — (2t+4)2] n [(t42)2¢i+4]—/[(t4+2)2¢ +4]2—8[2(t+2)2¢; — (2t+4)?]
2 2
Gi>2

ZEy(Gr) =dn+ ) VIt +2)2G + 4] = 8[2(t +2)2G — (2t +4)2] + ) _[(t+2)°Gi +4].
Gi<2 Gi>2

This concludes the theorem’s proof. O
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Illustration 3.4. Let us examine cycle Cy and a graph (let’s say G1) that is derived from Cy by duplicating
every vertex by edge, as illustrated in figure

-2 0 2
Spec(C’4):(1 5 1>

/!

w; wy wy wg wy w] wh wi wi wi wj) w]

w, 0 16 0 16 8 8 0 0 0 0 0 0

wy 16 0 16 0 0 0 8 8 0 0O 0 O

ws 0 16 0 16 0 0 0 0 8 8 0 0

w, 16 0 16 0 0 0 0O 0O O 0 8 8

w, 8 0 0 0 0 4 0 0 0 0 0 0
Z’G)=|w" 8 0 0 O 4 0 O 0 0O O 0 0
who 08 0 0 0 0O 0O 4 0 0 0 0

wy 0 8 0 0O 0O 0O 4 0 0 0 0 0

wy 00 8 0 0 0O 0O 0O 0O 4 0 0

wy 0 0 8 0 0O 0O 0O 0O 4 0 0 0

w, 0 0 0 8 0 0O 0O 0O 0O 0 0 4

wj 0 0 0 8 0 0 0 0 0 0 4 0

) —35.2603 —9.4891 —4 0 7.2603 13.4891 36
Spec(Z (G1)>_< 1 2 41 1 2 1)'

ZE5(Gy) = 140.4771.

Table 4:
spectrum of Cy | spectrum of Z?(G;) = (t+2)2<i+4i\/[(t+2)2gi+24]2_8[2(t+2)2gi_(2t+4)21
G =-2 —35.2603, 7.2603
=0 —0.4891, 13.4891
(3=2 0,36

3.5. Degree Square Sum FEnergy of Vertex Duplication of Regular Graph

In terms of the adjacency matrix eigenvalues of the regular graph G, this section defines the degree
square sum energy of vertex duplication of a regular graph G. As an example, a particular case of vertex
duplication of C4 is shown.

Theorem 3.5. The degree square sum energy Epss(G1) of the vertex-duplicated graph Gi, for a given
t-reqular graph G, where n; are the eigenvalues of A(G), is given as:

Epss(Gr) =8n+ Y V/[(t+2)%n + 412 — 16(t +2)2n; + 2[(t +2)> + 42 + > _[(t+2)%; + 4].
7:<3 ni>4

Proof. A simple, connected, undirected t-regular graph with n vertices and m edges is denoted by GG. Next,
given by are the incidence matrix B(G) and adjacency matrix A(G)

W1 W2 W3 - Wp

wi 0 a2 a3 -+ a

AC wo a1 0 a3 -+ a9
(G) = w3 a3z az 0

Wp Qpl Gp2 ap3 - 0
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r / 117

wi wl wl wl w, wl
w; 1 i1 0 0 -+ 0 0
B(G) = | W2 0O 0 1 1 0 0
lw, O 0 0 0 --- 1 1]
We duplicate the vertices wy, ws, ..., w, all together by the edges e1,es,...,e,, respectiwely, such that:
ep = wiw, e =whwlh, ..., e, =wlw]

to obtain graph G1. The degree square sum matrix of GG; is given in terms of block matrices as follows:

’ " / ’ /-

wy 01 2(t+22)2a12 2(t+27)1’2a1n (t +12)2 (t +12)2 o o 0 0
wy  2(t+2)%a2 0 o 2(t+2)%an 0 0 (t+2)?2 (t+2?2 .- 0 0
w 2(t+é)2an1 2(t+é)2an,2 0 0 0 0 0 (15%2)2 (t+.2)2
| w) (t +2)2 0 0 0 8 0 0 0 0
DSS(G1) = w,11/ (t+2)2 0 0 8 0 0 0 0 0
wh 0 (t+2)? 0 0 0 0 8 0 0
wh 0 (t+2)2 0 0 0 8 0 0 0
W, 0 0 L 422 0 0 0 0 . 0 8
Lw!! 0 0 (t +2)2 0 0 0 0 8 0
That is
DSS(@y) = | 2EHDPAG) [(t+2)7 +4B(G)
[(t+2)2 +4]BT(G) I, @ 8A(Ky) |’

The characteristic polynomial ¢(G1, z) is first computed in order to obtain the eigenvalues of DSS(Gq).
This is provided by:
¢(G1, Z) = det(zlgn — DSS(Gl))

Applying the formula for the block matrix determinant, we have:

(G, 2) = zI, —2(t +2)2A(G)  [(t+2)%+4]B(G)
DT +2)2 +4BT(GQ) 1, ® (21, — 8A(K»))|
Taking into account the block matrix’s structure helps simplify this:

B(Gh,z) = |I, ® (zIs — 8BA(K2))| |2In — 2(t + 2)?A(G) — [(t +2)® + 4*B(G)(I, ® 2L — 8A(K2)) "' BT(G)|

= (22— 64)" |21, — 2t + 2)2A(G) — [(t+2)+4]QB(G)(zzlg;o—gf(Kz)(@In)BT(G)
= | (2% = 64) (21, — 2(t + 2)*A(G)) — [(t + 2)* + 4?B(G) (212 + 8A(K2) ® 1,,) BT (G)] .
Now,
z 8 00 0 0 1 0 0
é 1 (1) 8 8 8 8 2z 0 0 0 0 1 0 0
0 0 z 8 0 0 01 0
0 11 0 0
B((2I; + 8A(K2)) ® I,) BT = . 008 2 00|01 0
0000 LG 5o s sl oo
0 0 00 8 z 0 1
1 0 0
z+8 248 0 0 0 (1) (1) 8
o [ R
0 0 0 0 248/ |0 o




A. Ibrahim, S. Nazeer, Journal of Prime Research in Mathematics, 20(2) (2024), 93-116 113

2z + 16 0 0 0
0 2z +16 0 0
= 0 0 2z+16 --- 0
0 0 0 oo 22416
= (22 + 16)1,.

Continuing proof of theorem

P(G1,2) = [(2% — 64) (21, — 2(t + 2)?A(G)) — [(t + 2)? + 4]2B(G) (212 + 8A(K>2) ® I,) BT (G))|
= [(2% = 64) (21, — 2(t + 2)*A(G)) — [(t + 2)* + 4]%(22 + 16) I, .

Given that 7;, where i = 1,2, ..., n, is the eigenvalue of A(G)

(G, 2) ﬁ (22 — 64)(2 — 2(¢ + 2)%m) — [(t +2)* + 4]*(22 + 16)]
i=1

.

Il
—

=+8)"||[(z-8)(z—2(t+ 2)%n;) — 2[(t + 2)* + 4]2]

(2

= (z+8)"

.::1§

s
Il
—

[(z = 8)(= — 2(t +2)%m;) — 2[(t +2)* + 4]

= (2 +8)" [ [1(2% — 22(t + 2)%n; — 82 + 16(t + 2)%n; — 2[(t + 2) + 4]?).

—.

s
Il
R

The characteristic polynomial above has the following roots

2= —8(n — —times), z=(t+2)%n +4+£/[(t+2)2m +4]2 — 16(t + 2)21; + 2[(t + 2)2 + 4]2

Foreach:=1,2,...,n
-8 aj... a9

Specm(@y)y =" 11,
a3 Q4... Qs
1 1 1
where
ar = (t+2)%m + 4+ V[t +2)2m + 4] — 16(t + 2)%m + 2[(t + 2)2 + 4],
g = (t+2)%n, + 44+ /[(t +2)2n, + 42 — 16(t + 2)2n, + 2[(t +2)2 + 4]2,
as = (t+2)%m +4 — V/[(t +2)2m + 4] — 16(t + 2)%m + 2[(t + 2)2 + 4],
ag = (t+2)%m +4— /[(t+2)%2 + 4]2 — 16( + 2)2 + 2[(t + 2)2 + 4]2,
and

as = (t+2)%n, + 4 — /(L +2)2n, + 4]2 — 16(t + 2)2n, + 2[(t + 2)2 + 4]2.

Only positive eigenvalues are used in the calculation of energy. The value of the eigenvalues for the given
graph determines their positivity. [(t+2)2n; +4] — /[(t + 2)%n; + 4]2 — 16(¢ + 2)2n; + 2[(t + 2)% + 4]2. This
gives rise to the following two possibilities:

[(t+2)%n; + 4] < /[t +2)20 + 42 —16(t + 2)2m; + 2[(t +2)2 + 42 ifn; < 3.
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[(t+2)%n; + 4] > /[(t+ 2)2m; + 42 — 16(t + 2)2m; + 2[(t + 2)2 + 42 ifn,; > 4.

Here,

3n
Epss(Gi) =Y Inil
i=1

= Zn: | — 8|+ i )[(t + 2020 4 4] + /[(t + 2)2m; + 42 — 16(t + 2)2m; + 2[(t + 2)2 + 4]2‘
=1 i=1

+ i ‘[(t +2)%n 4+ 4] — V[t + 2)2m + 4]2 — 16(t + 2)2n; + 2[(t + 2)2 + 4]2‘
=1

n

Epss(G1) =" | - 8|

=1

+ zn: ‘(t + 202 + 4+ V[t 4+ 2)2m; + 4)2 — 16(t + 2)2m; + 2[(t + 2)2 + 4]2
17:<3

/(4 2)2n; 4+ 4]2 — 16(t + 2)20; + 2[(t + 2)2 + 4]2 — [(t + 2)%nm1 + 4]

+ En: ‘[(t + 202 + 4]+ V([ + 220 + 42 — 16(¢ + 2)2m; + 2[(t + 2)2 +4]2 + [(t + 2)%n; + 4]
ni>4

—V[(t+2)2n; + 4]2 — 16(t + 2)21; + 2[(t + 2)2 + 4]2

Epss(G1) =8n+ Z VIt +2)2m; + 412 — 16(¢ + 2)2; + 2[(t +2)2 +4]2 + Z [(t +2)n; + 4].
7i<3 ni>4

Now the theorem is fully proved. O

INlustration 3.5. Let us examine cycle Cy and a graph (let’s say 1) that is derived from Cy by duplicating
every vertex by edge, as illustrated in figure

-2 0 2
Spec(C’4):<1 5 1)

w; wy wy wg wp w] wh wi wi wi wj w]

w, 0 32 0 322 2 0 0 0 0 0 0
w, 32 0 32 0 0 0 2 20 0 0 0 0
ws 0 32 0 32 0 0 0 0 2 20 0 0
wy 32 0 32 0 0 0 0 0 0 0 2 20
wf, 20 0 0 0 0 8 0 0O 0O 0O 0 O
DSS(Gy)=|w/ 20 0 0 0 8 0O 0O O O O 0 0
whb 020 0 0 0 0 0 8 0 0 0 O
wy 0 20 0 0 0 0 8 0 0 0 0 O
wy 0 0 20 0 0 0 0 0 0 8 0 0
w/ 0 0 20 0 0 0 0 0 8 0 0 0
w, 0 0 0 2 0 0 0 0 0 0 0 8
w/ 0 0 0 20 0 0 0 0 0 0 8 0
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Spec(DSS(Gl))—<_73'7821 —24.5657 —8 —3.7995 17.7821 32.5657 75.7995>.

1 2 4 1 1 2 1
Epgs(Gy) = 371.4260.

Table 5:
spectrum of C; | spectrum of DSS(G1) = (t +2)%n; + 4+ /[(t + 2)2n; + 4] — 16(¢ + 2)2n; + 2[(t + 2)2 + 4]
=2 737821, 17.7821
o = 2 —3.7995, 75.7995
n3 =10 —24.5657, 32.5657

4. Application

In social networks, ties or interactions are represented by edges, and individuals are represented by
vertices. The graph energy can give insights into the overall connectedness of the network, the influence
of certain nodes (people), and the resilience of the network [23]. Higher graph energy might correspond to
more highly connected and active networks [24]. In biology, [25] metabolic and protein interaction networks
can be analyzed using graph energy. These graphs help to understand how different proteins or metabolites
interact with each other and how perturbations (like a disease) affect the overall network’s function. Lower
energy in such graphs could imply robustness, while higher energy might indicate fragility or dysfunction,
useful in analyzing network behavior in diseases, see also [26, 27, 28]. The spectrum of a network representing
financial markets or trade networks can be used to study market stability and resilience. Large eigenvalues
may indicate fragility, while smaller eigenvalues can signal a stable and robust system. Vertex duplication
has applications in various areas of network theory, such as network robustness, redundancy analysis, and
molecular graph theory [29]. For example, in communication networks, duplicating key nodes can increase
redundancy, making the network more resilient to failures.

5. Conclusion

In this work, we have obtained a generalized equation for the energy following vertex duplication in a
regular graph. The findings deepen our understanding of the energy implications of such graph operations
and lay the groundwork for future research into various other kinds of graph alterations.
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