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Abstract

In this paper, we propose a new type of module by focusing on the second cosingular submodule of a module.
We define a module M as weak T -dual Rickart if, for any homomorphism φ ∈ EndR(M), the submodule

φ(Z
2
(M)) lies above a direct summand of M . We prove that this property is inherited by direct summands

of M . We also introduce weak T -dual Baer modules and provide a complete characterization of such modules
where the second cosingular submodule is a direct summand. Furthermore, we present a characterization
of (semi)perfect rings in which every (finitely generated) module is weak T -dual Rickart.
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1. Introduction

All rings considered in this paper will be associative with an identity element and all modules will be
unitary right modules unless otherwise stated. Let R be a ring and M an R-module. S = EndR(M) will
denote the ring of all R-endomorphisms of M . We will use the notation N ≪ M to indicate that N is
small in M (i.e. L ̸= M,L + N ̸= M). A small module is module which is a small submodule of another
module. A submodule L of M is essential in M denoted by L ≤e M , if for every nonzero submodule K of
M , L∩K ̸= 0. A module is uniform if each nonzero submodule is essential in it. Dually, a module is hollow
in case each proper submodule is small in that module. The notation N ≤⊕ M means that N is a direct
summand of M , while N ⊵M means that N is a fully invariant submodule of M , i.e., every endomorphism
of M maps N to a submodule in N . The terms radical and socle refer to specific submodules of a given
module.
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Let L ≤ K ≤ M . We say that K lies above L in M if K/L ≪ M/L. A module M is called lifting
if every submodule H of M lies above a direct summand D of M ([5]). We may recall the definition of
a supplemented modules. A module M is said to be supplemented provided for each submodule A in M ,
there exists a submodule B in M with M = A + B and A ∩ B ≪ B. A strange variation of supplemented
modules is the class of H-supplemented modules. A module M is called H-supplemented in case for each
N ≤ M , there exists a direct summand D of M such that M = N +X if and only if M = D +X, for all
X ≤ M . All these notions and their relations can be found in [10] and [5]. It is important to state that,
any lifting module is H-supplemented and each H-supplemented module is supplemented. Also, there are
some works and studies about H-supplemented modules in the literature such as [16], [14] and [11, 12].

The study of Rickart and Baer modules has its roots in functional analysis with close links to C*-algebra
and Von Neumann algebras. The concept of (dual) Rickart modules, where the (image) kernel of every
endomorphism is a direct summand of the module, is important in the study of modules. Understanding
idempotents in the endomorphism rings is also crucial ([9]). A module is Rickart and dual Rickart if and
only if its endomorphism ring is von Neumann regular. A generalization of lifting modules and dual Rickart
modules are I-lifting modules, which have been characterized as direct sums of cyclic modules ([1]). These
modules are more challenging to study compared to dual Rickart modules, but they have potential for further
investigation. Amouzegar also presents a way to describe I-lifting rings through finitely supplemented
modules.

In [3], the authors introduced various types of I-lifting modules based on a fixed fully invariant submodule
in the given module. A module M is said to be IF -lifting, where F is a fully invariant submodule of M , if
the submodule ϕ(F ) lies above a direct summand D of M for every endomorphism ϕ of M . It is noted that
a module M is I-lifting if and only if it is IM -lifting. The properties of such modules are discussed in detail
in [3]. Continuing this line of work, Moniri and Amouzegar in [13] investigated H-supplemented modules
using the same approach as [3]. A module M is called IF -H-supplemented if, for every ϕ ∈ EndR(M), there
exists a direct summand D of M such that ϕ(F ) +X = M if and only if D +X = M , for all submodules
X of M . The authors present certain conditions to ensure that a IF -H-supplemented module is IF -lifting.
They also investigate the relationship between these and other similar classes of modules, and consider direct
sums of IF -H-supplemented modules.

The authors in [4] examined dual Rickart modules using preradicals and provided a way to identify these
modules based on a particular preradical. It is important to mention that any submodule which is fully
invariant within a module can create a preradical.

The singular submodule Z(M) of a module M is the set of m ∈ M such that, mI = 0 for some essential
right ideal I of R. Let M be an R-module. In [17], the authors defined Z(M) as a dual of singular submodule
as follows: Z(M) =

⋂
{Kerf | f : M → U,U ∈ S} where S denotes the class of all small modules. They

called M a cosingular (noncosingular) module if Z(M) = 0 (Z(M) = M). Clearly every small module is
cosingular.

Rad(M), Soc(M) and E(M) denote the radical, the socle and the injective envelope of a module M ,
respectively, and J(R) denotes the Jacobson radical of a ring R.

In [18], Tribak introduced and investigated the notion called wd-Rickart modules, which is a generaliza-
tion of the concept of d-Rickart modules. A module M is said to be wd-Rickart( weak dual Rickart) if for
every nonzero endomorphism ϕ of M , ϕ(M) contains a nonzero direct summand of M .

According to previous research, this work can be motivated by the desire to further explore and expand
on the recent works on dual Rickart modules and their generalizations. By building on the foundation laid
by the authors in [4], [3], and [13], we aim to contribute to the existing body of knowledge in this field. By
the way, we are interested in studying a special kind of IF -lifting modules where we shall replace the fully

invariant submodule F by Z
2
(M). In this regard, we produce a new class of modules namely wTd-Rickart

modules. We call a module M , weak T -dual Rickart (wTd-Rickart) provided for each endomorphism f of

M , there is a direct summand D of M such that f(Z
2
(M))/D ≪ M/D. Some general properties of such

modules are also considered. We prove that for a noncosingular module, the two concepts wTd-Rickart
and I-lifting coincide. It is also shown that every direct summand of any wTd-Rickart module inherits the
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property. We also introduce weak T -dual Baer modules.

2. Weak T -dual Rickart Modules

The authors in [6] introduced a new concept called T -dual Rickart modules which is a generalization
of dual Rickart modules. A module M is considered T -dual Rickart if for every endomorphism φ of M ,
the image of the second cosingular submodule under φ is a direct summand of M . The second cosingular
submodule is an important submodule of M and is used to study dual Rickart modules. A natural question
that arises is what happens if we extend the concept of T -dual Rickart to its lifting version.

Definition 2.1. Let M be a module. Then we say M is wTd-Rickart, in case for every φ ∈ S, there exists

a direct summand D of M contained in φ(Z
2
(M)) such that φ(Z

2
(M))
D ≪ M

D .

Note that each T -dual Rickart module is wTd-Rickart. By the definitions, lifting modules provide a
enormous source of wTd-Rickart modules. Although, there are some wTd-Rickart non-lifting modules such
as Z as an Z-module. In general, any cosingular non-lifting module is wTd-Rickart. The following presents

a characterization of a wTd-Rickart module M with Z
2
(M) a direct summand of M .

By the definitions, it can easily seen that wTd-Rickart modules generalize both lifting modules and dual
Rickart modules. The following example includes this fact that each module can construct a wTd-Rickart
module.

Example 2.2. (1) Every cosingular module is wTd-Rickart, so that every small module is too. In particular
for every module M , the module M

Z(M)
is wTd-Rickart. Also as an Z-module for every n ∈ N, the module

Zn is wTd-Rickart.
(2) Every T -dual Rickart is wTd-Rickart. Consider the Z-module M = Zp∞ ⊕ Zp. By [6, Example 3.5],

M is T -dual Rickart and so is wTd-Rickart. Note that by [9, Example 2.10], M is not dual Rickart.
(3) The ring R =

∏∞
i=1 Z2 is a regular ring. Therefore R is dual Rickart module. Since R is V -ring, so

by [6] R is a T -dual Rickart R-module, hence is wTd-Rickart.

The following gives us a characterization of wTd-Rickart modules with second cosingular submodule a
direct summand.

Theorem 2.3. Let M be a module such that Z
2
(M) is a direct summand of M . Then M is wTd-Rickart

if and only if Z
2
(M) is I-lifting.

Proof. (⇒) Let g : Z
2
(M) → Z

2
(M) be an endomorphism of Z

2
(M) and Z

2
(M)⊕L = M for a submodule L

ofM . Then h = j◦g◦π
Z

2
(M)

: M → M is an endomorphism ofM where j : Z
2
(M) → Z

2
(M) is the inclusion

and π
Z

2
(M)

: M → Z
2
(M) is the projection map on Z

2
(M). It is easy to check that h(Z

2
(M)) = g(Z

2
(M)).

As M is wTd-Rickart, there exists a direct summand D of M such that g(Z
2
(M))/D ≪ M/D and hence

g(Z
2
(M))/D ≪ Z

2
(M)/D. It is left to reader to verify that Z

2
(M)/D is a direct summand of M/D.

(⇐) Let Z
2
(M) be I-lifting and f be an endomorphism of M . Consider q = π

Z
2
(M)

◦ f ◦ j : Z
2
(M) →

Z
2
(M), which is an endomorphism of Z

2
(M), where j : Z

2
(M) → M is the inclusion and π

Z
2
(M)

: M →

Z
2
(M) is the projection on Z

2
(M). Being Z

2
(M) a fully invariant submodule of M implies that q(Z

2
(M)) =

f(Z
2
(M)). As Z

2
(M) is I-lifting, there is a direct summand D of Z

2
(M) (so that of M) such that

q(Z
2
(M))/D = f(Z

2
(M))/D ≪ Z

2
(M)/D. Therefore, M is wTd-Rickart.

We shall present a characterization of wTd-Rickart modules with no nonzero small submodules.
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Theorem 2.4. Let M be a module with Rad(M) = 0. Then the following statements are equivalent:
(1) M is wTd-Rickart;

(2) Z
2
(M) is a dual Rickart direct summand of M .

Proof. (1) ⇒ (2) Let φ be an arbitrary endomorphism of M . Then there exists a direct summand D of

M such that φ(Z
2
(M))/D ≪ M/D. Since Rad(M) = 0 we conclude that Rad(M/D) = 0 as D is a

direct summand of M . Therefore, φ(Z
2
(M)) = D is a direct summand of M . It follows that Z

2
(M) is a

direct summand of M . From Theorem 2.3, Z
2
(M) is I-lifting. Since Rad(M) = 0, we conclude from [1,

Proposition 3.1] that Z
2
(M) is a dual Rickart module.

(2) ⇒ (1) It follows directly from Theorem 2.3 and the fact that every dual Rickart module is I-lifting.

From Theorem 2.4, we conclude that over a right V -ring R, a right R-module M is wTd-Rickart if and

only if Z
2
(M) is a dual Rickart direct summand of M .

To find a wTd-Rickart module which is not T -dual Rickart, we may consider a module M with 0 ̸=
Z

2
(M) ≪ M . Then it is clear that for every f ∈ End(M), we have f(Z

2
(M)) ≪ M . Since Z

2
(M) ≪ M ,

it is clear that M can not be T -dual Rickart.

Proposition 2.5. Let M be an indecomposable module. Then the following statements can be easily checked.

(1) M is T -dual Rickart if and only if φ(Z
2
(M)) = 0 or φ(Z

2
(M)) = M , for each φ ∈ EndR(M).

(2) M is wTd-Rickart if and only if φ(Z
2
(M)) ≪ M , for each φ ∈ EndR(M).

We next provide a condition for a module to be wTd-Rickart according cyclic ideals of EndR(M).

Proposition 2.6. Let M be a module. Then M is wTd-Rickart if and only if for every cyclic right ideal I

of S = EndR(M), the submodule
∑

ϕ∈I ϕ(Z
2
(M)) of M lies above a direct summand of M .

Proof. This is straightforward as for every φ ∈ EndR(M),
∑

ϕ∈I ϕ(Z
2
(M)) = φ(Z

2
(M)).

Recall that a module M satisfies SSSP in case the sum of each family of direct summands of M , is a
direct summand of M .

Theorem 2.7. Let M be a module with SSSP on direct summands of M contained in Z
2
(M). Then M is

wTd-Rickart if and only if for every finitely generated right ideal I of S, the submodule
∑

φ∈I φ(Z
2
(M)) of

M lies above a direct summand of M .

Proof. (⇒) Let M be wTd-Rickart and I =< f1, . . . , fn > a finitely generated right ideal of EndR(M). It

is easy to check that
∑

f∈I f(Z
2
(M)) = f1(Z

2
(M)) + . . . + fn(Z

2
(M)) ⊆ Z

2
(M). Set f = f1 + . . . + fn.

Then f(Z
2
(M)) =

∑
φ∈I φ(Z

2
(M)). Since M is wTd-Rickart, there exist direct summands D1, . . . , Dn of

M such that f1(Z
2
(M))

D1
≪ M

D1
, . . ., fn(Z

2
(M))

Dn
≪ M

Dn
. Define D = D1 + . . .+Dn. It is not hard to verify that

f1(Z
2
(M))+D
D ≪ M

D , . . ., fn(Z
2
(M))+D
D ≪ M

D . Since a sum of finite small submodules of a module is small in

that module, we conclude that f(Z
2
(M))
D = f1(Z

2
(M))+D
D + . . .+ fn(Z

2
(M))+D
D ≪ M

D . Note that by assumption
D is a direct summand of M .

(⇐) Let f ∈ S. Consider the cyclic right ideal I =< f > of S. By assumption there is a direct summand

D of M such that
∑

φ∈I φ(Z
2
(M))

D ≪ M
D . Since f(Z

2
(M) =

∑
φ∈I φ(Z

2
(M)), the result follows.

A module M such that all its noncosingular submodules are direct summand, is said to be NS-module
(see [15]). Via the concept NS-modules, we remove the condition SSSP in Theorem2.7.

Corollary 2.8. Let M be a NS-module. Then M is wTd-Rickart if and only if for every finitely generated

right ideal I of S, the submodule
∑

φ∈I φ(Z
2
(M)) of M lies above a direct summand of M .
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Proof. Note that any direct summand of M contained in Z
2
(M) is noncosingular. Now, the result follows

from Theorem 2.7 and the fact that any finite sum of noncosingular modules is noncosingular.

Proposition 2.9. Let M be a Noetherian module such that for every direct summand D of M and every

f ∈ End(D), f(Z
2
(D)) is nonsmall in D. Then M =

⊕n
i=1Mi where each Mi is indecomposable wTd-

Rickart such that End(Mi) is a division ring.

Proof. The result follows from [1, Proposition 2.3] and Proposition 2.5.

Recall that an R-module M is called direct projective if, given any direct summand D of M and every
epimorphism f : M → D, there exists an endomorphism ϕ of M such that α ◦ ϕ = π where π : M → D is

projection map. We define a set for M as FZ = {f ∈ S | f(Z2
(M)) ≪ M}. It is not hard to check that

FZ is an ideal of S.

Proposition 2.10. Let M be a direct projective wTd-Rickart module. Then S
FZ is a regular ring.

Proof. The proof is exactly is the same as the proof of the first part of [1, Proposition 2.4].

Remark 2.11. (1) Let M be a module such that Z
2
(M) is noncosingular. Then M is T -dual Rickart if

and only if M is wTd-Rickart. To prove, we should note that if Z
2
(M) is noncosingular, then for every

f ∈ End(Z
2
(M)), we have Imf is noncosingular. In particular, for every amply supplemented module M ,

the concepts T -dual Rickart and wTd-Rickart coincide.
(2) Let M be a module with Rad(M) = 0. Then M is wTd-Rickart if and only if M is T -dual Rickart.

For if, M is wTd-Rickart, then for every f ∈ End(M), there is a decomposition M = D ⊕ D′ such that

D ⊆ f(Z
2
(M)) and D′ ∩ f(Z

2
(M)) ≪ D′. Since Rad(M) = 0, then D′ ∩ f(Z

2
(M)) = 0. it follows that

f(Z
2
(M)) = D is a direct summand of M .

Proposition 2.12. Let M be a noncosingular module. Then the following coincide:
(1) M is I-lifting;
(2) M is dual Rickart;
(3) M is T -dual Rickart;
(4) M is wTd-Rickart.

Proof. (1) ⇒ (2) Let M be I-lifting and f ∈ S = EndR(M). Then by assumption there is a direct
summand D of M contained in Imf such that Imf

D ≪ M
D . Since M is noncosingular, then Imf and so Imf

D
are noncosingular. Now it follows that Imf = D is a direct summand of M .

(2) ⇒ (3) and (3) ⇒ (4) are obvious by definitions.
(4) ⇒ (1) Let f ∈ S. Since M is noncosingular and wTd-Rickart, there is a direct summand D of M

such that f(Z
2
(M))
D = f(M)

D ≪ M
D . It follows that M is I-lifting.

As we expected before, wTd-Rickart property can be inherited by direct summands.

Proposition 2.13. Every direct summand of an wTd-Rickart module is wTd-Rickart.

Proof. Let N be a direct summand of M and M = N ⊕ N ′ for N ′ ≤ M . Suppose that f ∈ EndR(N).
Then g = jofoπ : M → M is a R-homomorphism where j : N → M is the inclusion and π : M → N is the

canonical projection. Since M is wTd-Rickart there is a direct summand K of M such that g(Z
2
(M))
K ≪ M

K .

From g(Z
2
(M)) = f(Z

2
(N)) we get that f(Z

2
(N))

K ≪ M
K . We shall prove that f(Z

2
(N))

K ≪ N
K . So that let

f(Z
2
(N))

K + T
K = N

K . It follows that f(Z
2
(N))+T = N . Therefore, f(Z

2
(M))
K + T+N ′

K = M
K . Now by assumption

T +N ′ = M . Since T ⊆ N , modular law implies that T = N . This completes the proof.
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A moduleM is t-dual Baer in case for every right ideal I of S = EndR(M), the submodule
∑

f∈I f(Z
2
(M))

is a direct summand of M ([2]).

Definition 2.14. We call a module M is weak T -dual Baer, provided that for every right ideal I of

S = EndR(M), the submodule
∑

f∈I f(Z
2
(M)) of M lies above a direct summand D of M .

It can be easily seen that for a noncosingular module, the concepts weak T -dual Baer, t-dual Baer and
dual Baer coincide. We shall recall that the definition of a T -noncosingular module. A module M is T -
noncosingular provided the image of each nonzero endomorphism of M is non-small in M . In other words,
Imf ≪ M where f ∈ EndR(M) implies Imf = 0 ([7]). Also we should note that if M is T -noncosingular,
then M is weak T -dual Baer if and only if M is t-dual Baer.

Theorem 2.15. Let M be a module such that Z
2
(M) ≤⊕ M . Then the following statements are equivalent:

(i) M is weak T -dual Baer;

(ii) For every right ideal J of EndR(Z
2
(M)), there is a direct summand D of Z

2
(M) such that

∑
f∈I f(Z

2
(M))

D ≪
Z

2
(M)
D .

(iii) For every subset A of B = {f ∈ End(M) | Imf ⊆ Z
2
(M)}, there is a direct summand D of M such that∑

h∈A Imh

D ≪ M
D and for every φ ∈ End(M), there is a direct summand K of M such that φ(Z

2
(M))

K ≪ M
K .

(iiii) For every A′ ⊆ EndR(M), there is a direct summand D of M such that
∑

f∈A′ f(Z
2
(M))

D ≪ M
D .

An example including a wTd-Rickart module which is not weak T -dual Baer, will be provided below.

Example 2.16. Let R =
∏∞

i=1 Fi where Fi = F is a field. It is known that R is von Nuemann regular which
is not semisimple. By [9, Remark 2.9], RR is dual Rickart. So RR is wTd-Rickart since R is an V -ring.
Because R is not a semisimple ring, it is not a dual Baer module (see [8, Corollary 2.7]). Note that since
RR is noncosingular, RR is not (weak) t-dual Baer.

The following is a characterization of hereditary rings in terms of wTd-Rickart modules (see [9, Theorem
2.29])

Proposition 2.17. The following statements are equivalent for a ring R.
(1) R is right hereditary;
(2) Every injective right R-module is noncosingular and wTd-Rickart.

Lemma 2.18. The following are equivalent for a ring R:
(1) Every free right R-module is wTd-Rickart;
(2) Every projective right R-module is wTd-Rickart.

Proof. (1) ⇒ (2) Let M be a projective R-module. Then there is a free R-module F , such that F = M ⊕K.
Since F is wTd-Rickart, M is also wTd-Rickart by Proposition 2.13.

(2) ⇒ (1) is clear.

It will be proven that over a right (semi)perfect ring, every (finitely generated) right R-module is wTd-
Rickart if and only if every (finitely generated) R-module is weak t-dual Baer.

Theorem 2.19. Let R be a right perfect (semiperfect) ring. Then the following are equivalent:
(1) Every (finitely generated) R-module is weak t-dual Baer;
(2) Every (finitely generated) R-module is wTd-Rickart;
(3) Every (finitely generated) R-module is T -dual Rickart;
(4) Every (finitely generated) noncosingular R-module is I-lifting and for every (finitely generated) R-

module M , Z
2
(M) ≤⊕ M .
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Proof. (1) ⇒ (2) Let M be an R-module and f ∈ End(M). Since M is weak t-dual Baer, there is a direct

summand D of M such that
∑

φ∈I φ(Z
2
(M))

D ≪ M
D where I =< f >. It is clear that

∑
φ∈I φ(Z

2
(M)) =

f(Z
2
(M)). So f(Z

2
(M))
D ≪ M

D .
(2) ⇒ (3) LetM be an R-module and f ∈ EndR(M). SinceM is wTd-Rickart, there is a direct summand

K of M such that f(Z
2
(M))
D ≪ M

D . Being M amply supplemented implies that Z
2
(M) and hence f(Z

2
(M))

is noncosingular. It follows that f(Z
2
(M)) = D is a direct summand of M .

(3) ⇒ (4) Let M be noncosingular. Then M is T -dual Rickart if and only if M is I-lifting (Proposition
2.12). The second part of (4) follows from [6, Theorem 3.2].

(4) ⇒ (1) Since Z
2
(M) is a direct summand, it suffices to show that Z

2
(M) is I-lifting (see Theorem

2.15). This follows from (4), since for every amply supplemented module M , the submodule Z
2
(M) is

noncosingular by [? , Corollary 3.4].

Corollary 2.20. Let R be a right perfect (semiperfect) ring. Then the following are equivalent:
(1) Every (finitely generated) R-module is weak t-dual Baer;
(2) Every (finitely generated) R-module is wTd-Rickart;
(3) Every (finitely generated) R-module is T -dual Rickart;
(4) Every (finitely generated) R-module is t-dual Baer.

Proof. The equivalences follows from [6, Theorem 3.20] and Theorem 2.19.

We shall introduce the concept of relative wTd-Rickart to study finite direct sums of wTd-Rickart
modules.

Definition 2.21. Let M and N be two modules. We call M , wTd-Rickart relative to N , in case for every

f : M → N , the submodule f(Z
2
(M)) lies above a direct summand of N .

It is clear that M is wTd-Rickart if and only if M is wTd-Rickart relative to M .

Proposition 2.22. Let M and N be two modules. Then M is wTd-Rickart relative to N if and only if for
every direct summand L of M and every supplement submodule K of M , L is wTd-Rickart relative to K.

Proof. Let L = e(M) where e2 = e ∈ End(M). Suppose that M is wTd-Rickart relative to N and for
a submodule T of N we have K + T = N and K ∩ T ≪ K. Let f : L → K be a homomorphism.

Since fe : M → N , there is a direct summand D of N such that fe(Z
2
(M))

D ≪ N
D . Set L ⊕ L′ = M . So

Z
2
(L)⊕ Z

2
(L′) = Z

2
(M). Then e(Z

2
(M)) = e(Z

2
(L)⊕ Z

2
(L′)) = e(Z

2
(L)) = Z

2
(L). Since fe(Z

2
(M)) =

f(Z
2
(L)), then f(Z

2
(L))

D ≪ N
D . We shall prove that f(Z

2
(L))

D ≪ K
D . To show that, let f(Z

2
(L))

D + B
D = K

D

for D ⊆ B ⊆ K. Since K + T = N , we have f(Z
2
(L))

D + B+T
D = N

D . Then B + T = N . By modular law,
B+(T ∩K) = K. Now T ∩K ≪ K implies that B = K. This completes the proof. The converse is obvious
since N is a supplement of zero submodule in N .

Corollary 2.23. Let M and N be two modules. Then M is wTd-Rickart if and only if for each two direct
summands L and K of M , L is wTd-Rickart relative to K.

Proposition 2.24. Let M1, . . . ,Mn, N be modules. If N has SSP for direct summands of N contained in

Z
2
(N), then

⊕n
i=1Mi is wTd-Rickart relative to N if and only if for each i = 1, . . . , n, Mi is wTd-Rickart

relative to N .

Proof. Let
⊕n

i=1Mi be wTd-Rickart relative to N . Then by Proposition 2.22, for every i = 1, . . . , n, Mi is
wTd-Rickart relative to N . For the converse, let f :

⊕n
i=1Mi → N . then f = ⊕n

i=1fi where fi : Mi → N for
each i = 1, . . . , n. Since for each i = 1, . . . , n, Mi is wTd-Rickart relative to N , there is a direct summand

Di of N such that fi(Z
2
(Mi))

Di
≪ N

Di
. Since N has SSP for direct summands of N contained in Z

2
(N), we
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get that D := D1 + . . . + Dn is a direct summand of N . We shall prove that
f(Z

2
(
⊕n

i=1 Mi))
D ≪ N

D . Since
fi(Z

2
(Mi))

Di
≪ N

Di
, it is easy to check that fi(Z

2
(Mi))+D
D ≪ N

D . Now
∑n

i=1[
fi(Z

2
(Mi))+D
D ≪ N

D . It follows that

f(Z
2
(
⊕n

i=1 Mi))
D ≪ N

D . This completes the proof.

Corollary 2.25. Let M1, . . . ,Mn be modules. Then
⊕n

i=1Mi is wTd-Rickart relative to Mj for each j =
1, . . . , n if and only if each Mi is wTd-Rickart relative to each Mj.
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