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aDepartment of Mathematics, Faculty of Sciences, Saad Dahlab University, 09000, Blida1, Algeria..
bDepartment of Renewable Energy, University of Khemis Miliana, Khemis Miliana, 44225, Algeria
cFaculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125, Novi Sad, Serbia.
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Abstract

In this work, we concentrate on a boundary value problem set on a singular domain containing a cuspidial
point. In our study, we obtain some existence and maximal regularity results. Our strategy is based on the
study of a boundary value problems for a class of the complete abstract fourth-order differential equations
involving fractional powers of unbounded linear operators.
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1. Origin of the Problem and Motivation

Let R+ = [0,+∞[. In this work, we assume that x = (x1, x2, x3) is a generic point of R3. Let Π ⊆ R3

be a cusp domain defined by

Π :=

{
x ∈ R3 : 0 < x3 < 1,

(
x1

(x3)
α ,

x2
(x3)

α

)
∈ Ω

}
, α > 1,

where Ω ⊆ R2 is a bounded smooth domain.
In the cusp domain R+ ×Π, we consider the following problem

d4

dt4
u (t, x) + (1 + ρ4 (x))(−∆)4υu (t, x) +

3∑
j=1

(
ρj (x) (−∆)jυ

) d4−j

dt4−j
u (t, x) = f (t, x) , (1.1)
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where υ ∈ ]0, 1] and ∆ is the classical Laplace operator on R3 defined by ∆ =
∑3

i=1 ∂
2
xi
. The functions ρj(·),

j = 1, 2, 3, 4, are continuous real functions defined on Π such that

lim
κ→+∞

κρj (., ., κ) < +∞, j = 1, 2, 3, 4.

The right hand side of equation (1.1) is assumed to belong to the Hilbert space L2(R+×Π) = L2(R+;L2 (Π)).
We will also accompany to (1.1) some boundary conditions and initial conditions involving Laplace operator.
More precisely, we look for a solution u(·) satisfying

u|R+×∂Π = 0, (1.2)

du

dt

∣∣∣∣
{0}×Π

= 0,
d3u

dt3
+ b(−∆)3υu

∣∣∣∣
{0}×Π

= 0. (1.3)

with b ∈ C. Evolution equations involving Laplace operator have significant applications in physics and
engineering, especially in fluid and solid mechanics. Furthermore, in the static case this type of equations
furnish us a model to study travelling waves in suspension bridges. Many studies have been carried out
about some simple situations dealing with regular domains. In our study, the choice of equation (1.1) is
justified by the fact that it appears in various modeling of concrete phenomena such as circulation of fluids
on lungs [17], ice formation [21], and brain warping [24].
Note that problems involving higher-order PDEs and complex geometries are more difficult to solve than
those with second-order PDEs and regular geometries. The approach adopted in this work is mainly based
on the use of the theory of the abstract differential equations. Recall that this technique was used in many
works; see, e.g., [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] and [22]. The first step is to transform the
cusp domain R+ ×Π into a cylindrical one. To do this, we consider the following change of variables

Ψ : R+ ×Π → R+ ×Q,
(t, x) 7→ (t, ξ) ,

where ξ = (ξ1, ξ2, ξ3) is also a new generic point of R3 such that

ξ1 =
x1

(x3)
α , ξ2 =

x2
(x3)

α and ξ3 =
(x3)

1−α

α− 1
. (1.4)

Here,
Q = Ω× ]ξ3,0,+∞[ ,

with

ξ3,0 =
1

α− 1
> 0;

this means that, for every x3 ∈ ]0, 1[ and (x1, x2) ∈ Ω, we have
lim

x3→0+
Ψ(x1, x2, x3) = Ω× {+∞} ,

and
lim
x3→1

Ψ(x1, x2, x3) = Ω× {ξ3,0}

In this study, we confine ourselves to the neighborhood of the origin 0R3 ; this means that we consider
the case in which ξ3 > ξ3,0 is large enough. At this level, let us introduce the following change of functions

v (t, ξ) = u (t, x) , g (t, ξ) = f (t, x) .

According to (1.4), it is easy to check that

f ∈ L2(R+ ×Π) if and only if

(
γ

ξ3

)−3α
2β

g ∈ L2(R+ ×Q)), (1.5)
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where

β =
1

γ
= α− 1.

To avoid the use of weighted L2-spaces, we opt for the use of a new change of functions given by

v =

(
γ

ξ3

)s

w, h =

(
γ

ξ3

)−3α
2β

g

with

s =
α

β

(
3

8υ
+ 2

)
.

As a direct consequence, the problem (1.1)-(1.2)-(1.3) is written as follows

P1(ξ3)
d4

dt4
w (t, ξ) + (1 + σ4 (ξ))(L)4υw (t, ξ) +

3∑
j=1

(
σj (ξ) (L)jυ

) d4−j

dt4−j
w (t, ξ) = h (t, ξ) , (1.6)

w|R+×∂Q = 0, (1.7)

and
dw

dt

∣∣∣∣
{0}×Q

= 0, P2(ξ3)
d3w

dt3
+ b(L)3υw

∣∣∣∣
{0}×Q

= 0. (1.8)

Here

P1(ξ3) =

(
γ

ξ3

)α
β (

3
8υ

+ 1
2)
, P2(ξ3) =

(
γ

ξ3

)α
β (

3
8υ

+ 7
8)
,

and

L = −∆+
1

ξ3
M, ξ3 > ξ3,0 > 0,

where M is the second-order differential operator with smooth coefficients given by

[Mw] (ξ)

:=
(αγ)2

ξ3

{
ξ21∂

2
ξ1w + ξ22∂

2
ξ2w + 2ξ1ξ2∂

2
ξ1ξ2w

}
+ 2αγ

{
ξ1∂

2
ξ1ξ3w + ξ2∂

2
ξ2ξ3w

}
+ (αγ − 2s) ∂ξ3w

+
αγ

ξ3
((α+ 1) γ − 2s) {ξ1∂ξ1w + ξ2∂ξ2w}

− s

ξ3
{s+ 1 + αγ}w.

Note also that the family of functions σj (ξ) , j ∈ {1, 2, 3, 4} are defined as follows

σj (ξ) :=

(
γ

ξ3

) 3α
8β

(j−4)

ρj (ξ) , j ∈ {1, 2, 3, 4} .

Due to the change of variables Ψ defined by (1.4), these functions are bounded on R+ ×Q.
Observe that the study of (1.6)-(1.7)-(1.8) needs the investigation of the following abstract problem:

d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+, (1.9)
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endowed with the initial conditions

dw(0)

dt
= 0,

d3w(0)

dt3
+Kw(0) = 0. (1.10)

where the vector-valued functions w and h are defined by

w : R+ → H ; t→ w(t) ; w(t)(ξ) = w(t, ξ),

h : R+ → H ; t→ h(t) ; h(t)(ξ) = h(t, ξ),

with H = L2(Q). Here, {
D (Aj) :=

{
ϕ ∈ L2 (Q) : Ajϕ ∈ L2 (Q) , ϕ|∂Q = 0

}
,

(Ajψ) (ξ) :=
[
σj(ξ)(−∆)jυ

]
ϕ (ξ) , j = 1, 2, 3, 4,

(1.11)

and {
D (A) :=

{
ϕ ∈ L2 (Q) : ∆ϕ ∈ L2 (Q) , ϕ|∂Q = 0

}
,

(Aϕ) (ξ) := −∆ϕ (ξ) .
(1.12)

We define the operator K by {
D (K) :=

{
ϕ ∈ L2 (Q) : Kϕ ∈ L2 (Q)

}
,

(Kϕ) (ξ) := b
[
(−∆)3υ

]
ϕ (ξ) .

(1.13)

Following [19] and [5], the fractional power of the operator (1.12) is well defined. Furthermore, we
have the following practical characterization of D(Aυ) through the classical Sobolev spaces. For the reader
convenience, we recall that

D(Aυ) =


H2υ(Q), 0 < υ < 1/4,

H
1/2
00 (Q), υ = 1/4,

H2υ
0 (Q), 1/4 < υ ≤ 1/2,

H2υ(Q) ∩H1
0 (Q), 1/2 < υ ≤ 1;

(1.14)

here, H
1/2
00 (Q) is the interpolation space defined in [20, Chapter, p. 66].

2. Statement of the Abstract Problem

In this section, a particular attention is given to the study of a general class of the abstract fourth-order
differential equations with operator coefficients posed in Hilbert spaces.

2.1. Preliminaries

We consider a complex separable Hilbert space H and a self-adjoint positive-definite operator A in H.
By Hυ, υ ≥ 0 we denote the scale of Hilbert spaces generated by the operator Aυ, i.e.,

Hυ := D (Aυ) ; (x, y)υ := (Aυx,Aυy) , x, y ∈ D (Aυ) .

Consider the Hilbert space L2(R+;H) consisting of all H-valued functions defined on R+, endowed with its
natural norm

∥h∥L2(R+;H) :=

(∫ +∞

0
∥h(t)∥2H dt

)1/2

.

According to Theorem 1.5.15 in [23], it is well established that Aυ is a self-adjoint positive definite
operator for υ > 0. This allows us to define the Sobolev space W 4,υ(R+;H) as follows:

W 4,υ(R+;H) :=
{
w : w(4) ∈ L2(R+;H), A4υw ∈ L2(R+;H)

}
. (2.1)
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endowed with the norm

∥w∥W 4,υ(R+;H) :=

(∥∥∥w(4)
∥∥∥2
L2(R+;H)

+
∥∥A4υw

∥∥2
L2(R+;H)

)1/2

,

For more details about these spaces, see [20, Chapter 1].
Let us consider the following abstract differential equation

d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+, (2.2)

where υ ∈ ]0, 1], h ∈ L2 (R+, H) and Aj , j = 1, 2, 3, 4, are linear operators acting on H. We also assume
that Eq. (2.2) is accompanied with the following nonhomogeneous abstract boundary conditions:

dw(0)

dt
= φ1,

d3w(0)

dt3
+Kw(0) = φ2, (2.3)

with K being an element of L(H7υ/2, Hυ/2), φ1 ∈ H5υ/2 and φ2 ∈ Hυ/2; here, L(X,Y ) denotes the space of
linear bounded operators acting from the space X to the space Y . Note here that the closed operator Aυ,
υ ∈ ]0, 1[ is boundedly invertible with inverse A−υ. For further information, we refer the reader to [3] and
[22].
First of all, we seek for a regular solution for (2.2), i.e., a vectorial function w ∈ W 4,υ(R+;H) satisfying
(2.2)-(2.3) a.e. in R+. Next, we provide some necessary conditions ensuring the regular solvability of our
problem (2.2)-(2.3). For the reader convenience, we recall also that the problem (2.2)-(2.3) is said to be
regularly solvable if and only if it admits a regular solution w(·) which satisfies the following conditions

lim
t→0

∥∥∥∥dw(t)dt
− φ1

∥∥∥∥
H5υ/2

= 0,

and

lim
t→0

∥∥∥∥d2w(t)dt2
w +Kw(t)− φ2

∥∥∥∥
Hυ/2

= 0

and for any h ∈ L2(R+;H), there exists C > 0 such that

∥w∥W 4,υ(R+;H) ≤ C ∥h∥L2(R+;H) .

In the current literature, we find many works considering various classes of the fourth-order operator-
differential equations. For example, in [2], some optimal results about the existence and uniqueness of
regular solutions have been established for the problem

d4w(t)

dt4
+A4w(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R,

d3w(t)

dt3
(0) = 0,

d2w(0)

dt2
−K

dw(0)

dt
= 0,

(2.4)

where

• h ∈ L2 (R+;H),

• (A,D(A)) is a self-adjoint positive definite operator in a Hilbert space H,

• Aj , j ∈ {1, 2, 3, 4} are, in general, linear unbounded operators,

• K ∈ L(H5/2, H3/2).
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In [1], many interesting regularity results are established for the problem

d4w(t)

dt4
+A4w(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+,

w(0) = φ ∈ H7/2,
d2w(0)

dt2
−K

dw(0)

dt
= ψ ∈ H3/2,

(2.5)

with the same assumptions as above. In the same direction, in [18] we find a complete study concerning the
problem

d4w(t)

dt4
+ ρ (t)A4w(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+,

w(0) = φ,
dw(0)

dt
= ψ,

with ρ being a scalar measurable function in R+. In this paper, it is clear that, due to the presence of
operator A4υ, υ ∈ ]0, 1] , the problem (2.2)-(2.3) can be viewed, in some sense, as a generalization of (2.5).

2.2. Existence of regular solution

In the sequel, the abbreviation W 4,υ
K (R+;H) stands for the space defined by

W 4,υ
K (R+;H) :=

{
w : w ∈W 4,υ(R+;H), w′(0) = 0, w′′′(0) = −Kw(0)

}
,

where K ∈ L(H7υ/2, Hυ/2).

Remark 2.1. As a direct consequence of the well known Lions-Peetre interpolation, the traces

w′′′(0) and Kw(0)

are well defined, see [20, Chapter 1]. Furthermore, for w ∈W 4,υ(R+;H), one has

wj(0) ∈ D
(
Aυ(7/2−j)

)
, j = 0, 1, 2, 3,

and the mapping
W 4,υ(R+;H) →

∏3
j=0D

(
Aυ(7/2−j)

)
,

w 7→
{
w(j)(0)

}
, 0 ≤ j ≤ 3,

is surjective; see also Theorem 3.1 in [20, Chapter 1].

The fist step of our strategy is based on the study of the principal part of Eq. (2.2); that is

d4w(t)

dt4
+A4υw(t) = h(t), t ∈ R+, (2.6)

equipped with the homogeneous initial conditions

dw(0)

dt
= 0,

d3w(0)

dt3
+Kw(0) = 0. (2.7)

Towards this end, let us denote by P0 the operator defined as follows

P0 : W 4,υ
K (R+;H) → L2(R+;H),

w 7→ P0w(t) =
d4w(t)

dt4
+A4υw(t).

(2.8)

We have the following:
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Lemma 2.2. Let B be the operator defined by

B := Aυ/2KA−7υ/2.

Assume that −
√
2 /∈ σ(B). Then the equation

P0w(t) = 0

has only a zero solution.

Proof. As in [2], we look for a solution of equation

P0w(t) = 0,

set on the space W 4,υ(R+;H). This solution has the next standard form

w0(t) = eη1tA
υ
ϕ1 + eη2tA

υ
ϕ2, t ∈ R+,

where (eη1tA
υ
)t≥0, (e

η2tAυ
)t≥0 are the C0-semigroups generated by η1A

υ and η2A
υ, respectively,

η1 = − 1√
2
+

1√
2
i and η2 = − 1√

2
− 1√

2
i,

with ϕ1, ϕ2 ∈ H7υ/2. Taking into account conditions (2.7), we obtain{
η1A

υϕ1 + η2A
υϕ2 = 0,

A3υ(η31ϕ1 + η32ϕ2) = −K(ϕ1 + ϕ2).
(2.9)

A direct computation implies that

ϕ2 = −η1
η2
ϕ1, (2.10)

and (√
2I +B

)
A7υ/2ϕ1 = 0, (2.11)

where I denotes the identity operator. Keeping in mind that −
√
2 /∈ σ(B), this leads to ϕ1 = 0 and from

(2.10) it results that ϕ2 = 0. Therefore, w0(t) = 0.

Now, we are able to state our main result concerning the solvability of problem (2.6)-(2.7):

Theorem 2.3. Let B be the operator defined by

B = Aυ/2KA−7υ/2,

and let −
√
2 /∈ σ(B). Then, the problem (2.6)-(2.7) has a unique regular solution w ∈W 4,υ

K (R+;H).

Proof. Step 1 Thanks to Lemma 2.2, we know that the problem

d4w(t)

dt4
+A4υw(t) = 0, t ∈ R+, (2.12)

dw(0)

dt
= 0,

d3w(0)

dt3
= −Kw(0) (2.13)

has only zero solution in W 4,υ
K (R+;H). Let us show that the equation P0w(t) = h(t) has a solution

w ∈W 4,υ
K (R+;H) for every h ∈ L2(R+;H). First, set

H(t) :=


f (t) , t ≥ 0,

0, t < 0.
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Let Ĥ(ξ) be the Fourier transform of F (t), i.e.,

Ĥ(ζ) =
1√
2π

∫ +∞

−∞
H(t)e−iζt dt, ζ ∈ R.

Then, performing the direct and inverse Fourier transforms, it is clear that the vector-valued function

v(t) =
1

2π

∫ +∞

−∞
(ζ4I +A4υ)−1

(∫ +∞

0
h(s)e−iζsds

)
eiξtdζ, t ∈ R, (2.14)

satisfies the equation
d4v(t)

dt4
+A4υv(t) = H(t) a.e. in R.

Now, we prove that v(·) defined by the formula (2.14) belongs to the space W 4,υ(R+;H). By Plancherel’s
theorem, we have:

∥v∥2W 4,υ(R+;H) =
∥∥v(4)∥∥2

L2(R+;H)
+
∥∥A4υv

∥∥2
L2(R+;H)

=
∥∥ζ4v̂∥∥2

L2(R+;H)
+
∥∥A4υv̂

∥∥2
L2(R+;H)

;

hence,

∥v∥2W 4,υ(R+;H)

=
∥∥∥ζ4(ζ4I +A4υ)−1Ĥ(ζ)

∥∥∥2
L2(R+;H)

+
∥∥∥A4υ(ζ4I +A4υ)−1Ĥ(ζ)

∥∥∥2
L2(R+;H)

.

Then

∥v∥2W 4,υ(R+;H)

≤

(
sup
ξ∈R

∥∥ζ4(ξ4I +A4υ)−1
∥∥
L(H,H)

+ sup
ξ∈R

∥∥A4υ(ζ4I +A4υ)−1
∥∥
L(H,H)

)
∥H∥2L2(R+;H) .

According to the classical spectral theory of self-adjoint operators, we obtain∥∥ζ4(ζ4I +A4υ)−1
∥∥
L(H,H)

≤ sup
λ∈σ(Aυ)

∣∣ζ4(ζ4 + λ4)−1
∣∣ ≤ 1,

and ∥∥A4υ(ζ4I +A4υ)−1
∥∥
L(H,H)

≤ sup
λ∈σ(Aυ)

∣∣λ4(ζ4 + λ4)−1
∣∣ ≤ 1;

hence v ∈W 4,υ(R;H).
Step 2 Put

w1(t) := v(t)|R+ .

Then w1 ∈ W 4,υ(R+;H) and satisfies the equation (2.6) almost everywhere in R+. On the other hand, the
trace theorem [20, Chapter 1] yields that

djw1(0)

dt4
∈ H(7/2−j)υ, j = 0, 1, 2, 3.

Similarly, as in the previous step, the solution of problem (2.6)-(2.7) can be written in the following form

w(t) = w1(t) + eη1tA
υ
ϕ1 + eη2tA

υ
ϕ2,

where

η1 = − 1√
2
+

1√
2
i and η2 = − 1√

2
− 1√

2
i,
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ϕ1, ϕ2 ∈ H7υ/2; see also (2.7). Consequently, we obtain the following system
dw1(0)

dt
+ η1A

υϕ1 + η2A
υϕ2 = 0,

d3w1(0)

dt3
+ η31A

3υϕ1 + η32A
3υϕ2 = −K(w1(0) + ϕ1 + ϕ2).

(2.15)

Taking into account that

φ2 = −η1
η2
φ1 −

1

η2
A−υ dw1(0)

dt
,

and keeping in mind the condition −
√
2 /∈ σ(B), we deduce that

φ1 = A−7υ/2(
√
2I +B)−1A7υ/2η ∈ H7υ/2,

where

η = −1− i

2
A−3υ

(
d3w1(0)

dt2
+ iA2υ dw1(0)

dt
+Kw1(0)− w1KA

−υ dw1(0)

dt

)
∈ H7υ/2.

Thus, w belongs to the space W 4,υ(R+;H) and it is a solution to the problem (2.6)-(2.7). Moreover, the
operator

P0 :W
4,υ
K (R+;H) → L2(R+;H),

is bounded. In fact, we have

∥P0w∥2L2(R+;H) =

∥∥∥∥d4w(t)dt4
+A4υw(t)

∥∥∥∥2
L2(R+;H)

≤ 2 ∥w∥2W 4,υ(R+;H) .

Therefore, by the Banach inverse operator theorem, we deduce that operator P0 is invertible and

P−1
0 : L2(R+;H) →W 4,υ

K (R+;H).

Furthermore, this operator is bounded and we obtain

∥w∥W 4,υ(R+;H) ≤ C ∥h∥L2(R+;H) .

As a direct consequence of Lemma 2.2 and Theorem 2.3, we have:

Corollary 2.4. Let B be the linear operator defined by

B = Aυ/2KA−7υ/2,

and let −
√
2 /∈ σ(B). Then the operator P0 defined by (2.8) is an isomorphism.

Let us prove now the following coercive inequality, which will be used later on:

Lemma 2.5. Let B the linear operator defined by B = Aυ/2KA−7υ/2, with Re (B) ≥ 0. Then, for every
w ∈W 4,υ

K (R+;H), the following inequality holds true:

∥P0w∥2L2(R+;H) ≥ ∥w∥2W 4,υ(R+;H) + 2

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥2
L2(R+;H)

. (2.16)
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Proof. For w ∈W 4,υ
K (R+;H), we have

∥P0w∥2L2(R+;H) (2.17)

=

∥∥∥∥d4wdt4
∥∥∥∥2
L2(R+;H)

+
∥∥A4υw

∥∥2
L2(R+;H)

+ 2Re

(
<
d4w

dt4
, A4υw >L2(R+;H)

)
.

On the other hand, integrating by parts, we obtain

<
d4w

dt4
, A4υw >L2(R+;H) =

[
<
d3w

dt3
(t), A4υw(t) >

]+∞

0

−
∫ +∞
0 <

d3w(t)

dt3
, A4υ dw(t)

dt
> dt

= < Kw(0), A4υw(0) > +
∫ +∞
0 < A2υ d

2w(t)

dt2
, A2υ d

2w(t)

dt2
> dt

= < BA7υ/2w(0), A7υ/2w(0) > +

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥2
L2(R+;H)

.

(2.18)

Taking into account the fact that Re (B) ≥ 0, the estimate (2.16) is easily deduced from relation (2.18).

Observe here that Corollary 2.4 implies that the quantity ∥P0w∥L2(R+;H) is equivalent to ∥w∥W 4,υ(R+;H)

in the space W 4,υ
K (R+;H). Moreover, the norms of the intermediate derivative operators

Ajυ d
4−j

dt4−j
:W 4,υ

K (R+;H) → L2(R+;H), j = 1, 2, 3, 4,

can be estimated with respect to ∥P0w∥L2(R+;H) (by the same continuity argument used in [20]).

Theorem 2.6. Under the assumptions of Lemma 2.5, the following estimates hold true∥∥∥∥Ajυ d
4−jw

dt4−j

∥∥∥∥
L2(R+;H)

≤ aj ∥P0w∥L2(R+;H) , j = 1, 2, 3, 4, (2.19)

for any w ∈W 4,υ
K (R+;H) with

a0 = a1 = a4 = 1, a2 =
1

2
, a3 =

1√
2
.

Proof. Let w ∈W 4,υ
K (R+;H). From the equality (2.18), we have

Re
(
< P0w,A

4υw >L2(R+;H)

)
=
∥∥A4υw

∥∥2
L2(R+;H)

+Re
(
< BA7υ/2w(0), A7υ/2w(0) >

)
+

∥∥∥∥Ad2wdt2
∥∥∥∥2
L2(R+;H)

.

Then we can see that

Re
(
< P0w,A

4υw >L2(R+;H)

)
≥
∥∥A4υw

∥∥2
L2(R+;H)

+

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥2
L2(R+;H)

.

Applying the Cauchy-Schwarz inequality and the Young inequality, we conclude that

∥∥A4υw
∥∥2
L2(R+;H)

+

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥2
L2(R+;H)

≤ ∥P0w∥L2(R+;H)

∥∥A4υw
∥∥
L2(R+;H)

, (2.20)

from which we may deduce that

∥∥A4υw
∥∥2
L2(R+;H)

+

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥2
L2(R+;H)

≤ δ

2
∥P0w∥2L2(R+;H) +

1

2δ

∥∥A4υw
∥∥2
L2(R+;H)

, (2.21)
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with δ > 0.
Choosing δ = 1

2 in (2.21), we get∥∥∥∥A2υ d
2w

dt2

∥∥∥∥
L2(R+;H)

≤ 1

2
∥P0w∥L2(R+;H) . (2.22)

On the other hand, (2.20) yields∥∥A4υw
∥∥2
L2(R+;H)

≤ ∥P0w∥L2(R+;H)

∥∥A4υw
∥∥
L2(R+;H)

,

which implies that ∥∥A4υw
∥∥
L2(R+;H)

≤ ∥P0w∥L2(R+;H) . (2.23)

Now the inequality (2.16) implies ∥∥∥∥d4wdt4
∥∥∥∥
L2(R+;H)

≤ ∥P0w∥L2(R+;H) . (2.24)

Let us estimate now the norm

∥∥∥∥A3υ dw

dt

∥∥∥∥
L2(R+;H)

. Taking into account that w ∈ W 4,υ
K (R+;H), the use

of the Cauchy-Schwarz inequality combined with inequalities (2.22)-(2.23) allows us to conclude that∥∥∥∥A3υ dw

dt

∥∥∥∥2
L2(R+;H)

=

[
< A3υw(t), A3υ dw(t)

dt
>

]+∞

0

−
∫ +∞

0
< A4υw(t), A2υ d

2w(t)

dt2
> dt,

so ∥∥∥∥A3υ dw

dt

∥∥∥∥2
L2(R+;H)

≤
∥∥∥∥A2υ d

2w

dt2

∥∥∥∥
L2(R+;H)

∥∥A4υw
∥∥
L2(R+;H)

≤ 1

2
∥P0w∥2L2(R+;H) .

Consequently, ∥∥∥∥A3υ dw

dt

∥∥∥∥
L2(R+;H)

≤ 1√
2
∥P0w∥L2(R+;H) . (2.25)

Finally, let us estimate the quantity

∥∥∥∥Aυ d
2w

dt2

∥∥∥∥
L2(R+;H)

. We know that, for w ∈W 4,υ(R+;H), we have:

∥∥∥∥Aυ d
3w

dt3

∥∥∥∥2
L2(R+;H)

≤ 2

∥∥∥∥A2υ d
2w

dt2

∥∥∥∥
L2(R+;H)

∥∥∥∥d4wdt4
∥∥∥∥
L2(R+;H)

. (2.26)

Inserting the inequalities (2.22) and (2.24) in (2.26), we get∥∥Aυw′′′∥∥
L2(R+;H)

≤ ∥P0w∥L2(R+;H) , (2.27)

which ends the proof of this theorem.

It is worth noting that the coefficient operator A, in our boundary value problem, was considered with a
positive natural power so far. From now on, we will treat our problem in general case, where the considered
coefficient operators will be of the form Aυ, υ ∈ (0, 1). To this end, let us consider the following abstract
Cauchy problem:

d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+, (2.28)
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dw(0)

dt
= 0,

d3w(0)

dt3
= −Kw(0). (2.29)

Put
P : W 4,υ

K (R+;H) → L2(R+;H),

w(t) 7→ Pw(t) :=
d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
.

(2.30)

The first auxiliary result concerning this operator is formulated as follows:

Lemma 2.7. Assume that AjA
−jυ ∈ L(H,H), j = 1, 2, 3, 4. Then the operator P, defined by (2.30), is

bounded.

Proof. Let w ∈W 4,υ
K (R+;H). Then we have

∥Pw∥L2(R+;H) ≤ ∥P0w∥L2(R+;H) +

∥∥∥∥∥ 4∑
j=1

Aj
d4−jw(t)

dt4−j

∥∥∥∥∥
L2(R+;H)

≤
√
2 ∥w∥W 4,υ(R+;H) +

∥∥∥∥∥ 4∑
j=1

Aj
d4−jw(t)

dt4−j

∥∥∥∥∥
L2(R+;H)

≤
√
2 ∥w∥W 4,υ(R+;H) +

4∑
j=1

∥∥AjA
−jυ
∥∥
L(H,H)

∥∥∥∥Ajυ d
4−jw(t)

dt4−j

∥∥∥∥
L2(R+;H)

.

Using the theorem for intermediate derivatives in [20], we deduce that

∥Pw∥L2(R+;H) ≤ C ∥w∥W 4,υ(R+;H) .

Let us state our essential results concerning the problem (2.28)-(2.29) performed in the space L2(R+;H).

Theorem 2.8. Let B = Aυ/2KA−7υ/2, let
Re (B) ≥ 0,
and
AjA

−jυ ∈ L (H,H) , j = 1, 2, 3, 4.

Assume also that

a =
4∑

j=1

ai
∥∥AjA

−jυ
∥∥
L(H,H)

< 1,

with

a1 = 1, a2 =
1

2
, a3 =

1√
2
, a4 = 1.

Then, for every h ∈ L2(R+;H), the boundary value problem (2.28)-(2.29) has a unique regular solution.

Proof. First, we rewrite the boundary value problem (2.28)-(2.29) in the form of operator equation

P0w(t) + (P − P0)w(t) = h(t), t ∈ R+, (2.31)

where h ∈ L2(R+;H) and w ∈W 4,υ
K (R+;H).

The technical conditions
B = Aυ/2KA−7υ/2, Re (B) ≥ 0

ensure that the operator
P−1
0 : L2(R+;H) →W 4,υ

K (R+;H)
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is well defined. Set w(t) := P−1
0 v(t), with v ∈ L2(R+;H). Then a direct computation shows that v(t)

satisfies the following equation

v(t) + (P − P0)P
−1
0 v(t) = h(t), t ∈ R+.

Keeping in mind that v ∈ L2(R+;H) and taking into account the estimates (2.19), one has∥∥(P − P0)P
−1
0 v

∥∥
L2(R+;H)

= ∥(P − P0)w∥L2(R+;H) ,

so ∥∥(P − P0)P
−1
0 v

∥∥
L2(R+;H)

≤
4∑

j=1

∥∥AjA
−jυ
∥∥
L(H,H)

∥∥∥∥Ajυ d
4−jw(t)

dt4−j

∥∥∥∥
L2(R+;H)

≤
4∑

j=1

aj
∥∥AjA

−jυ
∥∥
L(H,H)

∥P0w∥L2(R+;H) .

Therefore, ∥∥(P − P0)P
−1
0 v

∥∥
L2(R+;H)

= a ∥v∥L2(R+;H) .

Since a < 1, the operator (
I + (P − P0)P

−1
0

)−1

is well defined in the space L2(R+;H). Consequently, the equation (2.31) is uniquely solvable in the space
W 4,υ

K (R+;H), and

w(t) = P−1
0

(
I + (P − P0)P

−1
0

)−1
h(t).

Moreover,

∥w∥W 4,υ(R+;H)

≤
∥∥P−1

0

∥∥
L(L2(R+;H),W 4,υ(R+;H))

∥∥(I + (P − P0)P
−1
0 )−1

∥∥
L(L2(R+;H),L2(R+;H))

∥h∥L2(R+;H)

≤ C ∥h∥L2(R+;H) .

Remark 2.9. In Theorem 2.8, the condition Re (B) ≥ 0 with B = Aυ/2KA−7υ/2, allows us to omit the
condition −

√
2 /∈ σ(B).

Finally, we may get the conditions for the regular solvability of the boundary value problem (2.2)-(2.3)
from Theorem 2.8:

Theorem 2.10. Assume that all conditions of Theorem 2.8 are fulfilled. Then the boundary value problem
(2.2)-(2.3) is regularly solvable.

Proof. In the case φ1 = φ2 = 0, the regular solvability of the boundary value problem (2.2)-(2.3) was
established.

In the case Aj = 0, j = 1, 2, 3, 4, and h = 0, the problem (2.2)-(2.3) is reduced to the new one given by

d4w(t)

dt4
+A4υw(t) = 0, t ∈ R+, (2.32)

dw(0)

dt
= φ1,

d3w(0)

dt3
+Kw(0) = φ2, (2.33)
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with φ1 ∈ H5υ/2, φ2 ∈ Hυ/2. The solution of problem (2.32)-(2.33) can be written as follows

w0(t) = eη1tA
υ
ϕ1 + eη2tA

υ
ϕ2, (2.34)

where

η1 = − 1√
2
+

1√
2
i and η2 = − 1√

2
− 1√

2
i,

and ϕ1, ϕ2 are the unknown vectors to be determined from the conditions (2.33):{
η1A

υϕ1 + η2A
υϕ2 = φ1,

A3υ(η31ϕ1 + η32ϕ2) +K(ϕ1 + ϕ2) = φ2.
(2.35)

System (2.35) yields

ϕ2 =
1

η2

(
A−υφ1 − η1ϕ1

)
,

(
√
2I +B)A−7υ/2ϕ1 = (i− 1)Aυ/2(φ2 − η22A

2υφ1 − η1A
−υφ1);

since −
√
2 /∈ σ(B), we have

ϕ1 = −(1− i)

2
A7υ/2(

√
2I +B)Aυ/2(φ2 − η22A

2υφ1 − η1A
−υφ1),

thus

ϕ2 = η1A
−υφ1 + (

1− i

2
)A7υ/2(

√
2I +B)Aυ/2(φ2 − η22A

2υφ1 − η1A
−υφ1).

It is not difficult to show that ϕ1, ϕ2 ∈ H7υ/2. From (2.34), we obtain

∥w∥W 4,υ(R+;H) ≤ C
(
∥ϕ1∥H7υ/2

+ ∥ϕ2∥H7υ/2

)
≤ C

(
∥φ1∥H5υ/2

+ ∥φ2∥Hυ/2

)
.

(2.36)

Now, we are able to study the boundary value problem (2.2)-(2.3). We will seek its solutions in the form
w(t) = v(t) + w0(t), where w0(t) is a regular solution of the problem (2.32)-(2.33). Then the function v(t)
is the boundary value problem solution to

d4v(t)

dt4
+A4υv(t) +

4∑
j=1

Aj
d4−jv(t)

dt4−j
= g(t), t ∈ R+, (2.37)

dv(0)

dt
= 0,

d3v(0)

dt3
+Kv(0) = 0, (2.38)

where

g(t) = −
4∑

j=1

Aj
d4−jw0(t)

dt4−j
+ h(t).

Let us estimate the quantity ∥g∥L2(R+;H). We have

∥g∥L2(R+;H) ≤

∥∥∥∥∥ 4∑
j=1

Aj
d4−jw0(t)

dt4−j

∥∥∥∥∥
L2(R+;H)

+ ∥h∥L2(R+;H)

≤
4∑

j=1

∥∥AjA
−jυ
∥∥
L(H)

∥∥∥∥Ajυ d
4−jw0(t)

dt4−j

∥∥∥∥
L2(R+;H)

+ ∥h∥L2(R+;H)

≤ C
(
∥φ1∥H5υ/2

+ ∥φ2∥Hυ/2
+ ∥h∥L2(R+;H)

)
.
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Thanks to Theorem 2.8 and the estimate (2.36), we have

∥w∥W 4,υ(R+;H) ≤ ∥v∥W 4,υ(R+;H) + ∥w0∥W 4,υ(R+;H)

≤ ∥g∥L2(R+;H) + ∥w0∥W 4,υ(R+;H)

≤ C
(
∥φ1∥H5υ/2

+ ∥φ2∥Hυ/2
+ ∥g∥L2(R+;H)

)
.

3. Existence of the Solution to the Main Problem

In this section, we return to the original problem. In order to provide a comprehensive study of the
problem (1.1)-(1.2)-(1.3), we need some intermediate results which can be viewed as a direct consequence
of the results obtained in the previous section.

Remark 3.1. To simplify the computations involving functional spaces and make the study more compre-
hensible, we consider the case when υ = 1/8. Thus, from (1.14) and (2.1), the space W 4,υ(R+, L2(Q)) is
defined as follows:

W 4,υ(R+, L2(Q)) =
{
w : w(4) ∈ L2

(
R+, H

)
, w ∈ L2

(
R+, H1

0 (Q)
)}
.

Keeping in mind the definition of the operators (A,D (A)) , (Aj , D (Aj)) and (K,D (K)) , defined respec-
tively by (1.12)-(1.11) and (1.13), our main result for the transformed problem (1.9)-(1.10) is formulated as
follows:

Theorem 3.2. Let h ∈ L2(R+ ×Q). Assume that

Re (b) ≥ 0,
4∑

j=1
sup
ξ∈Q

|σj(ξ)| < 1.

Then, the problem

d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+,

with
dw(0)

dt
= 0,

d3w(0)

dt3
+Kw(0) = 0,

has a unique regular solution w ∈W 4,υ(R+, L2(Q)).

By applying the classical perturbation argument as described in [4, Section 3, p. 49], we conclude that

Theorem 3.3. Let h ∈ L2(R+ ×Q). Assume that

Re (b) ≥ 0,
4∑

j=1
sup
x∈Ω

|σj(ξ)| < 1.

Then, the problem (1.6)-(1.7)-(1.8) has a unique regular solution w ∈W 4,υ(R+, L2(Q)).

Consider now the inverse change of variables

Ψ−1 : R+ ×Q→ R+ ×Π
(t, ξ) 7→ (t, x) ,

with

x1 =
(

γ
ξ3

)α
β
ξ1, x2 =

(
γ
ξ3

)α
β
ξ2, x3 =

(
γ
ξ3

) 1
β
.
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We have

w =

(
γ

ξ3

)−α
β (

3α
8υ

+2)
u

((
γ

ξ3

)α
β

ξ1,

(
γ

ξ3

)α
β

ξ2,

(
γ

ξ3

) 1
β

)
;

this gives

w =

(
γ

ξ3

)− 3α
2β

(x3)
−α( 3

2υ
+ 1

2) u. (3.1)

In an equivalent manner,

∂ξ1w =

(
γ

ξ3

)− 3α
2β

(x3)
−α( 3

2υ
− 1

2) ∂x1u, (3.2)

and

∂ξ2w =

(
γ

ξ3

)− 3α
2β

(x3)
−α( 3

2υ
− 1

2) ∂x2u. (3.3)

Due to the fact that w, ∂ξ1w, and ∂ξ2w are L2-integrable in Q, (1.5) with (3.1)-(3.2)-(3.3) implies that

(x3)
−α( 3

2υ
+ 1

2) u, (x3)
−α( 3

2υ
− 1

2) ∂x1u, (x3)
−α( 3

2υ
− 1

2) ∂x2u ∈ L2(Π). (3.4)

Furthemore, a direct computation shows that

∂x2w

=

(
γ

ξ3

)−s
[
sξ−1

3 u− α

β
ξ1ξ

−1
3

(
γ

ξ3

)α
β

∂x1u− α

β
ξ2ξ

−1
3

(
γ

ξ3

)α
β

∂x2u

− 1

β
ξ−1
3

(
γ

ξ3

) 1
β

∂x3u

]

=

(
γ

ξ3

)− 3α
2β
[
sξ−1

3 x
−α( 3

8υ
+ 1

2)
3 u− α

β
ξ1ξ

−1
3 x

−α( 3
8υ

− 1
2)

3 ∂x1u− α

β
ξ2ξ

−1
3 x

−α( 3
8υ

− 1
2)

3 ∂x2u

− 1

γβ
x
−α( 3

8υ
− 1

2)
3 ∂x3u

]
.

Since ∂ξ3w is L2-integrable in Q, according to the previous calculations and (3.4), we obtain

x
−α( 3

8υ
− 1

2)
3 ∂x3u ∈ L2(Π).

In summary, the following proposition has been established.

Proposition 3.4. The fact that w ∈W 4,υ(R+, L2(Q)) implies that

u ∈W 4,υ(R+, L2(Π)).

This help us to justify our main result set in the cusp domain R+ ×Π:

Theorem 3.5. Let f ∈ L2(R+ ×Π). Assume that

Re (b) ≥ 0 and
4∑

j=1

sup
x∈Π

|ρj(x)| < 1,

Then, the problem

d4

dt4
u (t, x) + (1 + ρ4 (x))(−∆)4υu (t, x) +

3∑
j=1

(
ρj (x) (−∆)jυ

) d4−j

dt4−j
u (t, x) = f (t, x) ,
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u|R+×∂Π = 0,

du

dt

∣∣∣∣
{0}×Π

= 0 and
d3u

dt3
+ b(−∆)3υu

∣∣∣∣
{0}×Π

= 0,

has a unique regular solution u ∈W 4,υ(R+, L2(Π)).

4. Conclusion

This work provides significant insights into the boundary value problem on a singular domain involving
a cuspidial point by using semigroup theory and fractional powers of linear operators on Hilbert spaces.
Specifically, we have established the existence and uniqueness of solutions for the problem given by

d4

dt4
u (t, x) + (1 + ρ4 (x))(−∆)1/2u (t, x) +

3∑
j=1

(
ρj (x) (−∆)j/8

) d4−j

dt4−j
u (t, x) = f (t, x) ,

u|R+×∂Π = 0,

and
du

dt

∣∣∣∣
{0}×Π

= 0,
d3u

dt3
+ b(−∆)3/8u

∣∣∣∣
{0}×Π

= 0.

on the cusp domain R+ ×Π, where

Π :=

{
x ∈ R3 : 0 < x3 < 1,

(
x1

(x3)
α ,

x2
(x3)

α

)
∈ Ω

}
, α > 1,

and
f ∈ L2(R+ ×Π).

Furthermore, we have furnished some sufficient conditions for the wellposedness and regular solvability of a
class of complete abstract fourth-order differential equations

d4w(t)

dt4
+A4υw(t) +

4∑
j=1

Aj
d4−jw(t)

dt4−j
= h(t), t ∈ R+,

endowed with nonhomogeneous abstract boundary conditions

dw(0)

dt
= φ1 ∈ H5υ/2,

d3w(0)

dt3
+Kw(0) = φ2 ∈ Hυ/2,

where, υ ∈ ]0, 1], A is a self-adjoint positive definite operator in a separable Hilbert space H, Aj , j ∈
{1, 2, 3, 4} are linear operators acting on H, K ∈ L(H7υ/2, Hυ/2) and h ∈ L2 (R+;H).
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differential equation of elliptic type in UMD spaces, Advances in Differential Equations, 15 (1-2) (2010), 43-72. 1

[16] A. Favini, R. Labbas, A. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two
habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448–480. 1

[17] D. Halpern, O. E. Jensen, and J. B. Grotberg, A theoretical study of surfactant and liquid delivery into the lung,
Journal of Applied Physiology, vol. 85, no. 1, pp. 333–352, 1998. 1

[18] U. O. Kalemkush, On a boundary value problem for fourth-order operator-differential equations with a variable
coefficient, Azerb. J. Math. 10, No. 1, 181-192 (2020). 2.1

[19] C. L. Fefferman, K. W. Hajduk, J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms
via eigenspaces., Proc. London Math. Soc. 125 (2022), 759–777. 1

[20] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and A pplications, Dunod, Paris, 1968;
Mir, Moscow, 1971; Springer-Verlag, Berlin, 1972. 1, 2.1, 2.1, 2.2, 2.2, 2.2

[21] T. G. Myers, J .P. F. Charpin, S. J.Chapman, The flow and solidification of a thin fluid film on an arbitrary
three-dimensional surface, Physics of Fluids, vol. 14, N. 8, pp. 2788–2803, 2002 1

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag,
New York, 1983. 1, 2.1

[23] L. A. Santos, Fractional powers approach of operators for abstract evolution equations of third order in time,
(2020). 2.1

[24] A. Toga, Brain Warping, Academic Press, New York, USA, 1998


	1 Origin of the Problem and Motivation
	2 Statement of the Abstract Problem
	2.1 Preliminaries
	2.2 Existence of regular solution

	3 Existence of the Solution to the Main Problem
	4 Conclusion



