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ON THE ARITHMETIC OF THE RATIONAL FUNCTION
FIELD K(X)

SARFRAZ AHMAD1, ANGEL POPESCU1,2

Abstract. Let K be a commutative field. In this paper we study the
action of the automorphism group of the rational function field K(X) on
the set of all valuations of K(X) which are trivial on K. We apply this
study in finding a classification of some simple algebraic extension of K.

Key words: Valuation Theory, Algebraic Extensions, Automorphism, Ac-
tion of groups.
AMS SUBJECT: 16W60, 16W22, 16W20.

Here we begin to study the action of G = Aut(K(X)/K) on the set of
discrete rank one valuations of K(X).

Definition 1. A homogeneous polynomial P (Z, Y ) = a0Y
n +a1ZY n−1 + ...+

anZn of degree n is called an irreducible polynomial if it cannot be decomposed
into a product of homogeneous polynomials of degree greater or equal to one.

Lemma 1. A polynomial P (X) = a0 + a1X + ... + Xn is irreducible in K[X]
if and only if P̄ (Z, Y ) = a0Y

n + a1ZY n−1 + ... + an−1Z
n−1Y + Zn is irre-

ducible in the multiplicative monoid K[Z, Y ]h ={all homogeneous polynomials
in K[Z, Y ]}.
Proof. ⇒) Suppose P̄ (Z, Y ) = Q1(Z, Y )Q2(Z, Y ) with Q1, Q2 of degree ≥ 1.
Since a0 6= 0 and Q1, Q2 has the homogeneous degree at least 1, so for
X = Z/Y , we obtain P̄ (X, 1) = P (X) = Q1(X, 1)Q2(X, 1), that is a proper
decomposition of P (X) in K[X], a contradiction.
⇐) Conversely, if P̄ (Z, Y ) is irreducible, then a proper decomposition of
P (X) = P1(X)P2(X) implies a proper decomposition of P̄ (Z, Y ) = P̄1(Z, Y )P̄2

(Z, Y ), a contradiction. ¤
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Definition 2. Let P1, P2 be two irreducible polynomials in K[X]. Then P1 ∼
P2 if and only if P1 = kP2 where k ∈ K. The class of all equivalent irreducible
polynomials to P is called an irreducible divisor in K[X] and it is denoted by
[P ].

Corollary 2. The mappings [P (X)] θ7→ P̄ (Z, Y ) and [P̄ (Z, Y )] θ−17→ P (X),
X = Z/Y , give a one-to-one correspondence between the set of irreducible
divisors of degree ≥ 2 of K(X) and the set of irreducible divisors of degree ≥ 2
of K[Z, Y ]h.

Remark 1. In general, let R be a unique factorization domain. A prime
divisor of R is an ideal of R generated by an irreducible element Q of R and
it gives rise to a unique discrete valuation VQ of the field of fraction T of R
(see 1, 2, 3). In fact VQ depends only on [Q]. Here Q1 ∈ [Q] ⇔ Q1 = uQ
for some unit u in R. Namely, if ξ ∈ R, then (ξ) = (Qα1

1 )(Qα2
2 )...(Qαn

n ),
the unique decomposition in R of the ideal generated by ξ into principal ideals
generated by some unique power of the irreducible elements Q1 = Q,Q2, ..., Qn

of R. We simply put VQ(ξ) = the exponent of Q in the decomposition of ξ,
namely VQ(ξ) = α1. If η = ξ1

ξ2
, ξ1, ξ2 ∈ R, ξ2 6= 0, is an element of T , we put

VQ(η) = VQ(ξ1)− VQ(ξ2).

Lemma 3. Let
(

a b
c d

)
∈ GL2(K), i.e. ad− bc 6= 0 and let K[Z, Y ]h be the

multiplication monoid of all homogeneous polynomials in two variables Z and
Y with coefficients in K. Let ϕ : K[Z, Y ]h → K[X] be the following product
preserving mapping: ϕ(P̄ (Z, Y )) = P̄ (aX + b, cX + d) and we denote it by
¯̄P (X). Then ϕ transforms a polynomial of degree n into a polynomial of the
same degree n for any n ≥ 2. The inverse of ϕ does the same. In particular,
P̄ (Z, Y ) is irreducible in K[Z, Y ]h if and only if ϕ(P̄ (Z, Y )) is irreducible in
K[X].

Proof. Let us denote by ψ : K[Z, Y ]h → K[Z, Y ]h defined by ψ(P̄ (Z, Y )) =
P̄ (aZ + bY, cZ + dY ). This mapping is an isomorphism and its inverse ψ−1

is defined as ψ−1(Q̄(Ź, Ý )) = Q̄(áŹ + b́Ý , ćŹ + d́Ý ) where
(

á b́

ć d́

)
=

(
a b
c d

)−1

. It is easy to see that ψ transforms a homogeneous polynomial of

degree n into a homogeneous polynomial of the same degree. Hence ψ and ψ−1

transform irreducible polynomials into irreducible polynomials. But ϕ is the
composition θ−1 ◦ ψ between the K-algebra isomorphism θ−1 from Corollary
2 and the above K-algebra isomorphism ψ. Now all the statements of Lemma
3 become clear. ¤
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Remark 2. From 2. we know that any (Krull) valuation ν discrete, trivial of
K and of rank 1 of K(X), the rational function field in one variable X over
the field K, is of the form νp(see Remark 1), where P is a monic irreducible
polynomial is K[X], the ring of polynomials in one variable over K, or ν =
ν∞, where ν∞(A

B ) = degB − degA for any A,B ∈ K[X]. Let V alK(X) be
the set of all these valuations. From 1. we know that the automorphism
group G = Aut(K(X)/K) acts on the set V alK(X) in the following way: σ ∈
G, (σ ∗ ν)(f(X)) = ν(σ(f(X))) = ν(f(σ(X))), where f(X) ∈ K(X). If
σ ∈ Aut(K(X)/K), let σ(X) = aX+b

cX+d , where ad − bc 6= 0, we denote Aσ =(
a b
c d

)
.

Lemma 4. If ν 6= ν∞, then σ ∗ ν is a new (Krull) valuation on K(X). If

ν = ν∞, then σ∗ν∞ is well defined if and only if Aσ =
(

a b
0 d

)
, with ad 6= 0.

Proof. a). (σ ∗ ν)(0) = ν(0) = ∞ and (σ ∗ ν)(f) = ∞⇒ σ(f) = 0 ⇒ f = 0.
b). (σ ∗ ν)(fg) = ν(σ(f)σ(g)) = ν(σ(f)) + ν(σ(g)) = (σ ∗ ν)(f) + (σ ∗ ν)(g)
c). (σ ∗ ν)(f + g) = ν(σ(f) + σ(g) ≥ min{ν(σ(f)), ν(σ(g))} = min{(σ ∗
ν)(f), (σ ∗ ν)(g)}. If ν = ν∞ and c 6= 0, (σ ∗ ν∞)(L(X)) = ν∞(

¯̄L(X)
(cX+d)n ) = 0,

where L is any polynomial of K[X] of degree n. If ν = ν∞ and c = 0,
σ ∗ ν∞ = ν∞. ¤

Any σ ∈ G is complete defined by a nonsingular 2 × 2 matrix Aσ =(
a b
c d

)
∈ GL2(K). The corresponding ϕ from lemma 3 will be denoted

by ϕσ, i.e. ϕσ(P̄ (Z, Y )) = P̄ (aX + b, cX + d) = ¯̄P .

Theorem 5. Let [P ] be a prime divisor of K(X), i.e. the class of an ir-
reducible polynomial P of K[X] or the class of 1

X (which gives the valution
ν∞). Let σ ∈ G = Aut(K(X)/K) and let [Q], such that σ ∗ νp = νQ. Then
we have the following cases: (a). If [P ] 6= [cX + d] and [p] 6= [ 1

X ], then
[Q(X)] = [(θ−1 ◦ ψ−1

σ ◦ θ)(P )]. (b) If [P ] = [cX + d], then [Q(X)] = [ 1
X ],

i.e. νQ = ν∞. (c) If νP = ν∞, then σ ∗ ν∞ is well defined if and only if

Aσ =
(

a b
0 d

)
, ad 6= 0 and in this last case, σ ∗ ν∞ = ν∞, i.e. ν∞ is a fixed

”point” for all such a σ.

Proof. (a) Let P (X) be a monic irreducible polynomial of K[X] such that
[P ] 6= [cX + d]. Then νQ(f) = νP (σ(f)) for every f ∈ K(X). But νQ(Q) =
1, so we must compute νP (σ(Q(X))) = 1, but σ(Q(X)) = Q(σ(X)) =
Q̄(aX+b,cX+d)

(cX+d)n , where Aσ =
(

a b
c d

)
and degQ = n. Here we continue to

use the same notations as in Lemmas 1 and 3. Namely Q̄(Z, Y ) = θ(Q(X))
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and Q̄(aX + b, cX + d) = ϕσ(Q̄(Z, Y )) = (ϕσ ◦ θ)(Q(X)) and again we denote
it by ¯̄Q(X). Sinc νP (σ(Q(X))) = 1 we get that ξP (X) = ¯̄Q(X), where ξ ∈ K.
Hence Q(X) = ξ(θ−1 ◦ ϕ−1

σ )(P ). But ϕσ = θ−1 ◦ ψσ (see the proof of Lemma
3) and so, [Q(X)] = [(θ−1 ◦ ψ−1 ◦ θ)(P )].

(b) If [P]=[cX+d], then νP [Q̄(aX+b, cX+d)] = n+1, i.e. Q̄(aX+b, cX+d) =
η(cX+d)n+1, with η ∈ K. Like in (a), we get that Q(X) = [(θ−1◦ψσ◦θ)(cX+
d)]n+1 = [θ−1(Y )]n+1 = 1.

Hence σ ∗ νP is no one of the finite valuation νQ for an irreducible polynomial
Q of K[X]. It remains only that σ ∗ ν[cX+d] = ν∞.

(c) If νP = ν∞ we just did it in Lemma 4. ¤

Remark 3. From Theorem 5 we have to consider the action of G = Aut(K(X)
/K) only on val∗K(X) = valK(X)\{ν∞, νcX+d, c 6= 0, c, d ∈ K}. We shall simply
identify the valuation νP ∈ val∗K(X) with the monic irreducible polynomial P

of degree ≥ 2. We simply define σ ∗ P (X) = ¯̄P (X), with the notations from
Lemma 3.

Theorem 6. Let val∗K(X),n be the valuations which comes from all the monic
irreducible polynomials of degree n, n ≥ 2. Then for any σ ∈ G, σ∗val∗K(X),n =
val∗K(X),n.

Proof. This equality is a simple consequence of Theorem 5 (a) namely, the
equaltiy [Q(X)] = [(θ−1◦ψ−1

σ ◦θ)(P (X))] or P (X) = (θ−1◦ψσ ◦θ)(Q(X)). ¤

Remark 4. The result of Theorem 6 deos not mean that the action ”*” is
transitive. For instance, it is not difficult of prove that there does not exist a
σ ∈ G such that [σ ∗ (x3 + 2)] = [x3 + 3], when K = Q. In the same way,
if P = X2 + B and Q = X2 + C, B 6= C, then does not exist a σ ∈ G such
that [σ ∗ P ] = [Q]. A very interesting question is to study the orbits of G on
val∗K(X),2, val∗K(X),3, ....

Let α ∈ K̄, a fixed algebraic closure of K, be a root of a monic irreducible

polynomial P (X) ∈ K[X], α 6∈ K. Let σ ∈ G, Aσ =
(

a b
c d

)
, be an element

of G. Let β ∈ K̄, be defined by the equality α = aβ+b
cβ+d . Let P̄ (Z, Y ) =

θ(P (X)). Then P̄ (α, 1) = 0. But ¯̄P (X) = P̄ (aX + b, cX + d) = (cX +
d)degpP (aX+b

cX+d). Since β 6∈ K, one has that ¯̄P (β) = 0 (P (α) = 0!), i.e. β is
a root of ¯̄P (X). Let denote by Σα the mapping P (X) 7→ ¯̄P (X) defined by
σ ∈ G. We obtained in fact the following result:
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Theorem 7. If σ ∈ G, Aσ =
(

a b
c d

)
, then α 6∈ K is a root of the monic

irreducible polynomial P (X) ∈ K[X] if and only if β ∈ K̄ defined by the
formula α = aβ+b

cβ+d is a root of ¯̄P (X) = Σα(P (X)), In particular K(α) = K(β).

This is a criteria to describe the orbit of the action of ”*” on a given subset
val∗K(X),n, where n ≥ 2. Morover, for n = 2 we even obtain a criteria for
saying when two algebraic extension of degree 2 of K are identical. Indeed,
if L ∼= K[X]/(P (X)) and M ∼= K[X]/(Q(X)) are extensions of degree 2 over
K, then L = M if and only if the irreducible polynomials P (X) and Q(X)
belongs to the same orbit of action ”*”.
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