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Abstract

This study develops a rheological model for blood flow in an arterial segment using a non-integer order
derivative modelling in the sense of Atangana-Baleanu fractional derivative operator. This model takes
into consideration the effects of external magnetic flux, periodic body acceleration, and radiant heat on the
behaviour of the blood. Integral transforms are employed to solve the problem. Expressions for temperature,
concentration, and flow velocity of blood will be developed. Additionally, the effects of the fractional order
parameter and other important factors on blood dynamics are examined by the aid of analytical and graphical
analysis and key findings are concluded that helps to control blood rheology.
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1. Overview

The fractional calculus (FC) was discovered by the end of 17th century, as a result of the communication
between Leibnitz and L’Hospital. Undoubtedly, FC is the broader version of classical calculus. FO deriva-
tive operators encapsulate the memory and heredity effects of many materials. By the end of 20th century,
large amount of engineering literature, including various disciplines in mathematical biology, visco-elasticity,
physics, and electrochemistry, carried out researrch by using the techniques of FC. For example, we refer
the noteworthy contributions [1]-[6] and the references therein.
The comprehensive study of bio-fluids flow, subject to magnetic particles, paves the way for the new dis-
cipline known as bio-magnetic-fluid-dynamics (BMFD). Investigation into the new emerging BMFD is an
interesting subject of research in the rheology of fluid. Bio-magnetic fluids exist in nature, that are present
in living animals, influenced by magnetic field. Recently, due to its remarkable uses and applications in
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bioengineering and clinical sciences, for example, diminishing draining during medical procedures, magnetic
gadget advancement for cell detachment, and the designated transport of medications, the BMFD has got
much attention of the analysts.
Blood, being a bio-magnetic fluid, its flow pattern is significantly influenced by any snag in blood vessel.
Moreover, the obstructed movement and action of blood vessels cause them to contract, known as, stenosis
of blood vessels. The development of abnormalities in blood arteries, results in arteriosclerosis or stenosis.
Blood consists of various types of cells suspended in plasma, which behaves as an incompressible Newtonian
fluid. Blood has a density 1060kgm−3 and viscosity 3× 10−3Pa. Blood acts like a non-Newtonian fluid at
low shear rates, particularly when it passes across narrow veins, yet plasma flows like a Newtonian fluid in
thin streams. Furthermore, the oxygenation level of blood impacts its magnetic characteristics [7]. Blood
circulation can be disturbed by external accelerations, such as those experienced when flying in aeroplanes,
riding in rockets, dealing with punching or drilling tools, and participating in sports like high jumping and
surfing. An elevated pulse rate, headaches, vision loss, and, in certain situations, cardiovascular problems
can result from prolonged exposure to such conditions.
Motivated by the bio-magnetic nature of blood, many successful attempts have been made to model and
control the blood rheology. For instance, see [8, 9, 10, 11, 12, 13], for the case in which blood is considered
as Newtonian fluid. Furthermore, blood as non-Newtonian fluid and being an electrically conducting fluid
is considered in [14]-[20]. When blood flows through an artery with a diameter greater than 0.025 cm, it
behaves like a Newtonian fluid [21], [22]. However, blood is considered a Casson fluid when it flows through
smaller arteries under low shear conditions [23]. Various flow models describing blood rheology have been
developed using FC techniques. For instance, Saqib et al. [24] numerically solved a mathematical model
involving magnetohydrodynamic (MHD) blood flow in the presence of dusty particles, utilizing a non-integer
order approach. In [25] Delgado et al. applied a FO method to examine oxygen tissue-level diffusion through
the blood stream. He et al. [26] also used FC to study blood flow through capillaries, incorporating multiple
forces into their model. Additionally, Shah et al. conducted further investigations into non-integer order
models in blood flow research [27]. The rheological behaviour of blood with magnetically responsive particles
and periodic motion stimuli was examined by Riaz and Zafar [28]. The two-phase flow of blood through
arteries is investigated in [29]. In [30], Awrejcewicz et al. by treating blood as a Newtonian fluid inves-
tigated the blood rheology in the femoral and coronary arteries under the influence of oscillating pressure
gradients, external magnetic fields, and periodic body acceleration. Furthermore, Maiti et al. [31] addressed
the influence of thermal and mass flux on the blood rheology by presenting a non-integer order model for
magnetohydrodynamic (MHD) fluid flow using the Caputo Fabrizio fractional derivative operator. In 2016,
Atangana and Baleanu [32] presented a new derivative operator called Atangana-Baleanu-derivative-operator
in the sense of Caputo (ABC). The intricate character of many physical phenomena may be displayed by this
operator that lacks in regular as well as in many FO operators. Compared to Caputo and Caputo-Fabrizio
derivative operators, ABC is more generic yet has regular smooth kernel. Moreover, ABC is proven to be
more suitable for dynamical models influenced by heat effects.
Following the previous discussion, we will explored and examined blood rheology using uniformly suspended
magnetic particles while being affected by radiant heat, oscillating pressure gradients, and periodic body
acceleration. A Casson fluid, which is a shear-thinning non-Newtonian fluid with high viscosity at low shear
rates, will be utilised to represent blood. The investigation of blood flow behaviour in a porous medium will
be taken into account by utilizing the impacts of radiant heat and external body acceleration. Additionally,
a non-dimensional corresponding mathematical model will be constructed using the ABC fractional deriva-
tive operator. Integral transforms will be used to solve the model, and the expressions for temperature,
concentration, and flow velocity will be obtained. Additionally, graphical analysis will be used to examine
how the FO parameter and other significant influence of the parameters on the blood rheology.
Our research design is as follows; After introduction, we have nomenclature, where representation of symbols
with bar are dimensional quantities while without bar are non dimensional quantities. In section 2, we give
the description of the mathematical framework of the problem. In section 3, we formulate the FO model,
in section 4, we have elaborated the solution procedure. While, section 5 is dedicated to graphical analysis
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and finally notable findings are documented in section 6.

2. Mathematical Framework for the Problem

Assume that blood passes through an artery segment with an internal radius Ro and length L like a
Casson fluid. Moreover, blood rheology is established using radiant heat, periodic body acceleration, and
an external magnetic field. During blood flow, these factors significantly change the rheological properties
of blood.The flow is assumed to be unidirectional as it moves through a micro-channel, where the induced
magnetic field is much weaker than the external magnetic field. The momentum equation is formulated, like
in [33]-[34] as;

∂Ūf

∂t̄
= −1

ρ

∂P̄

∂z̄
+υ

(
1+

1

β

)[∂2Ūf

∂r̄2
+

1

r̄

∂Ūf

∂r̄

]
+G(t̄)− υ

kp
Ūf −σ

B2
o Ūf

ρ
+gβH(T̄f −T∞)+gβc(C̄f −C∞). (2.1)



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 58

As seen in [35], [36], and [37], the body acceleration can be expressed as;

G(t̄) = Āocos(k̄t̄+ ϕ). (2.2)

As used in [34], [38], the energy equation derived under the influence of thermal radiation is evolved as (cf.
[34])

∂T̄f
∂t̄

=
K
cpρ

[
∂2T̄f
∂r̄2

+
1

r̄

∂T̄f
∂r̄

]
− 1

cpρ

∂q̄

∂r̄
+
θ̄m+ Q̄m

cpρ
. (2.3)

Under the assumption of low heat absorption coefficient and density for blood, heat flux is approximated as
(cf. [34])

−∂q̄r
∂r̄

= (2β1)
2(T̄f − T∞). (2.4)

According to [39], the concentration equation for the Soret effect which occurs when moving particles
with varying molecular sizes combine can be expressed by;

∂C̄f

∂t̄
= Dm

[
∂2C̄f

∂r̄2
+

1

r̄

∂C̄f

∂r̄

]
+
KTDm

T∞

[
∂2T̄f
∂r̄2

+
1

r̄

∂T̄f
∂r̄

]
. (2.5)

The initial and boundary conditions (IBCs) listed below are taken into consideration.

C̄f = 0, T̄f = 0, Ūf = 0, for 0 ≤ r̄ ≤ R0, at t̄ = 0,

∂T̄f
∂r̄

= 0,
∂C̄f

∂r̄
= 0,

∂Ūf

∂r̄
= 0, at r̄ = 0,

T̄f = Tω, Ūf = 0, C̄f = Cω, for r̄ = R0 and t̄ > 0.

(2.6)

The following dimensional descriptors are introduced as:

ζ =
r̄

R0
, Uf =

Ūf

U0
, P =

P̄

ρU2
0

, Tf =
T̄f − T∞
Tω − T∞

, z =
z̄

R0
, k =

k̄R0

U0
, τ =

U0t̄

R0
,

θm =
R0

¯θm

U0ρcp(Tω − T∞)
, Cf =

C̄f − Cω

Cω − C∞
, A0 =

R0Ā0

U2
0

, Qm =
R0Q̄m

u0ρcp(Tω − T∞)
.

(2.7)

After the non-dimensionalization, the equations (2.1), (2.3), and (2.5) transformed into

∂Uf

∂τ
=− ∂P

∂z
+

1

Re

(
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1

β

)[∂2Uf

∂ζ2
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ζ
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∂ζ

]
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+
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Re2
Tf +
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Re2
Cf ,

(2.8)

Pe
∂Tf
∂τ

=

[
∂2Tf
∂ζ2

+
1

ζ

∂Tf
∂ζ

]
+RTf + Pe(θm+Qm), (2.9)
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]
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where
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The analogous initial and boundary conditions are

Uf (ζ, 0) = 0, Tf (ζ, 0) = 0, Cf (ζ, 0) = 0, at τ = 0, ζ ∈ [0, 1]

∂Uf

∂ζ
= 0,

∂Tf
∂τ

= 0,
∂Cf

∂τ
= 0, at ζ = 0,

Uf (1, τ) = 0, Tf (1, τ) = 0, Cf (1, τ) = 0, at τ > 0.

(2.12)

For cardiovascular function the expression for pressure gradient is represented as;

−∂P
∂z

= b0 + b1 cos(ωτ). (2.13)

3. Fractional Analogue of the Problem

The fractional analogue of the model is obtained by replacing the time derivative operator by Dα
t in the

sense of ABC

Dα
τ Uf (ζ, τ) =b0 + b1 cos(ωτ) +

1

Re

(
1 +

1

β

)[∂2Uf

∂ζ2
+

1

ζ

∂Uf

∂ζ

]
+A0cos(kτ + ϕ)− 1

ReDa
Uf − Ha2

Re
Uf

+
Gr

Re2
Tf +

Gm

Re2
Cf ,

(3.1)

Pe Dα
τ Tf =

(
∂2Tf
∂ζ2

+
1

ζ

∂Tf
∂ζ

)
+RTf + Pe(θm+Qm), (3.2)

ScRe Dα
τ Cf =

(
∂2Cf

∂ζ2
+

1

ζ

∂Cf

∂ζ

)
+ SrSc

(
∂2Tf
∂ζ2

+
1

ζ

∂Tf
∂ζ

)
. (3.3)

Here, Dα
t is ABC FO derivative operator like in [32] defined as,

Dp
τ (f(τ)) =

M(p)

1− p

∫ τ

0
f

′
(x)Ep[−p

(τ − x)p

1− p
]dx, (3.4)

In this context p (0 < p < 1) represents the non integer order parameter and M(p) is the normalization
function, which can be any function that satisfies M(0) = M(1) = 1. For instance, it could be M(p) =
1+ p

Γ(p+1) − p. For the purposes of this study, we have chosen M(p) = 1. Additionally, Ep refers to the well

known Mittag-Leffler function [40].
Furthermore, Laplace transform of the ABC is;

L{Dp
τf(τ)} =

M(p)qpLf(τ)

(1− p)qp + p
− M(p)qp−1f(0)

(1− p)qp + p
.

4. Computational Framework

The mathematical model will be solved by using integral transforms. Employing Laplace transform on
equation (3.1)-(3.3) by using IC (12), yields(

x1q
α + y1

x2qα + y2

)
Uf (ζ, q) =

b0
q

+ b1
q

q2 + ω2
+

1
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(
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1

β

)[
∂2Uf (ζ, q)

∂ζ2
+

1

ζ

∂Uf (ζ, q)

∂ζ

]
+A0

(
q cosϕ− k sinϕ

q2 + k2

)
+

Gr

Re2
Tf (ζ, q) +

Gm

Re2
Cf (ζ, q),

(4.1)
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(
(Pe−R(1− α))qα −Rα

(1− α)qα + α

)
Tf (ζ, q) =

[
∂2Tf
∂ζ2

+
1

ζ

∂Tf
∂ζ

]
+Pe(θm+Qm),

(4.2)

ScRe
qα

(1− α)qα + α
Cf (ζ, q) =

[
∂2Cf

∂ζ2
+
1

ζ

∂Cf

∂ζ

]
+SrSc

[
∂2Tf
∂ζ2

+
1

ζ

∂Tf
∂ζ

]
,

(4.3)

here x1 = DaRe+ (1− α)(1 +DaHa2), x2 = DaRe(1− α), y1 = (1 +DaHa2)α, y2 = DaReα.
Employing the Hankel transform to equation (4.1)-(4.3), yield

Uf (ζn, q) =

(
x2q

α + y2
x3qα + y3

)([
b0
q

+ b1
q

q2 + ω2
+A0

(
q cosϕ− k sinϕ

q2 + k2

)]
J1(ζn)

ζn

+
Gr

Re2
Tf (ζn, q) +

Gm

Re2
Cf (ζn, q)

)
,

(4.4)

Tf (ζn, q) =
δ.Pe(θm+Qm)

y4q

(
qα + γ

qα + γ1

)
J1(ζn)

ζn
, (4.5)

Cf (ζn, q) = y5

(
(qα + γ)(qα + γ)

q(qα + x4)(qα + γ1)

)
J1(ζn), (4.6)

where Uf (ζn, q) =
∫ 1
0 rUf (ζ, q)J2(ζζn)dζ = is the finite Hankel transform of the function Uf (ζ, q) and

ζn;n = 1, 2... are positive roots of transcendental equation J2(x) = 0, Jν being Bessel function of first kind
of order ν. Moreover, into above relations x3 = x1 + ( 1

Re

(
1 + 1

β

)
ζ2n)x2, y3 = y1 + ( 1

Re

(
1 + 1

β

)
ζ2n)y2, δ =

(1− α), y4 = PrRe+ (−R+ ζ2n)δ,

y5 = − ζnSrScPe(Qm+θm)δ
(ReSc+ζ2n(1−α))y4

, γ = α
(1−α) , x4 =

ζ2nα
(ReSc+ζ2nδ)

and γ1 =
(−R+ζ2n)α

y4
.

Next, using the relations (A1)-(A3) from the Appendix and applying inverse LT on (4.4)-(4.6), we obtain

Uf (ζn, τ) =
x2
x3

J1(ζn)

ζn

(
b0a1(τ) + b1a2(τ) +A0(a3(τ)− a4(τ)) + ψ1[a5(τ) + q1a6(τ) + q2a7(τ)]+

ψ2[a8(τ) + q5a9(τ) + q6a10(τ) + q7a11(τ)]
)
.

(4.7)

Tf (ζn, τ) =
J1(ζn)

ζn

[
a12(τ) + a13(τ)

]
, (4.8)

Cf (ζn, τ) = ψ3

[
a14(τ) + q3a15(τ) + q4a16(τ)

]
J1(ζn). (4.9)

where
a1(τ) = [Eα,1(ψ5τ

α) + ψ4τ
αEα,1+α(ψ5τ

α)],
a2(τ) = [τ2kEα,1+2k(−y2τα) + ψ4τ

α+2kEα,α+1+2k(−ψ5τ
α)],

a3(τ) = cosϕ
∑∞

l=0(−1)l[(τ2nEα,2l+1(ψ5τ
α) + ψ4τ

α+2lEα,α+2l+1(ψ5τ
α)],

a4(τ) = sinϕ
∑∞

l=0(−1)l[
(
τ2l+1Eα,2l+2(ψ5τ

α) + ψ4τ
α+2l+1Eα,α+2l+2(ψ5τ

α)
)
,
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a5(τ) =
∑∞

l=0

∑∞
m=0

(−q2)i(−q1)j
(l+m

m

)
Γ(m(2α−α+2(l+1)α−2α+1)τ

(m+2l)α,

a6(τ) =
∑∞

l=0

∑∞
m=0

(−q2)l(−q1)m
(l+m

j

)
Γ(m(2α−α+2(l+1)α−2α+1)τ

(m+2l+1)α,

a7(τ) =
∑∞

l=0

∑∞
m=0

(−q2)l(−q1)m
(l+m

m

)
Γ(m(2α−α+2(l+1)α−2α+1)τ

(m+2l+2)α,

a8(τ) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

(l+m+n+1

l

)(l+m

m

)
(−1)l+m+n(q8)

n(q9)
m(q10)

l
[
τ3αl+2αm+αn−1

3αl+2αm+αn

]
,

a9(τ) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

(l+m+n+1

n

)(l+m

m

)
(−1)l+m+n(q8)

n(q9)
m(q10)

l
[

τ3αl+2αm+αn+α

Γ(3αl+2αm+αn+α+1

]
,

a10(τ) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

(l+m+n+1

l

)(l+m

m

)
(−1)l+m+n(q8)

n(q9)
m(q10)

l
[

τ3αl+2αm+αn+2α

Γ(3αl+2αm+αn+2α+1

]
,

a11(τ) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

(l+m+n+1

l

)(l+m

m

)
(−1)l+m+n(q8)

n(q9)
m(q10)

l
[

τ3αl+2αm+αn+3α

Γ(3αl+2αm+αn+3α+1

]
.

a12(τ) = ψ1Eα,1(γτ
α),

a13(τ) = ψ1γ1Eα,1+α(γ1τ
α),

a14(τ) =
∞∑
l=0

∞∑
m=0

(−q2)l(−q1)m
(l+m

m

)
Γ
(
(m+ 2l)α+ 1

) τ (m+2l)α,

a15(τ) =
∞∑
l=0

∞∑
m=0

(−q2)l(−q1)m
(l+m

m

)
Γ
(
(m+ 2l + 1)α+ 1

)τ (m+2l+1)α,

a16(τ) =
∞∑
l=0

∞∑
m=0

(−q2)l(−q1)m
(l+m

m

)
Γ
(
(m+ 2l + 2)α+ 1

)τ (m+2l+2)α.

and ψ1 = Gr
Re2

Y4.P rRe(Qm+θm)
yδ , ψ2 = y5rn

Gm
Re2

, ψ3 = y4.P rRe(Qm+θm)
δs , ψ4 = y2

x2
, ψ5 = y3

x3
, q1 = ψ4 + γ, q2 =

ψ4γ,
q3 = ψ5 + γ1, q4 = ψ5γ1, q5 = 2γ + ψ4, q6 = γ(γ + ψ4) + ψ4γ, q7 = γ2ψ4,
q8 = x4 + γ1 + ψ5q6, q9 = γ1(x4 + ψ5) + x4ψ5, p10 = x4γ1ψ5.
Employing Inverse Hankel Transform to equations (4.7)-(4.9) generates

Uf (ζ, τ) =2
x2
x3

∞∑
n=1

J0(ζζn)

J1(ζn)

1

(ζn)2

(
a1(τ) + a2(τ) + a3(τ)− a4(τ)

+ ψ1[a5(τ) + q1a6(τ) + q2a7(τ)] + ψ2[a8(τ) + q5a9(τ) + q6a10(τ) + q7a11(τ)]

)
,

(4.10)

Tf (ζ, τ) = 2
∞∑
n=1

J0(ζζn)

J1(ζn)

1

(ζn)2

[
a12(τ) + a13(τ)

]
, (4.11)

Cf (ζ, τ) = 2

∞∑
n=1

J0(ζζn)

J1(ζn)

1

ζn
ψ3

[
a14(t) + q3a15(τ) + q4a16(τ)

]
. (4.12)
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It is important to highlight that our results can be used to derive several findings from the existing literature.
For example, in the context of 1

β = 0, βT = 0 and βc = 0, our model provides the results of Awrejcewicz et al.
[30]. Additionally, by settingG(t) = 0 (thereby neglecting the effects of body acceleration), our model further
produces the results obtained by Zafar et al. [29]. As α approaches unity, the model behavior corresponds.
Furthermore, by choosing βT = 0 and βc = 0 we recover the results presented in [23]. Lastly, our model is
consistent with the one presented by Bansi et al. [34] when 1

β = 0 and βc = 0 are assumed.Furthermore, the
authors of [34] used the Caputo derivative operator to apply a fractional order model and describe blood
as a Newtonian fluid. But according to [32], the Atangana-Baleanu derivative operator is more suited for
models with thermal effects. Consequently, our model offers a more dependable foundation in terms of
mathematical formulation and fluid dynamics.

5. Graphs and Discussion

In this section, we will explore various factors influencing the velocity and temperature of blood sub-
jected to magnetic flux and external body acceleration, utilizing graphical analysis with MATHCAD 15.We
will specifically look at the effects of non-dimensional characteristics on blood temperature and velocity, in-
cluding the Darcy number, Casson number, radiation number, fractional order parameters, and Hartmann
number.
The following parametric values will be fixed for numerical simulations: Ao = 0.6, β = 0.3, bo = 0.002, b1 =
0.005, ω = π

7 , ϕ = 0.1 κ = π
4 ,and Da = 0.00012,. Furthermore, the parameters that have been used

provide varying values so that we may examine how they influence the rheology of the blood.
The fractional parameter α is essential for regulating blood velocity. Figure 1 shows the velocity plotted
against time for a range of α values. The findings show that blood velocity increases in tandem with an
increase in α.
As illustrated in Fig. 2, the Thermal Grashof number is used to analyse and debate heat transfer by free
convection. It has been seen that when the Thermal Grashof number rises, so does the velocity. This is
because free convection from the heat gradient and temperature variations affects the fluid’s velocity. Gen-
erally speaking, temperature and density have a reciprocal connection, which raises fluid velocity.

The Solutal Grashof number, which is the ratio of the species buoyancy force to the viscous hydrodynamic
force, is another variation of the Grashof number that is shown in Fig. 3. One can see that the Solutal
Grashof number trend is nearly the reverse of the thermal Grashof number trend, with a higher Solutal
Grashof number resulting in a lower flow velocity.
It is clear from Fig. 4 that velocity profiles ascend with increasing Peclet number, whereas velocity plots
decrease with decreasing Peclet number. This indicates a direct proportionality between the velocity and
the Peclet number. The Peclet number behaves in the opposite direction from the Reynolds number in
a large variety of mass and energy transfer situations. We can learn more about the properties of the
flow surrounding the boundary layers by examining this parameter. In addition, it should be mentioned
that the performance of the thermal boundary layer is either enhanced or decreased in relation to the flow
behaviour of the momentum boundary layer by the product of the Prandtl number and Reynolds number.
Fig. 5 shows a similar trend for the Peclet number when compared to Qm. The figure illustrates how
blood velocity rises as the metabolic heat source value rises and falls when the metabolic heat source value
falls. But as Qm increases, the axial velocity remains increasing. Another important element affecting the
temperature distribution of blood flow is the parameter θm. The body’s temperature is controlled by this
heat absorption characteristic. As can be shown in Fig. 6, the velocity profile increases as the value of θm
increases.
The shear component of momentum diffusivity divided by the mass transfer diffusivity is known as the
Schmidt number. It is employed to describe fluid flow in which mass diffusion involves both convection and
instantaneous momentum mechanisms. In essence, it demonstrates the connection between the boundary
layers in mass transfer and the thickness of the hydrodynamic layers. An opposite trend is seen when
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looking at how the Schmidt number affects the velocity profile, as seen in Fig. 7. This suggests that when
the Schmidt number rises, the velocity profile falls, and vice versa. This behaviour results from the Schmidt
number’s impact on density and heat-mass transport mechanisms.
Figure 8 illustrates the impact of the Soret number on blood velocity. The ratio between the temperature
differential and the fluid’s concentration is represented by the Soret number. The gradient is steeper and
the temperature differential is larger when the Soret number is higher. As a result, varying Soret number
values cause the fluid velocity to decrease because of the higher thermal diffusion factor.
Figures 9-12 show the profiles of temperature for various material parameters. for instance, the temperature
profile changes as the radiation parameter R varies, as seen in Figure 9. It is clear that when thermal
radiation rises, the temperature rises as well. Additionally, Figure 10 depicts how α affects the temperature
profiles. It is evident that changing α has an important effect on the temperature distribution, with the
increasing values of alpha within the unit interval, temperature also increases.
As Peclet number offers important information about the properties of the boundary layer flow and controls
the transfer of thermal energy. With the increasing values of Peclet number Figure 11 shows that the
temperature profiles grow as well. A crucial factor in the transfer of thermal energy is the Peclet number,
which is comparable to the Reynolds number. Another important component that has a major impact on
the bloodstream’s temperature distribution is the metabolic heat source (Qm). The interior temperature of
the body is regulated in part by this heat source. Heat production in the body is regulated by metabolic
activities, specifically the quantity of mitochondria per cell. Therefore, as Figure 12 illustrates, the metabolic
heat source (Qm) is closely correlated with the rise in blood temperature that occurs.

6. Final Remarks

This paper presents a fractional order mathematical model using the ABTFDO to describe the flow of
incompressible non-Newtonian blood through blood vessels, considering the effects of periodic body acceler-
ation, an external magnetic field, and radiant heat. The Laplace transform and the zero-order finite Hankel
transform are used to solve the non-dimensional velocity, temperature, and concentration of suspended mag-
netic particles in the blood cells. Furthermore, the effects of temperature, metabolic heat source, radiation
parameter, and fractional order parameter on blood flow are examined graphically. Key observations from
the study are outlined below:

• Velocity of the blood flow depends independently on the non-integer order parameter α, as the value
of α increases, velocity also increases.



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 64



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 65



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 66



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 67



A. A. Zafar, M. Batool, M. Shahzaib, Journal of Prime Research in Mathematics, 21(1) (2025), 55–70 68

• Also an increase in the thermal Grashof number, makes the velocity of the blood to increase, on the
other hand an increase in Solutal Grashof number, makes the velocity to decrease.

• Also observations show that the velocity of the blood increases as the value of the metabolic heat
source, heat absorption and radiation parameter increases, while, it decreases with the increase of
Schmidt number and Soret number.

• Temperature of the blood is directly proportional to the radiation parameter, non-integer order pa-
rameter, metabolic heat source and Peclet number.

APPENDIX
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