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Abstract

This paper aims to refine the fractional Hermite-Hadamard inequality by employing arbitrary means defined
on a given interval. Using weighted integral techniques and properties of convex functions, new bounds are
established which improve existing results.
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1. Introduction

The classical Hermite-Hadamard inequalities:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2
, (1.1)

which hold for all convex functions f defined on an interval I ⊂ R. If f is concave on I, the inequalities in
(1.1) are reversed.

In 2013, Sarikaya et al. [2] extended the Hermite–Hadamard inequality to the framework of fractional
calculus and established the following fractional version of inequality (1.1):

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2
, (1.2)

which also holds for all convex functions f on the interval [a, b]. The inequality (1.2) is reversed if f is
concave on [a, b]. Here, Jα

a+f(b) and Jα
b−f(a) are the left- and right-sided Riemann-Liouville fractional
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integrals, respectively, defined for α > 0 by:

Jα
a+f(b) =

1

Γ(α)

∫ b

a
(b− x)α−1f(x) dx,

Jα
b−f(a) =

1

Γ(α)

∫ b

a
(x− a)α−1f(x) dx,

where Γ(·) is the Gamma function. For α = 0, we have J0
a+f(b) = J0

b−f(a) = f(x).
The generalization of classical integral inequalities for convex functions using the framework of fractional

calculus has become an active area of research in recent years. In particular, the extension of Hermite–
Hadamard type inequalities through fractional integral operators such as those of Riemann–Liouville and
Hadamard has not only enriched the theoretical landscape but also broadened the applicability of such in-
equalities (see [2], [3]). These generalizations are especially useful in estimating errors in numerical solutions
of fractional differential equations, in numerical analysis, and in control theory.

Furthermore, by extending the analysis to more generalized classes of functions such as log-convex, s-
convex, and other related convexities stronger and more diverse results have been obtained (see [1]). Within
this context, the tools provided by fractional calculus offer a powerful framework that surpasses classical
analytical methods, allowing for the modeling of complex and anomalous phenomena encountered in various
applied sciences.

For further recent developments on Hermite–Hadamard type inequalities for means, we refer the reader
to [4]–[5].

The main objective of this paper is to refine and improve the fractional Hermite–Hadamard inequality
given in (1.2) by utilizing arbitrary means defined on the interval I.

2. Main Theorem

Recall that M(a, b) is a mean on I ⊂ R if the inequality

min{a, b} ≤ M(a, b) ≤ max{a, b}

holds for each a, b ∈ I.

Lemma 2.1. Let a < b and fix α > 0. Define

p(t) = (t− a)α−1 + (b− t)α−1, t ∈ (a, b),

and for M ∈ (a, b) put

IMa :=

∫ M

a
p(t) dt, Iba :=

∫ b

a
p(t) dt, θ :=

M − a

b− a
∈ (0, 1).

Then the following statements are equivalent:

1. For every convex function f : [a, b] → R the inequality

f(b)− f(a)

Iba
≥ f(M)− f(a)

IMa
(2.1)

holds.

2. The integral ratio satisfies
IMa
Iba

≥ M − a

b− a
= θ. (2.2)

3. In terms of θ,
θα − (1− θ)α ≥ 2θ − 1. (2.3)
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Moreover, (2.3) (hence (2.2) and (2.1)) is satisfied for all θ ∈ (0, 1) when α = 1 or α = 2. For other α
values the sign of the left side relative to 2θ − 1 depends on whether θ ≤ 1

2 or θ ≥ 1
2 (see proof).

Proof. First compute the integrals explicitly. A direct antiderivative calculation gives

IMa =

∫ M

a

(
(t− a)α−1 + (b− t)α−1

)
dt =

(M − a)α + (b− a)α − (b−M)α

α
,

and

Iba =

∫ b

a
p(t) dt =

2(b− a)α

α
.

Hence
IMa
Iba

=
θα + 1− (1− θ)α

2
, θ =

M − a

b− a
.

The equivalence between (2) and (3) is now algebraic: (2.2) is exactly

θα + 1− (1− θ)α

2
≥ θ ⇐⇒ θα − (1− θ)α ≥ 2θ − 1,

which is (2.3).
It remains to show (1) ⇐⇒ (2).
(2) ⇒ (1). Assume (2.2) holds. Let f be any convex function on [a, b]. Convexity gives the standard

bound

f(M) ≤ f(a) +
M − a

b− a

(
f(b)− f(a)

)
= f(a) + θ (f(b)− f(a)),

hence
f(M)− f(a) ≤ θ (f(b)− f(a)).

Multiply both sides by the positive number Iba and rearrange using (2.2):

(f(M)− f(a))Iba ≤ θ(f(b)− f(a))Iba ≤ (f(b)− f(a))IMa ,

where the last inequality follows from IMa ≥ θIba. Thus

(f(b)− f(a))IMa ≥ (f(M)− f(a))Iba,

which is equivalent to (2.1). This proves (1).
(1) ⇒ (2). Assume (2.1) holds for every convex f . Take the affine function f(x) = x. Then

f(b)− f(a)

Iba
=

b− a

Iba
,

f(M)− f(a)

IMa
=

M − a

IMa
,

so (2.1) becomes
b− a

Iba
≥ M − a

IMa
,

equivalently IMa /Iba ≥ (M − a)/(b − a) = θ, which is (2.2). Thus (2) holds. This completes the proof of
equivalence.
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Corollary 2.2. Under the hypotheses of Lemma 2.1, the inequality

f(b)− f(a)

Iba
≥ f(M)− f(a)

IMa

holds for every M ∈ (a, b) when α = 1 or α = 2. In these cases, the condition (2.3) reduces to an identity,
and the ratio of integrals satisfies

IMa
Iba

=
M − a

b− a
.

Consequently, for α = 1 we obtain the classical slope inequality

f(b)− f(a)

b− a
≥ f(M)− f(a)

M − a
,

and for α = 2 the same inequality holds after the analogous normalization of the integrals.

Proof. For α = 1, the weight function is constant, p(t) = 2 for all t ∈ (a, b), hence

IMa = 2(M − a), Iba = 2(b− a),

so that
IMa
Iba

=
M − a

b− a
. Substituting into (2.1) gives

f(b)− f(a)

2(b− a)
≥ f(M)− f(a)

2(M − a)
⇐⇒ f(b)− f(a)

b− a
≥ f(M)− f(a)

M − a
,

which is the standard consequence of convexity: the slope of the secant line is non-decreasing on [a, b].
For α = 2, a similar computation shows

IMa
Iba

=
M − a

b− a
,

and the same reduction to the secant slope inequality applies.

Remark 2.3. The condition (2.3) is sharp: for values of α other than 1 or 2, the inequality (2.1) may fail
for certain choices of M . For example, taking the affine function f(x) = x and a suitable M ̸= a+b

2 provides
a counterexample when the condition (2.3) is violated. Hence, (2.3) precisely characterizes the validity of
(2.1).

Theorem 2.4. Let f : I ⊂ R → R be convex on an interval I with a < b, where a, b ∈ I. For α > 0 define

p(t) = (t− a)α−1 + (b− t)α−1, t ∈ (a, b),

and, for M ∈ (a, b), set

IMa :=

∫ M

a
p(t) dt, Iba :=

∫ b

a
p(t) dt.

Define the functional

Fα
f (M ; a, b) :=

1

2
f(M) +

1

2
∫ b
a p(t) dt

[
f(a)

∫ M

a
p(t) dt+ f(b)

∫ b

M
p(t) dt

]
.

Then the following chain of inequalities holds for every convex f :

Γ(α+ 1)

2(b− a)α
[
Jα
a+f(b) + Jα

b−f(a)
]
=

∫ b
a p(t)f(t) dt∫ b

a p(t) dt
≤ Fα

f (M ; a, b).
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Moreover, the upper bound

Fα
f (M ; a, b) ≤ f(a) + f(b)

2

holds for every convex f if and only if the equivalent conditions of Lemma 2.1 hold (i.e. (2.2) or (2.3)). In
particular, the upper bound is unconditional for all M ∈ (a, b) when α = 1 or α = 2.

Proof. Using the classical Riemann–Liouville definitions, we have

Jα
a+f(b) =

1

Γ(α)

∫ b

a
(b− t)α−1f(t) Jdt, α

b−f(a) =
1

Γ(α)

∫ b

a
(t− a)α−1f(t) dt.

Summing and simplifying gives

Γ(α+ 1)

2(b− a)α
[
Jα
a+f(b) + Jα

b−f(a)
]
=

α

2(b− a)α

∫ b

a
p(t)f(t) dt,

and since
∫ b
a p(t) dt = 2(b−a)α

α , the right-hand side equals
∫ b
a p(t)f(t) dt∫ b

a p(t) dt
, which proves the identity.

The function p is symmetric about the midpoint (a+ b)/2:

p(a+ u) = uα−1 + (b− a− u)α−1 = p(b− u), 0 < u < b− a.

For a nonnegative weight symmetric about the midpoint and a convex function, the weighted Hermite–
Hadamard–Fejer inequality gives ∫ b

a p(t)f(t) dt∫ b
a p(t) dt

≤ f(a) + f(b)

2
.

Moreover, decomposing the weighted average over [a, b] as a convex combination of the weighted averages
over [a,M ] and [M, b] yields ∫ b

a pf∫ b
a p

=

∫M
a p∫ b
a p

·
∫M
a pf∫M
a p

+

∫ b
M p∫ b
a p

·
∫ b
M pf∫ b
M p

.

Applying the standard (unweighted) Hermite–Hadamard inequality to each subinterval and collecting terms
gives exactly the definition of Fα

f (M ; a, b) as an upper bound for the weighted average:∫ b
a p(t)f(t) dt∫ b

a p(t) dt
≤ Fα

f (M ; a, b).

This establishes the first chain of inequalities.
For the upper bound, Fα

f (M ; a, b) can be rewritten as

Fα
f (M ; a, b) =

f(a) + f(b)

2
− 1

2

∫ M

a
p(t) dt

(
f(b)− f(a)∫ b

a p(t) dt
− f(M)− f(a)∫M

a p(t) dt

)
.

Hence, Fα
f (M ; a, b) ≤ f(a)+f(b)

2 holds for every convex f if and only if

f(b)− f(a)∫ b
a p(t) dt

≥ f(M)− f(a)∫M
a p(t) dt

.

By Lemma 2.1, this is equivalent to the integral condition IMa
Iba

≥ M−a
b−a or to the θ-condition θα − (1− θ)α ≥

2θ−1. Necessity is immediate: if (2.2) fails, the affine function f(x) = x provides a convex counterexample.
This completes the equivalence and the proof of the theorem.
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Remark 2.5. 1. The left identity and the lower bound are unconditional and follow from the symmetry
of p and standard weighted Hermite–Hadamard–Fejér arguments.

2. The right inequality Fα
f (M ; a, b) ≤ (f(a)+ f(b))/2 is equivalent (for all convex f) to the integral ratio

condition of Lemma 2.1; in particular it holds for every M when α = 1 or α = 2.

3. If one needs the right inequality for a specific (fixed) convex function f , it may hold even if the integral
condition fails; however the equivalence above describes the exact uniform (over all convex f) criterion.

Remark 2.6 (Special cases: α = 1 and α = 2). Consider Theorem 2.4 for the special choices α = 1 and
α = 2:

• Case α = 1: The weight function becomes constant,

p(t) = (t− a)0 + (b− t)0 = 2,

so the weighted integral reduces to the standard average:∫ b
a p(t)f(t) dt∫ b

a p(t) dt
=

1

b− a

∫ b

a
f(t) dt.

The functional reduces to

Ff (M ; a, b) =
1

2
f(M) +

1

2(b− a)

[
(M − a)f(a) + (b−M)f(b)

]
,

and the Hermite–Hadamard type inequality

1

b− a

∫ b

a
f(t) dt ≤ Ff (M ; a, b) ≤ f(a) + f(b)

2

holds for every M ∈ (a, b), as first proved by [4].

• Case α = 2: The weight function becomes

p(t) = (t− a) + (b− t) = b− a,

which is again constant, and the functional simplifies to

F 2
f (M ; a, b) =

1

2
f(M) +

1

2(b− a)

[
(M − a)f(a) + (b−M)f(b)

]
,

identical in form to the α = 1 case. Hence, the inequality

Γ(3)

2(b− a)2
[
J2
a+f(b) + J2

b−f(a)
]
≤
∫ b
a p(t)f(t) dt∫ b

a p(t) dt
≤ F 2

f (M ; a, b) ≤ f(a) + f(b)

2

holds for all M ∈ (a, b).

In both cases, the upper bound is valid for every M because the condition θα − (1 − θ)α ≥ 2θ − 1 is
satisfied for all θ ∈ (0, 1).

Theorem 2.7. Let f : I ⊂ R → R be convex on an interval I, and let a < b with a, b ∈ I. For α > 0, define

p(t) = (t− a)α−1 + (b− t)α−1, t ∈ (a, b),

and for any M ∈ (a, b), set

Fα
f (M ; a, b) :=

1

2
f(M) +

1

2
∫ b
a p(t) dt

[
f(a)

∫ M

a
p(t) dt+ f(b)

∫ b

M
p(t) dt

]
.
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Then the following chain of inequalities holds for all M satisfying Lemma 2.1 condition:

Γ(α+ 1)

2(b− a)α
[
Jα
a+f(b) + Jα

b−f(a)
]
≤
∫ b
a p(t)f(t) dt∫ b

a p(t) dt
≤ Fα

f (M ; a, b) ≤ f(a) + f(b)

2
.

Moreover, for the special choice

M = f−1
(f(a) + f(b)

2

)
,

we have f(M) = (f(a) + f(b))/2 and

Fα
f (M ; a, b) =

f(a) + f(b)

2
− f(b)− f(a)

4(b− a)α

[
(M − a)α − (b−M)α

]
,

which is valid for any α > 0 without requiring Lemma 2.1 condition.

Proof. By definition of the left and right Riemann–Liouville fractional integrals,

Jα
a+f(b) =

1

Γ(α)

∫ b

a
(b− t)α−1f(t) Jdt, α

b−f(a) =
1

Γ(α)

∫ b

a
(t− a)α−1f(t) dt.

Hence,

Γ(α+ 1)

2(b− a)α
[
Jα
a+f(b) + Jα

b−f(a)
]
=

∫ b
a p(t)f(t) dt∫ b

a p(t) dt
,

because
∫ b
a p(t) dt = 2(b− a)α/α.

Decompose the weighted integral over [a, b] as a convex combination of the subintervals [a,M ] and [M, b]:∫ b
a p(t)f(t) dt∫ b

a p(t) dt
=

∫M
a p(t) dt∫ b
a p(t) dt

·
∫M
a p(t)f(t) dt∫M

a p(t) dt
+

∫ b
M p(t) dt∫ b
a p(t) dt

·
∫ b
M p(t)f(t) dt∫ b

M p(t) dt
.

Applying the weighted Hermite–Hadamard–Fejér inequality on each subinterval yields∫M
a p(t)f(t) dt∫M

a p(t) dt
≤ f(a) + f(M)

2
,

∫ b
M p(t)f(t) dt∫ b

M p(t) dt
≤ f(M) + f(b)

2
.

Consequently, ∫ b
a p(t)f(t) dt∫ b

a p(t) dt
≤ Fα

f (M ; a, b).

Rewriting Fα
f (M ; a, b) gives

Fα
f (M ; a, b) =

f(a) + f(b)

2
− 1

2

∫ M

a
p(t) dt

(
f(b)− f(a)∫ b

a p(t) dt
− f(M)− f(a)∫M

a p(t) dt

)
,

so by Lemma 2.1, the upper bound Fα
f (M ; a, b) ≤ (f(a)+ f(b))/2 holds if and only if θα− (1− θ)α ≥ 2θ− 1

with θ = (M − a)/(b− a).
For the special choice M = f−1((f(a) + f(b))/2), we have f(M) = (f(a) + f(b))/2, which implies

Fα
f (M ; a, b) =

f(a) + f(b)

2
− f(b)− f(a)

4(b− a)α
[(M − a)α − (b−M)α],

independent of the condition in Lemma 2.1. This completes the proof.
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Remark 2.8 (Special case α = 1). When α = 1 in Theorem 2.9, the fractional integrals reduce to the classical
Riemann integrals, i.e.,

J1
a+f(b) =

∫ b

a
f(t) dt, J1

b−f(a) =

∫ b

a
f(t) dt.

Moreover, setting

M = Af (a, b) := f−1

(
f(a) + f(b)

2

)
, A(a, b) :=

a+ b

2
,

the inequality in Theorem 2.9 becomes

1

b− a

∫ b

a
f(t) dt ≤ f(a) + f(b)

2
− f(b)− f(a)

2(b− a)

(
Af (a, b)−A(a, b)

)
,

which coincides with the result provided by Simic in [4].

Theorem 2.9. Let f : I ⊂ R → R be a convex and invertible function on the interval I with endpoints
a, b ∈ I, a < b. For any α > 0 and θ ∈ [0, 1], define

M := f−1

(
θ · f(a) + f(b)

2
+ (1− θ) · 1

b− a

∫ b

a
f(t) dt

)
.

Then M ∈ [a, b], and the following inequality holds:

Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2
− (M − a)α + (b− a)α − (b−M)α

4(b− a)α
(f(b)−f(a))+

f(M)− f(a)

2
,

where Jα
a+ and Jα

b− denote the left and right Riemann-Liouville fractional integrals of order α.

Proof. Since f is convex and invertible on [a, b], it is continuous and strictly monotonic, hence bijective onto
its image f([a, b]). The values

f(a) + f(b)

2
and

1

b− a

∫ b

a
f(t) dt

both lie in [f(a), f(b)] (or [f(b), f(a)] depending on monotonicity). Since θ ∈ [0, 1], the convex combination

θ · f(a) + f(b)

2
+ (1− θ) · 1

b− a

∫ b

a
f(t) dt

also lies in [f(a), f(b)]. Hence, M := f−1(·) is well-defined and satisfies M ∈ [a, b].
Now consider the fractional-type functional

Fα
f (M ; a, b) :=

f(a) + f(b)

2
− 1

2

∫ M

a
p(t) dt ·

(
f(b)− f(a)∫ b

a p(t) dt
− f(M)− f(a)∫M

a p(t) dt

)
,

where p(t) := (t− a)α−1 + (b− t)α−1 for α > 0.
The integrals of p(t) can be computed as:∫ b

a
p(t) dt =

∫ b

a
(t− a)α−1dt+

∫ b

a
(b− t)α−1dt =

(b− a)α

α
+

(b− a)α

α
=

2(b− a)α

α
,

and ∫ M

a
p(t) dt =

∫ M

a
(t− a)α−1dt+

∫ M

a
(b− t)α−1dt =

(M − a)α

α
+

(b− a)α − (b−M)α

α
.
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Substituting into Fα
f , we get:

Fα
f (M ; a, b) =

f(a) + f(b)

2

− 1

2
· (M − a)α + (b− a)α − (b−M)α

α

(
α(f(b)− f(a))

2(b− a)α
− α(f(M)− f(a))

(M − a)α + (b− a)α − (b−M)α

)
=

f(a) + f(b)

2
− (M − a)α + (b− a)α − (b−M)α

4(b− a)α
(f(b)− f(a)) +

f(M)− f(a)

2

which completes the proof.

Corollary 2.10. Let f : I ⊂ R → R be a convex and invertible function on the interval I with endpoints
a, b ∈ I, a < b. For any θ ∈ [0, 1], define

M := f−1

(
θ · f(a) + f(b)

2
+ (1− θ) · 1

b− a

∫ b

a
f(t) dt

)
.

Then the following inequality holds:

1

b− a

∫ b

a
f(t) dt ≤ f(a) + f(b)

2
− M − a

2(b− a)
(f(b)− f(a)) +

f(M)− f(a)

2
.

Proof. The inequality follows immediately by setting α = 1 in Theorem 2.9 and simplifying using the
properties of the classical integrals and the Gamma function, noting that

Γ(2) = 1, J1
a+f(b) =

∫ b

a
f(t) dt, J1

b−f(a) =

∫ b

a
f(t) dt.

The details of the simplification are as shown in the proof of Theorem 2.9, yielding the stated inequality.

Theorem 2.11. Let f : I ⊂ R → R be a convex function on the interval I with a < b, a, b ∈ I. If
N = N(a, b) is a mean point in I, then the following double inequality holds:

f

(
a+ b

2

)
≤ Gα

f (N ; a, b) ≤ Γ (α+ 1)

2 (b− a)α
[Jα

a+f (b) + Jα
b−f (a)] ,

where

Gα
f (N ; a, b) =:

1

2 (b− a)α

{
[(b− a)α + (N − a)α − (b−N)α] · f

(
a+N

2

)
+ [(b− a)α + (b−N)α − (N − a)α] · f

(
N + b

2

)}
.

Proof. Let
p(t) = (t− a)α−1 + (b− t)α−1, for some α > 0.

By the left part of Hermite-Hadamard-Fejer inequality applied separately on [a,N ] and [N, b], we have:

f

(
a+N

2

)
≤
∫ N
a p(t)f(t)dt∫ N

a p(t)dt
and f

(
N + b

2

)
≤
∫ b
N p(t)f(t)dt∫ b

N p(t)dt
.

Multiplying each inequality by the corresponding weight and summing yields:

Gα
f (N ; a, b) ≤

∫ b
a p(t)f(t)dt∫ b

a p(t)dt
.
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By convexity of f , for λ :=
∫N
a p(t)dt∫ b
a p(t)dt

, we have

f

(
λ
a+N

2
+ (1− λ)

N + b

2

)
≤ Gα

f (N ; a, b).

Since

λ
a+N

2
+ (1− λ)

N + b

2
≤ a+ b

2
,

and f is convex (and thus midpoint convex), it follows that

f

(
a+ b

2

)
≤ f

(
λ
a+N

2
+ (1− λ)

N + b

2

)
≤ Gα

f (N ; a, b).

The remaining inequalities follow from the Hermite-Hadamard-Fejer inequality applied on subintervals.

Remark 2.12. If we choose as α = 1 in Theorem 2.11, it follows that p(t) = b− a,

f

(
a+ b

2

)
≤ Gf (N ; a, b) ≤ 1

b− a

∫ b

a
f(t) dt,

where

Gf (N ; a, b) :=
1

b− a

[
(N − a) · f

(
a+N

2

)
+ (b−N) · f

(
N + b

2

)]
,

which is proved by Simic in [4].

Example 2.13. Let f : [0, 1] → R be the convex function defined by

f(x) = xp, p > −1

2
.

Consider the fractional order α = 1
2 . Then, the fractional integrals appearing in Theorem 2.11 can be

expressed in terms of the Beta function as follows:

J
1/2
0+

f(1) =
1

Γ
(
1
2

) ∫ 1

0
(1− t)−1/2tp dt =

1√
π
B

(
p+ 1,

1

2

)
,

and

J
1/2
1− f(0) =

1

Γ
(
1
2

) ∫ 1

0
t−1/2tp dt =

1√
π

∫ 1

0
tp−

1
2 dt =

1√
π
· 1

p+ 1
2

,

where B(·, ·) denotes the Beta function defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
.

Substituting these into the upper bound of Theorem 2.11 with a = 0 and b = 1, we obtain

G
1/2
f (N ; 0, 1) ≤

Γ
(
3
2

)
2

[
J
1/2
0+

f(1) + J
1/2
1− f(0)

]
=

√
π
2

2

[
1√
π
B

(
p+ 1,

1

2

)
+

1√
π
· 1

p+ 1
2

]
,

which simplifies to

G
1/2
f (N ; 0, 1) ≤ 1

4

[
B

(
p+ 1,

1

2

)
+

1

p+ 1
2

]
.
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Moreover, the lower bound in the inequality reads

f

(
0 + 1

2

)
=

(
1

2

)p

≤ G
1/2
f (N ; 0, 1).

Hence, for the power function f(x) = xp, the inequality in Theorem 2.11 with fractional order α = 1
2

becomes (
1

2

)p

≤ G
1/2
f (N ; 0, 1) ≤ 1

4

[
B

(
p+ 1,

1

2

)
+

1

p+ 1
2

]
where

G
1
2
f (N ; 0, 1) =

1

2

{(
1 +

√
N −

√
1−N

)(N

2

)p

+
(
1 +

√
1−N −

√
N
)(1 +N

2

)p}
.

—————————————————————-
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