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Abstract

A novel hybrid computational technique, referred to as the Modified-Laplace transform based Variational
Iteration Method (MLVIM), is presented in this study to efficiently address the associated challenges. This
method is developed through the integration of the modified Laplace transform used to convert fractional
order equations into an algebraic form and the variational iteration method, which is employed to man-
age nonlinear components effectively. The formulation of the method is supported by a robust theoretical
framework, including convergence analysis and relevant theorems that establish its mathematical validity.
To demonstrate the practical effectiveness of MLVIM, it has been applied to a series of benchmark fractional
differential equations. The results of numerical experiments demonstrate that the proposed method out-
performs traditional techniques in terms of accuracy, convergence, and computational efficiency. The error
analysis confirms that MLVIM achieves lower approximation errors, making it a robust and precise tool for
modelling complex dynamic systems. This research contributes a reliable and powerful approach to solve
complex fractional models, offering significant potential for applications in science and engineering where
memory-dependent behaviour is prevalent.
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1. Introduction

Fractional order differential equations (FDE) are phenomena that occur in the fields of applied math-
ematics, physics, and engineering. These phenomena are commonly explained using nonlinear differential
equations, which can have many forms based on the specific fractional order imposed on the FDE[1, 2, 3].
FDEs were used in the work of [4, 5] to represent both electrical and non-electrical systems with dispersed
characteristics, demonstrating one of the many uses of FDE. The modelling of super capacitors, batteries,
and a series of cars operating in adaptive cruise control mode provided specific instances. Caputo Fabrizio
derivatives were used for different types of fractional order derivatives such as singular kernel (Caputo)
derivatives, which have been used by numerous researchers to elucidate the hereditary characteristics of var-
ious systems[6, 7, 8, 9, 10]. Regarding epidemiology, [11, 12] explain that fractional order models are useful
for explaining specific trends that cannot be fully explained by integer-order models. For example, it was
implemented in the modelling of HIV and tuberculosis co-infection in the presence of Multi-Drug Resistant
Tuberculosis (MDR-TB). This was done to differentiate between the immune systems of individuals, age,
compliance with treatment, and other co-morbidities. The purpose was to incorporate actual data from
specific patients [13, 14]. Nevertheless, the presence of singularities in some points in the kernel of Caputo
derivatives led to the development of Caputo Fabrizio differential equations, which exhibit non-singularities
at any point.
Several researchers have made efforts to employ various techniques in order to solve this particular prob-
lem, but obtaining an exact or straightforward solution is challenging due to nonlinearity. Therefore, many
numerical methods, including the Adomian Decomposition Method (ADM), the Homotopy Perturbation
Method (HPM), and the Variational Iteration Method (VIM), have been adopted to solve equations of this
nature[15, 16] . These methods yield solutions in the form of infinite series, which converge efficiently to
the exact solution. Although the aforementioned methods have shown good performance, they have a few
limitations. These include the complex calculations required for the application of the Adomian polynomial,
the selection and determination of small artificial parameters in HPM, and the identification of the Lagrange
multiplier in VIM [17, 18, 19, 20].
In pursuit of enhanced and more effective numerical techniques, integral transforms like the Laplace trans-
form, Kamal transform, and Aboodh have been combined with other numerical methods capable of dealing
with nonlinearity[21, 22, 23, 24, 25]. Two hybridisation methods that involve the Laplace transform are its
combination with ADM [26, 27, 28] and HPM . The pursuit of approximate solutions for nonlinear equation
has led to modifications of integral transformations . On the one hand, integral transforms create effective
operational approaches for solving initial- and boundary-value problems by transforming them into algebraic
equations. However, these integral transforms can only handle linear integer-order science and engineering
problems independently [29].Just recently, the work of authors in [30] updated the Laplace transform kernel
to provide another integral transform that is free of singularity. The new transform, however, still has the
same problems as other integral transforms, so this letter aims to improve the modified integral transform
scheme to handle fractional order derivatives and nonlinearity, This study aims to further strengthen the
modified Laplace transform and to provide an alternative method for solving the Caputo-Fabrizio differential
equations.

2. Preliminaries / Notation

2.0 Basic of the Variational Iteration Method (VIM)
The operator representation of the general differential equation is as follows:

Ry(t) + Uy(t) +Ny(t) = g(t). (2.1)

R is a linear operator with the highest derivative, U is the remaining linear operator with a derivative less
than R, N is the non-linear operator and g (t) is the non-homogeneous term.
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[20], VIM is built as follows:

yn+1(t) = yn(t) +

∫ t

0
λ(k)[Ryn(k) + Uȳn(k) +Nȳn(k)− f(k)]dk. (2.2)

Where y0 is an initial approximation, ȳn is a restricted variation, the integral part in equation (2) is the
correction functional, n is the nth approximation and [14] defines the Lagrange multiplierλ as:

λ =
(−1)m(s− t)m−1

(m− 1)!
. (2.3)

where m is the highest-order derivative.

2.4.1 Definitions.
To proceed with development of the new scheme, it is important to recall certain basic defi-
nitions and notations from fractional calculus.

2.4.2 The Laplace transform of f (t)) for a piecewise continuous exponential order function is defined as:

Laf(t) =

∫ ∞

0
e−stf(t)dt R(s) > 0, [10]. (2.4)

2.4.3 The Modified-Laplace transform of f (t)) for an exponentially ordered piecewise continuous function is
defined as:

Laf(t) =

∫ ∞

0
a−stf(t)dt R(s) > 0, a ∈ (0,∞)/{1} , (2.5)

Where Eqn. (5) reduces to a simple Laplace transform for a = e, [30].
2.4.5 The Caputo-Fabrizio fractional derivative of a function f(t) is defined as:

CFDkf(t) =
M(k)

(1− k)

∫ t

0
e

−k(t−x)
1−k f

′
(x)dx,M(0) = M(1) = 1. (2.6)

Where k is the fractional order of the equation and M(k) is the normalization constant.

Some fundamental properties of the modified- Laplace transform:

(1) if f(t)=1, then La(1)=
1

slogea
, (s > 0).

(2) if f(t) = t, then La(t)=
1

s2(logea)2
, (s > 0).

(3) if f(t)=tn, then La(t
n)=

n!

sn+1(logea)n+1
, (s > 0, n = 0, 1, 2, ...).

(4) if f(t)=ebt, then La(e
bt)=

1

slogea− b
, slogea > |b|.

(5) if f(t)=sinbt, then La(sinbt)=
b

s2(logea)2 + b2
, (slogea > 0).

(6) if f(t)=cosbt, then La(cosbt)=
s

s2(logea)2 + b2
, (slogea > 0)

A Lemma will be established to demonstrate a crucial property of the modified Laplace transform of the
Caputo-Fabrizio derivative, which will aid in the development of the new scheme.
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3. Main Results

3.0 Lemma.
If f(t) is a piecewise continuous function of exponential order and the modified Laplace transform derivative
of a function f(t) is given, then the modified Laplace transform of the Caputo-Fabrizio derivative is

La(
CFDk

t f(t)) =
(logea)f(slogea)

slogea+k(1−slogea)
− (slogea+ k(1− slogea))

−1f(0),

z − 1 < k < z, z ∈ N. (3.1)

4. Proofs

Proof
if M(k) = 1 in Eqn (6), then

CFDk
t f(t) =

1

1− k

∫ t

0
e

−k(t−x)
1−k f

′
(x)dx. (4.1)

Applying the convolution property of two functions to Eqn. (8), then:

CFDk
t f(t) =

1

1− k
(e(

−k
1−k

)t) ∗ f ′
(x)dx. (4.2)

Applying the modified-Laplace transform of Eqn. (9), then:

La(
CFDk

t f(t)) =
1

1− k
La((e

( −k
1−k

)t))·Laf
′
(t), (4.3)

Simplifying Eqn. (10) by using the properties of the modified Laplace transform,

La(
CFDk

t f(t)) =
1

1− k
(

1

slogea+ k
1−k

)·Laf
′
(t), (4.4)

further simplification of Eqn. (11), gives the following.

La(
CFDk

t f(t)) = (
1

slogea+ k(1− slogea)
)·Laf

′
(t). (4.5)

Substituting modified-Laplace transform of the first-order derivative into Eqn. (12), that is,

La(f(t)) = (slogea)f(s, a)− f(0), (4.6)

then

La(
CFDk

t f(t)) = (
1

slogea+ k(1− slogea)
)((slogea)f(s, a)− f(0)), (4.7)
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simplifying Eqn. (14), gives

La(
CFDk

t f(t)) =
(slogea)f(s, a)

slogea+ k(1− slogea)
− (slogea+ k(1− slogea))

−1f(0). (4.8)

In general,

La(
CFDk

t f(t)) =
(slogea)f(s, a)−

∑z
k=1s

z−k(logea)
z−kf (k−1)(0)

slogea+ k(1− slogea)
. (4.9)

The purpose of this lemma is to allow determination of the modified Laplace transform of the fractional
derivative of f(t) in the Caputo-Fabrizio sense. The obtained result in equation (15) will serve as the basis
for formulating the proposed approach in this study.
3.1 The derivation of the proposed scheme (MLVIM).
The proposed approach will utilise the modified Laplace transform in conjunction with the correction func-
tional in VIM (MLVIM). Now considering the Caputo-Fabrizio form of equation (1) as

CFDk
t y(t) + Uy(t) +Ny(t) = f(t),m− 1 < k < m (4.10)

Taking the modified-Laplace transform of Eqn. (17), gives the following.

La(
CFDk

t y(t) + Uy(t) +Ny(t)− f(t)) = 0 (4.11)

Applying the modified-Laplace derivative property of the Caputo-Fabrizio type to Eqn. (18), gives

(slogea)y(slogea)

slogea+ k(1− slogea)
− (slogea+ k(1− slogea))

−1y(0) =

−La(Uy(t) +Ny(t)− f(t)) (4.12)

isolating y(logea) in Eqn. (19), gives

y(slogea) =
y(0)

slogea

+(
(slogea+ k(1− slogea))

slogea
)La(−Uy(t)−Ny(t) + f(t)). (4.13)

Taking inverse modified-Laplace transform of Eqn.(20), gives

y(t) = L−1
a (

y(0)

slogea
) + (

(slogea+ k(1− slogea))

slogea
La(Uy(t) +Ny(t)− f(t))), (4.14)

with initial approximation as

y0(t) =
y(0)

slogea
(4.15)

Using variational iteration formula to Eqn. (17), gives

yn+1 = yn +

∫ t

0
λ(r)(CFDk

ryn(r) + Uyn(r) +Nyn(r)− f(r))dr (4.16)
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Applying modified-Laplace transform to Eqn. (23), gives

yn+1(slogea) = yn(slogea) + La

∫ t

0
λ(r)(CFDk

ryn(r) + Uȳn(r) +Nȳn(r)− f(r))dr (4.17)

Regarding the items La(Uȳn(r) +Nȳn(r) as a restricted variation in Eqn. (24),
and differentiating Eqn.(24) with respect to yn(logea), gives

dyn+1(slogea)

dyn(slogea)
= 1 + λ(

slogea

slogea+ k(1− slogea)
) (4.18)

Isolating λ(t) by setting dyn+1(slogea)
dyn(slogea)

= 0 in Eqn. (25), gives

λ(t) =
−1(slogea+ k(1− slogea))

(slogea)
(4.19)

substituting Eqn.(26) into Eqn. (24), gives

yn+1(slogea) = yn(slogea)− (slogea+k(1−slogea))
(slogea)

La(
CFDk

t yn(t)) + Uyn(t) +Nyn(t)− f(t)) (4.20)

The consecutive approximations are derived by applying the inverse modified-Laplace transform to equation
(27), resulting in the correction functional of MLVIM as

yn+1(t) = yn(t) + L−1
a

−(slogea+k(1−slogea))
(slogea)

La(
CFDk

t yn(t)) + Uyn(t) +Nyn(t)− f(t) (4.21)

5. Applications

The above scheme is applied to obtain solutions of certain fractional order differential equations.
Illustration 4.1: Consider the nonlinear fractional order differential equation of Caputo-Fabrizio type

CFDk
t y(t) = −y(t) + y2(t), z − 1 < k < z, y(0) =

1

2
, (5.1)

has an exact solution when k=1 as e−t

e−t+1
(Muhammad [31]

Taking modified-Laplace transform (La) of Eqn. (29) and using initial conditions gives the following.

y(slogea) =
1

(2slogea)
− (slogea+ k(1− slogea))

slogea
La(−y + y2), (5.2)

taking inverse modified-Laplace transform (L−1
a ) of Eqn. (30), gives

y(t) =
1

2
+ L−1

a (
(slogea+ k(1− slogea))

slogea
La((−y + y2))), (5.3)

applying modified-Laplace variational iteration scheme, which is Eqn. (28) to Eqn. (31), gives correction
functional as

yn+1(t) = yn(t) + L−1
a (

(slogea+ k(1− slogea))

slogea
La(

CFDk
t yn + yn − y2n) (5.4)
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Starting with initial approximation y0(t) =
1
2 and using iteration formula for Eqn. (32), gives

y1(t) =
1

2
− 1

4
kt

y2(t) =
1

2
− 1

4
kt+

1

2
k

−1

4
k2 +

1

4
k2t+

1

16
k2t2 +

1

48
k3t3 − 1

16
k3t2 + ... (5.5)

Table 1: Approximate solution of MLVIM, Exact solution and Absolute errors when k = 1 of Eqn. (29)

t MLVIM solution Exact solution AEMLVIM AEKTADM [31]

0.1 0.4750002083 0.4750208126 0.0000206043 0.0000208126
0.2 0.4500066667 0.4501660027 0.0001593360 0.0001660027
0.3 0.4250506250 0.4255574831 0.0005068581 0.0005574831
0.4 0.4002133333 0.4013123399 0.0010990066 0.0013123399
0.5 0.3756510417 0.3775406688 0.0018896271 0.0025406688
0.6 0.3516200000 0.3543436938 0.0027236938 0.0043436938
0.7 0.3285104583 0.3318122279 0.0033107696 0.0068122279
0.8 0.3068266667 0.3100255190 0.0031988523 0.0100255190
0.9 0.2873018750 0.2890504974 0.0017486224 0.0140504974
1.0 0.2708333333 0.2689414214 0.0016549282 0.0189414214

MAPE: 0.0449248436 0.1595394283

AEMLVIM: Absolute error of the modified-Laplace variational iteration method.
AEKTADM: Absolute Error of Kamal Transform Adomian Decomposition Method.
MAPE: Mean Absolute Percentage Error.

Figure 1: Absolute Error of MLVIM and KTADM for Eqn.(29)
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Table 2: Solutions of MLVIM for Eqn. (29) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.2 0.4180360000 0.4420853333 0.4501666667
0.4 0.3762880000 0.3946826667 0.4013333333
0.6 0.3349720000 0.3483040000 0.3545000000
0.8 0.2943040000 0.3034613333 0.3106666667
1.0 0.2545000000 0.2606666667 0.2708333333

Illustration 4.2: Consider the system of the epidemic model, which is a nonlinear fractional order
differential equation of the Caputo-Fabrizio type [32].

CFDk
t Y (t) = −βY (t)I(t) (5.6)

CFDk
t I(t) = βY (t)I(t)− αI(t) (5.7)

CFDk
t R(t) = I(t), 0 < k < 1, (5.8)

Y (0) = 20, I(0) = 15, R(0) = 10, β = 0.01, α = 0.002
Taking modified-Laplace transform (La) of Eqns. (34),(35), (36) and, using initial conditions, gives

Y (slogea) =
20

(slogea)
− (slogea+ k(1− slogea))

slogea
La(−βY I), (5.9)

I(slogea) =
15

(slogea)
− (slogea+ k(1− slogea))

slogea
La(−βY I − αI), (5.10)

R(slogea) =
10

(slogea)
− (slogea+ k(1− slogea))

slogea
La(αI), (5.11)

taking inverse modified-Laplace transform (L−1
a ) of Eqns. (37), (38) (39), gives

Y (t) = 20 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((−βY I))) (5.12)

I(t) = 15 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((−βY I − αI))) (5.13)

R(t) = 10 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((αI))) (5.14)

Using the coupled fractional modified-Laplace variational scheme of Eqn. (28) to Eqn. (40), (41) (42) gives
the correction functional as

Yn+1(t) = Yn(t)

+L−1
a (−(slogea+ k(1− slogea))slogeaLa((

CFDk
t Yn + βYnIn))) (5.15)

In+1(t) = In(t)

+L−1
a (−(slogea+ k(1− slogea))slogeaLa(

CFDk
t In − βYnIn + αIn)) (5.16)

Rn+1(t) = Rn(t)
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+L−1
a (−(slogea+ k(1− slogea))slogeaLa

CFDk
t Rn − αIn) (5.17)

Starting with initial approximation Y0(t) = 20, I0(t) = 15, R(0) = 10 and using iteration formula for Eqn.
(43), (44) (45) gives the following.

Y1(t) = 17− 3kt+ 3k (5.18)

I1(t) = 18− 3k + 2.7kt (5.19)

R1(t) = 10.3− 0.3k + 0.3kt (5.20)

Y2(t) = 13.94 + 9.03k − 5.979kt+ 2.7182k2t

−2.88k2 + 0.0405k2t2 − 0.0855k3t2 + 0.261k3t+ 0.027k3t3 − 0.09k3 + ... (5.21)

I2(t) = 20.7− 8.31k + 5.26kt− 2.304k2t

+2.52k2 − 0.1485k2t2 + 0.1665k3t2 − 0.261k3t− 0.027k3t3 + 0.09k3 + ... (5.22)

R2(t) = 10.66 + 0.714kt− 1.02k − 0.414k2t+ 0.36k3 + 0.027k2t2 + ... (5.23)

Table 3: Approximate of MLVIM and RK4 solutions of Eqns. (34), (35) and (36) when k= 1

t (Y)MLVIM (I)MLVIM (R)MLVIM (Y)RK4 (I)RK4 (R)RK4

0.1 19.699577 15.270153 10.030270 19.699578 15.270152 10.030270
0.2 19.398416 15.540504 10.061080 19.398426 15.540494 10.061081
0.3 19.096679 15.810891 10.092430 19.096713 15.810855 10.092432
0.4 18.794528 16.081152 10.124320 18.794611 16.081065 10.124324
0.5 18.492125 16.351125 10.156750 18.492292 16.350951 10.156756
0.6 18.189632 16.620648 10.189720 18.189932 16.620340 10.189728
0.7 17.887211 16.889559 10.223230 17.887704 16.889059 10.223237
0.8 17.585024 17.157696 10.257280 17.585779 17.156938 10.257383
0.9 17.283233 17.424897 10.291870 17.284328 17.423808 10.291864
1.0 16.982000 17.691000 10.327000 16.983520 17.689502 10.326978

Illustration 4.3: Consider stiff system of nonlinear fractional order differential equation of Caputo-
Fabrizio type [27].

CFDk
t X(t) = −k1X(t) + k2Y (t)Z(t) (5.24)

CFDk
t Y (t) = k3X(t) + k4Y (t)Z(t)− k5Y

2(t) (5.25)
CFDk

t Z(t) = k6Y
2(t), 0 < k < 1, (5.26)

X(0) = 1, Y (0) = 0, Z(0) = 0, k1 = 0.04, k2 = 0.001,

k3 = 400, k4 = 100, k5 = 3000 and k6 = 30.
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Table 4: Absolute differences of MLVIM with NIM for Eqns. (34) (35) and (36)

t (Y)MLVIM (I)MLVIM (R)MLVIM (Y)NIM (I)NIM (R)NIM [32]

0.1 0.000001 0.000001 0.000000 0.000028 0.000028 0.000000
0.2 0.000010 0.000010 0.000001 0.000226 0.000226 0.000001
0.3 0.000034 0.000036 0.000002 0.000763 0.000765 0.000002
0.4 0.000083 0.000087 0.000004 0.001811 0.001815 0.000004
0.5 0.000167 0.000174 0.000006 0.003542 0.003549 0.000006
0.6 0.000302 0.000308 0.000008 0.006134 0.006140 0.000008
0.7 0.000493 0.000500 0.000007 0.009754 0.009761 0.000007
0.8 0.000755 0.000758 0.000003 0.014579 0.014582 0.000003
0.9 0.001095 0.001089 0.000006 0.020778 0.020077 0.000006
1.0 0.001520 0.001498 0.000022 0.028520 0.028498 0.000022

MAPE 0.000243 0.000271 0.000006 0.004694 0.008536 0.000006

Table 5: Solutions of MLVIM for Eqn. (34) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.2 17.79114234 18.69210675 19.69957700
0.4 17.28049357 18.10872858 18.79452800
0.6 16.77009363 17.52524902 18.18963200
0.8 16.26022246 16.94233165 17.58502400
1.0 15.75116000 16.36064000 16.98220000.

Table 6: Solution of MLVIM for Equation (35) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.2 17.09453030 16.23113933 15.54050400
0.4 17.54674099 16.74995174 16.08115200
0.6 17.99699213 17.26665370 16.62064800
0.8 18.44500378 16.78058163 17.15769600
1.0 18.89049600 18.29107200 17.69100000.

Table 7: Solutions of MLVIM for Equation (36) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.2 10.2338608 10.1363392 10.0610800
0.4 10.2908992 10.1996608 10.1243200
0.6 10.3487152 10.2643648 10.1897200
0.8 10.4073088 10.3304512 10.2572800
1.0 10.4666800 10.3979200 10.3270000.
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a

b

c

Figure 2: Absolute Error of MLVIM and NIM for Eqns.(34, 35, 36)

Taking modified-Laplace transform (La) of Eqns. (52) (53) (54) and using initial conditions, gives



Oderinu et.al,, Journal of Prime Research in Mathematics, 21(2) (2025), 64-80 75

X(slogea) =
1

(slogea)
− (slogea+ k(1− slogea))

slogea
La(−k1X + k2Y Z), (5.27)

Y (slogea) =
0

(slogea)
− (slogea+ k(1− slogea))

slogea
La(k3X + k4Y Z − k5Y

2), (5.28)

Z(slogea) =
0

(slogea)
− (slogea+ k(1− slogea))

slogea
La(k6Y

2), (5.29)

taking inverse modified-Laplace transform (L−1
a ) of Eqns. (55) (56) (57), gives

X(t) = 1 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((−k1X + k2Y Z))) (5.30)

Y (t) = 0 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((k3X + k4Y Z − k5Y

2))) (5.31)

Z(t) = 0 + L−1
a (

−(slogea+ k(1− slogea))

slogea
La((k6Y

2))) (5.32)

Using the coupled fractional modified-Laplace variational scheme of Eqn. (28) to eqns. (58) (59) (60), gives
correction functional as

Xn+1(t) = Xn(t)

+L−1
a (−(slogea+ k(1− slogea))slogeaLa((

CFDk
t Xn + k1xn − k2YnZn))) (5.33)

Yn+1(t) = Yn(t)

+L−1
a (−(slogea+ k(1− slogea))slogeaLa(

CFDk
t Yn − k3Xn − k4YnZn)) (5.34)

Zn+1(t) = Zn(t)

+L−1
a (−(slogea+ k(1− slogea))slogeaLa

CFDk
t Zn − k6Y

2
n ) (5.35)

Starting with initial approximation X0(t) = 1, Y0(t) = 0, Z(0) = 0 and using iteration formula for Eqns.
(61) (62) (63), gives

X1(t) = 0.96− 0.04kt+ 0.04k (5.36)

Y1(t) = 400− 400k + 400kt (5.37)

Z1(t) = 0 (5.38)

X2(t) = 0.9216 + 0.1168k − 0.0768kt+ 0.0368k2t

−0.0384k2 + 0.0008k2t2 + ... (5.39)

Y2(t) = −479999216− 1439999232kt+ 1439998832k + 2879999632k2t−
143999961k2 − 960000008k2t2 − 1440000000k3t+

480000000k3 + 960000000k3t2 − 160000000k3t3 + ... (5.40)

Z2(t) = 4800000 + 14400000kt− 14400000k − 28800000k2t+ 14400000k3

+9600000k2t2 + 14400000k3t− 4800000k3 − 9600000k3t2 + 1600000k3t3 + ... (5.41)
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Table 8: Approximate of MLVIM and RK4 solutions for Eqns. (52), (53) and (54) when k= 1

t (X)MLVIM (Y)MLVIM (Z)MLVIM (X)RK4 (Y)RK4 (Z)RK4

0.0001 0.99999600 0.03983992 0.00000160 0.99999600 0.03984068 0.00001592
0.0002 0.99999200 0.07871968 0.00001280 0.99999200 0.07874381 0.00001256
0.0003 0.99998800 0.11567928 0.00004320 0.99998800 0.11585818 0.00004141
0.0004 0.99998400 0.14975872 0.00010240 0.99998400 0.15048867 0.00009510
0.0005 0.99998000 0.17999800 0.00020000 0.99998000 0.18213874 0.00017860
0.0006 0.99997600 0.20543712 0.00034560 0.99997600 0.21052164 0.00029476
0.0007 0.99997200 0.22511608 0.00054880 0.99997200 0.23554522 0.00044425
0.0008 0.99996800 0.23807488 0.00081920 0.99996800 0.25727832 0.00062720
0.0009 0.99996400 0.24335352 0.00116640 0.99996400 0.27590886 0.00084090
0.0010 0.99996000 0.23999200 0.00160000 0.99996000 0.29170201 0.00108298

Table 9: Absolute differences of MLVIM with LADM for Eqns. (52), (53) and (54)

t (X)MLVIM (Y)MLVIM (Z)MLVIM (X)LADM (Y)LADM (Z)LADM [27]

0.0001 0.00000000 0.00000076 0.00001432 0.00159996 0.00015922 0.00001592
0.0002 0.00000000 0.00002413 0.00000024 0.00159992 0.00125589 0.00001256
0.0003 0.00000000 0.00017890 0.00000179 0.00159988 0.00414112 0.00004141
0.0004 0.00000000 0.00072995 0.00000730 0.00159984 0.00951003 0.00009510
0.0005 0.00000000 0.00214074 0.00002140 0.00159980 0.01785926 0.00017860
0.0006 0.00000000 0.00508452 0.00005084 0.00159976 0.02947546 0.00029476
0.0007 0.00000000 0.01042914 0.00010455 0.00159972 0.04445088 0.00044425
0.0008 0.00000000 0.01920344 0.00019200 0.00159968 0.06271658 0.00062720
0.0009 0.00000000 0.03255534 0.00032550 0.00159964 0.08408464 0.00084090
0.0010 0.00000000 0.05171001 0.00051702 0.00159960 0.10828999 0.00108298
MAPE 0.00000000 0.66406526 3.87203985 0.01599815 1.96919431 11.39288212

Table 10: Solutions of MLVIM for Equation (52) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.0002 0.9778494336 0.9904564220 0.9999920000
0.0004 0.9778428672 0.9904488451 0.9999840001
0.0006 0.9778363009 0.9904412672 0.9999760003
0.0008 0.9778297346 0.9904336903 0.9999680005
0.0010 0.9778231683 0.9904261125 0.9999600008.



Oderinu et.al,, Journal of Prime Research in Mathematics, 21(2) (2025), 64-80 77

a b

c

Figure 3: Absolute Error of MLVIM and LADM for Eqn.(52, 53, 54)

Table 11: Solutions of MLVIM for Equation (53) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.0002 -30747432.02 -3849125.48 0.0787196800
0.0004 -30775096.90 -3858356.12 0.1497587200
0.0006 -30802772.61 -3867596.65 0.2054371200
0.0008 -30830458.51 -3876846.98 0.2380748800
0.0010 -30858156.21 -3886107.14 0.2399920000

Table 12: Solutions of MLVIM for Equation (54) at different values of fractional order (k)

t k=0.6 k=0.8 k=1

0.0002 307476.54 38492.21 0.00001280
0.0004 307753.18 38584.52 0.00010240
0.0006 308029.94 38676.93 0.00034560
0.0008 308306.80 38769.43 0.00081920
0.0010 308583.78 38862.03 0.00160000
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Discussion

A novel approach, namely MLVIM, has been devised to address nonlinear differential equations of
the Caputo-Fabrizio type. This method utilises the integral transform as its foundation. To assess the
effectiveness of the scheme, three different examples were examined, and the results are shown in Tables
1 to 12 with Figure 1, Figure 2 and Figure 3. Table 1 shows the results of Example 1 compared to the
exact solution at k = 1, where the exact solution was attainable. The MLVIM exhibited a reduced absolute
error compared to the referred solution in [31], when the Kamal transform was combined with ADM and
Figure 1 visualized the absolute error for MLVIM and KTADM. This performance of this is attributed to
the correction functionals derived from VIM, which have been shown to outperform the decomposition of
polynomials in ADM. Furthermore, Table 2 presents the solution of Example 1 in various fractional orders.
This solution illustrates the concealed impacts of fractional order in achieving solutions of classical order.
Tables 3 and 4 with Figure 2 display the outcomes of Example 2, which is a system of equations that describe
the fundamental epidemic model. Table 3 presents the solution achieved using MLVIM, in comparison to
the Runge-Kutta technique of order 4. On the other hand, Table 4 shows the absolute difference between
MLVIM and the Runge-Kutta method, compared to the difference obtained in the reference [32]. The
Runge-Kutta method was utilised as a control technique due to the lack of an exact solution of the classical
order of k = 1. In this example, it was observed that MLVIM exhibited a reduced disparity compared to
NIM [32]. The solution of Example 2 in fractional orders for each compartment is also presented in Tables 5,
6, and 7, respectively, with an explanation similar to that of Example 1 in terms of hereditary and nonlocal
features of fractional order calculus.
The solutions for Example 3 can be found in Tables 8 and 9 together with Figure 3. Table 8 illustrates the
agreement in the results achieved by MLVIM and the Runge-Kutta method. On the other hand, Table 9
and Figure 3 show the superior performance demonstrated by MLVIM compared to [27], which used the
Laplace Adomian approach. The Runge-Kutta method was used as a control to measure this comparison.
Tables 10, 11, and 12 demonstrate the system’s behaviour at fractional orders prior to attaining a solution
at the classical level. This phenomenon maintains nonlocal features and is closely aligned with the overall
attributes of fractional calculus.

Conclusion

A novel method, named modified Laplace transform VIM (MLVIM), has incorporated the correction
functional of VIM into the existing scheme of the modified Laplace transform. Subsequently, this approach
was utilised to address three distinct problems to validate the efficacy of the technique. The results were
then juxtaposed with solutions found in the existing literature, thereby confirming the superior performance
of MLVIM compared to other methods.
The results for fractional orders also reveal hidden solution behaviors compared to traditional integer or-
der calculus. This method was employed without employing linearization, discretization, or unreasonable
assumptions, making it highly recommended for resolving problems that arise in the fields of biology, engi-
neering, and the sciences.
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